mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-31 02:02:21 +06:00
Fix examples of loading pretrained models in docstring
This commit is contained in:
parent
4fc9f9ef54
commit
beb03ec6c5
@ -643,12 +643,11 @@ class BertModel(BertPreTrainedModel):
|
||||
|
||||
Examples::
|
||||
|
||||
config = BertConfig.from_pretrained('bert-base-uncased')
|
||||
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
|
||||
model = BertModel(config)
|
||||
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
|
||||
outputs = model(input_ids)
|
||||
last_hidden_states = outputs[0] # The last hidden-state is the first element of the output tuple
|
||||
>>> tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
|
||||
>>> model = BertModel.from_pretrained('bert-base-uncased')
|
||||
>>> input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
|
||||
>>> outputs = model(input_ids)
|
||||
>>> last_hidden_states = outputs[0] # The last hidden-state is the first element of the output tuple
|
||||
|
||||
"""
|
||||
def __init__(self, config):
|
||||
@ -754,13 +753,11 @@ class BertForPreTraining(BertPreTrainedModel):
|
||||
|
||||
Examples::
|
||||
|
||||
config = BertConfig.from_pretrained('bert-base-uncased')
|
||||
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
|
||||
|
||||
model = BertForPreTraining(config)
|
||||
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
|
||||
outputs = model(input_ids)
|
||||
prediction_scores, seq_relationship_scores = outputs[:2]
|
||||
>>> tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
|
||||
>>> model = BertForPreTraining.from_pretrained('bert-base-uncased')
|
||||
>>> input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
|
||||
>>> outputs = model(input_ids)
|
||||
>>> prediction_scores, seq_relationship_scores = outputs[:2]
|
||||
|
||||
"""
|
||||
def __init__(self, config):
|
||||
@ -824,13 +821,11 @@ class BertForMaskedLM(BertPreTrainedModel):
|
||||
|
||||
Examples::
|
||||
|
||||
config = BertConfig.from_pretrained('bert-base-uncased')
|
||||
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
|
||||
|
||||
model = BertForMaskedLM(config)
|
||||
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
|
||||
outputs = model(input_ids, masked_lm_labels=input_ids)
|
||||
loss, prediction_scores = outputs[:2]
|
||||
>>> tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
|
||||
>>> model = BertForMaskedLM.from_pretrained('bert-base-uncased')
|
||||
>>> input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
|
||||
>>> outputs = model(input_ids, masked_lm_labels=input_ids)
|
||||
>>> loss, prediction_scores = outputs[:2]
|
||||
|
||||
"""
|
||||
def __init__(self, config):
|
||||
@ -891,13 +886,11 @@ class BertForNextSentencePrediction(BertPreTrainedModel):
|
||||
|
||||
Examples::
|
||||
|
||||
config = BertConfig.from_pretrained('bert-base-uncased')
|
||||
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
|
||||
|
||||
model = BertForNextSentencePrediction(config)
|
||||
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
|
||||
outputs = model(input_ids)
|
||||
seq_relationship_scores = outputs[0]
|
||||
>>> tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
|
||||
>>> model = BertForNextSentencePrediction.from_pretrained('bert-base-uncased')
|
||||
>>> input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
|
||||
>>> outputs = model(input_ids)
|
||||
>>> seq_relationship_scores = outputs[0]
|
||||
|
||||
"""
|
||||
def __init__(self, config):
|
||||
@ -951,14 +944,12 @@ class BertForSequenceClassification(BertPreTrainedModel):
|
||||
|
||||
Examples::
|
||||
|
||||
config = BertConfig.from_pretrained('bert-base-uncased')
|
||||
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
|
||||
|
||||
model = BertForSequenceClassification(config)
|
||||
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
|
||||
labels = torch.tensor([1]).unsqueeze(0) # Batch size 1
|
||||
outputs = model(input_ids, labels=labels)
|
||||
loss, logits = outputs[:2]
|
||||
>>> tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
|
||||
>>> model = BertForSequenceClassification.from_pretrained('bert-base-uncased')
|
||||
>>> input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
|
||||
>>> labels = torch.tensor([1]).unsqueeze(0) # Batch size 1
|
||||
>>> outputs = model(input_ids, labels=labels)
|
||||
>>> loss, logits = outputs[:2]
|
||||
|
||||
"""
|
||||
def __init__(self, config):
|
||||
@ -1057,15 +1048,13 @@ class BertForMultipleChoice(BertPreTrainedModel):
|
||||
|
||||
Examples::
|
||||
|
||||
config = BertConfig.from_pretrained('bert-base-uncased')
|
||||
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
|
||||
|
||||
model = BertForMultipleChoice(config)
|
||||
choices = ["Hello, my dog is cute", "Hello, my cat is amazing"]
|
||||
input_ids = torch.tensor([tokenizer.encode(s) for s in choices]).unsqueeze(0) # Batch size 1, 2 choices
|
||||
labels = torch.tensor(1).unsqueeze(0) # Batch size 1
|
||||
outputs = model(input_ids, labels=labels)
|
||||
loss, classification_scores = outputs[:2]
|
||||
>>> tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
|
||||
>>> model = BertForMultipleChoice.from_pretrained('bert-base-uncased')
|
||||
>>> choices = ["Hello, my dog is cute", "Hello, my cat is amazing"]
|
||||
>>> input_ids = torch.tensor([tokenizer.encode(s) for s in choices]).unsqueeze(0) # Batch size 1, 2 choices
|
||||
>>> labels = torch.tensor(1).unsqueeze(0) # Batch size 1
|
||||
>>> outputs = model(input_ids, labels=labels)
|
||||
>>> loss, classification_scores = outputs[:2]
|
||||
|
||||
"""
|
||||
def __init__(self, config):
|
||||
@ -1127,14 +1116,12 @@ class BertForTokenClassification(BertPreTrainedModel):
|
||||
|
||||
Examples::
|
||||
|
||||
config = BertConfig.from_pretrained('bert-base-uncased')
|
||||
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
|
||||
|
||||
model = BertForTokenClassification(config)
|
||||
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
|
||||
labels = torch.tensor([1] * input_ids.size(1)).unsqueeze(0) # Batch size 1
|
||||
outputs = model(input_ids, labels=labels)
|
||||
loss, scores = outputs[:2]
|
||||
>>> tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
|
||||
>>> model = BertForTokenClassification.from_pretrained('bert-base-uncased')
|
||||
>>> input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
|
||||
>>> labels = torch.tensor([1] * input_ids.size(1)).unsqueeze(0) # Batch size 1
|
||||
>>> outputs = model(input_ids, labels=labels)
|
||||
>>> loss, scores = outputs[:2]
|
||||
|
||||
"""
|
||||
def __init__(self, config):
|
||||
@ -1203,15 +1190,13 @@ class BertForQuestionAnswering(BertPreTrainedModel):
|
||||
|
||||
Examples::
|
||||
|
||||
config = BertConfig.from_pretrained('bert-base-uncased')
|
||||
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
|
||||
|
||||
model = BertForQuestionAnswering(config)
|
||||
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
|
||||
start_positions = torch.tensor([1])
|
||||
end_positions = torch.tensor([3])
|
||||
outputs = model(input_ids, start_positions=start_positions, end_positions=end_positions)
|
||||
loss, start_scores, end_scores = outputs[:2]
|
||||
>>> tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
|
||||
>>> model = BertForQuestionAnswering.from_pretrained('bert-base-uncased')
|
||||
>>> input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
|
||||
>>> start_positions = torch.tensor([1])
|
||||
>>> end_positions = torch.tensor([3])
|
||||
>>> outputs = model(input_ids, start_positions=start_positions, end_positions=end_positions)
|
||||
>>> loss, start_scores, end_scores = outputs[:2]
|
||||
|
||||
"""
|
||||
def __init__(self, config):
|
||||
|
@ -433,12 +433,11 @@ class GPT2Model(GPT2PreTrainedModel):
|
||||
|
||||
Examples::
|
||||
|
||||
config = GPT2Config.from_pretrained('gpt2')
|
||||
tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
|
||||
model = GPT2Model(config)
|
||||
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
|
||||
outputs = model(input_ids)
|
||||
last_hidden_states = outputs[0] # The last hidden-state is the first element of the output tuple
|
||||
>>> tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
|
||||
>>> model = GPT2Model.from_pretrained('gpt2')
|
||||
>>> input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
|
||||
>>> outputs = model(input_ids)
|
||||
>>> last_hidden_states = outputs[0] # The last hidden-state is the first element of the output tuple
|
||||
|
||||
"""
|
||||
def __init__(self, config):
|
||||
@ -567,12 +566,11 @@ class GPT2LMHeadModel(GPT2PreTrainedModel):
|
||||
|
||||
Examples::
|
||||
|
||||
config = GPT2Config.from_pretrained('gpt2')
|
||||
tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
|
||||
model = GPT2LMHeadModel(config)
|
||||
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
|
||||
outputs = model(input_ids, labels=input_ids)
|
||||
loss, logits = outputs[:2]
|
||||
>>> tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
|
||||
>>> model = GPT2LMHeadModel.from_pretrained('gpt2')
|
||||
>>> input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
|
||||
>>> outputs = model(input_ids, labels=input_ids)
|
||||
>>> loss, logits = outputs[:2]
|
||||
|
||||
"""
|
||||
def __init__(self, config):
|
||||
@ -683,14 +681,13 @@ class GPT2DoubleHeadsModel(GPT2PreTrainedModel):
|
||||
|
||||
Examples::
|
||||
|
||||
config = GPT2Config.from_pretrained('gpt2')
|
||||
tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
|
||||
model = GPT2DoubleHeadsModel(config)
|
||||
choices = ["Hello, my dog is cute [CLS]", "Hello, my cat is cute [CLS]"] # Assume you've added [CLS] to the vocabulary
|
||||
input_ids = torch.tensor([tokenizer.encode(s) for s in choices]).unsqueeze(0) # Batch size 1, 2 choices
|
||||
mc_token_ids = torch.tensor([-1, -1]).unsqueeze(0) # Batch size 1
|
||||
outputs = model(input_ids, mc_token_ids)
|
||||
lm_prediction_scores, mc_prediction_scores = outputs[:2]
|
||||
>>> tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
|
||||
>>> model = GPT2DoubleHeadsModel.from_pretrained('gpt2')
|
||||
>>> choices = ["Hello, my dog is cute [CLS]", "Hello, my cat is cute [CLS]"] # Assume you've added [CLS] to the vocabulary
|
||||
>>> input_ids = torch.tensor([tokenizer.encode(s) for s in choices]).unsqueeze(0) # Batch size 1, 2 choices
|
||||
>>> mc_token_ids = torch.tensor([-1, -1]).unsqueeze(0) # Batch size 1
|
||||
>>> outputs = model(input_ids, mc_token_ids)
|
||||
>>> lm_prediction_scores, mc_prediction_scores = outputs[:2]
|
||||
|
||||
"""
|
||||
def __init__(self, config):
|
||||
|
@ -439,12 +439,11 @@ class OpenAIGPTModel(OpenAIGPTPreTrainedModel):
|
||||
|
||||
Examples::
|
||||
|
||||
config = OpenAIGPTConfig.from_pretrained('openai-gpt')
|
||||
tokenizer = OpenAIGPTTokenizer.from_pretrained('openai-gpt')
|
||||
model = OpenAIGPTModel(config)
|
||||
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
|
||||
outputs = model(input_ids)
|
||||
last_hidden_states = outputs[0] # The last hidden-state is the first element of the output tuple
|
||||
>>> tokenizer = OpenAIGPTTokenizer.from_pretrained('openai-gpt')
|
||||
>>> model = OpenAIGPTModel.from_pretrained('openai-gpt')
|
||||
>>> input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
|
||||
>>> outputs = model(input_ids)
|
||||
>>> last_hidden_states = outputs[0] # The last hidden-state is the first element of the output tuple
|
||||
|
||||
"""
|
||||
def __init__(self, config):
|
||||
@ -558,12 +557,11 @@ class OpenAIGPTLMHeadModel(OpenAIGPTPreTrainedModel):
|
||||
|
||||
Examples::
|
||||
|
||||
config = OpenAIGPTConfig.from_pretrained('openai-gpt')
|
||||
tokenizer = OpenAIGPTTokenizer.from_pretrained('openai-gpt')
|
||||
model = OpenAIGPTLMHeadModel(config)
|
||||
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
|
||||
outputs = model(input_ids, labels=input_ids)
|
||||
loss, logits = outputs[:2]
|
||||
>>> tokenizer = OpenAIGPTTokenizer.from_pretrained('openai-gpt')
|
||||
>>> model = OpenAIGPTLMHeadModel.from_pretrained('openai-gpt')
|
||||
>>> input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
|
||||
>>> outputs = model(input_ids, labels=input_ids)
|
||||
>>> loss, logits = outputs[:2]
|
||||
|
||||
"""
|
||||
def __init__(self, config):
|
||||
@ -665,14 +663,13 @@ class OpenAIGPTDoubleHeadsModel(OpenAIGPTPreTrainedModel):
|
||||
|
||||
Examples::
|
||||
|
||||
config = OpenAIGPTConfig.from_pretrained('openai-gpt')
|
||||
tokenizer = OpenAIGPTTokenizer.from_pretrained('openai-gpt')
|
||||
model = OpenAIGPTDoubleHeadsModel(config)
|
||||
choices = ["Hello, my dog is cute [CLS]", "Hello, my cat is cute [CLS]"] # Assume you've added [CLS] to the vocabulary
|
||||
input_ids = torch.tensor([tokenizer.encode(s) for s in choices]).unsqueeze(0) # Batch size 1, 2 choices
|
||||
mc_token_ids = torch.tensor([-1, -1]).unsqueeze(0) # Batch size 1
|
||||
outputs = model(input_ids, mc_token_ids)
|
||||
lm_prediction_scores, mc_prediction_scores = outputs[:2]
|
||||
>>> tokenizer = OpenAIGPTTokenizer.from_pretrained('openai-gpt')
|
||||
>>> model = OpenAIGPTDoubleHeadsModel.from_pretrained('openai-gpt')
|
||||
>>> choices = ["Hello, my dog is cute [CLS]", "Hello, my cat is cute [CLS]"] # Assume you've added [CLS] to the vocabulary
|
||||
>>> input_ids = torch.tensor([tokenizer.encode(s) for s in choices]).unsqueeze(0) # Batch size 1, 2 choices
|
||||
>>> mc_token_ids = torch.tensor([-1, -1]).unsqueeze(0) # Batch size 1
|
||||
>>> outputs = model(input_ids, mc_token_ids)
|
||||
>>> lm_prediction_scores, mc_prediction_scores = outputs[:2]
|
||||
|
||||
"""
|
||||
def __init__(self, config):
|
||||
|
@ -968,12 +968,11 @@ class TransfoXLModel(TransfoXLPreTrainedModel):
|
||||
|
||||
Examples::
|
||||
|
||||
config = TransfoXLConfig.from_pretrained('transfo-xl-wt103')
|
||||
tokenizer = TransfoXLTokenizer.from_pretrained('transfo-xl-wt103')
|
||||
model = TransfoXLModel(config)
|
||||
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
|
||||
outputs = model(input_ids)
|
||||
last_hidden_states, mems = outputs[:2]
|
||||
>>> tokenizer = TransfoXLTokenizer.from_pretrained('transfo-xl-wt103')
|
||||
>>> model = TransfoXLModel.from_pretrained('transfo-xl-wt103')
|
||||
>>> input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
|
||||
>>> outputs = model(input_ids)
|
||||
>>> last_hidden_states, mems = outputs[:2]
|
||||
|
||||
"""
|
||||
def __init__(self, config):
|
||||
@ -1284,12 +1283,11 @@ class TransfoXLLMHeadModel(TransfoXLPreTrainedModel):
|
||||
|
||||
Examples::
|
||||
|
||||
config = TransfoXLConfig.from_pretrained('transfo-xl-wt103')
|
||||
tokenizer = TransfoXLTokenizer.from_pretrained('transfo-xl-wt103')
|
||||
model = TransfoXLLMHeadModel(config)
|
||||
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
|
||||
outputs = model(input_ids)
|
||||
prediction_scores, mems = outputs[:2]
|
||||
>>> tokenizer = TransfoXLTokenizer.from_pretrained('transfo-xl-wt103')
|
||||
>>> model = TransfoXLLMHeadModel.from_pretrained('transfo-xl-wt103')
|
||||
>>> input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
|
||||
>>> outputs = model(input_ids)
|
||||
>>> prediction_scores, mems = outputs[:2]
|
||||
|
||||
"""
|
||||
def __init__(self, config):
|
||||
|
@ -472,12 +472,11 @@ class XLMModel(XLMPreTrainedModel):
|
||||
|
||||
Examples::
|
||||
|
||||
config = XLMConfig.from_pretrained('xlm-mlm-en-2048')
|
||||
tokenizer = XLMTokenizer.from_pretrained('xlm-mlm-en-2048')
|
||||
model = XLMModel(config)
|
||||
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
|
||||
outputs = model(input_ids)
|
||||
last_hidden_states = outputs[0] # The last hidden-state is the first element of the output tuple
|
||||
>>> tokenizer = XLMTokenizer.from_pretrained('xlm-mlm-en-2048')
|
||||
>>> model = XLMModel.from_pretrained('xlm-mlm-en-2048')
|
||||
>>> input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
|
||||
>>> outputs = model(input_ids)
|
||||
>>> last_hidden_states = outputs[0] # The last hidden-state is the first element of the output tuple
|
||||
|
||||
"""
|
||||
ATTRIBUTES = ['encoder', 'eos_index', 'pad_index', # 'with_output',
|
||||
@ -745,12 +744,11 @@ class XLMWithLMHeadModel(XLMPreTrainedModel):
|
||||
|
||||
Examples::
|
||||
|
||||
config = XLMConfig.from_pretrained('xlm-mlm-en-2048')
|
||||
tokenizer = XLMTokenizer.from_pretrained('xlm-mlm-en-2048')
|
||||
model = XLMWithLMHeadModel(config)
|
||||
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
|
||||
outputs = model(input_ids)
|
||||
last_hidden_states = outputs[0] # The last hidden-state is the first element of the output tuple
|
||||
>>> tokenizer = XLMTokenizer.from_pretrained('xlm-mlm-en-2048')
|
||||
>>> model = XLMWithLMHeadModel.from_pretrained('xlm-mlm-en-2048')
|
||||
>>> input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
|
||||
>>> outputs = model(input_ids)
|
||||
>>> last_hidden_states = outputs[0] # The last hidden-state is the first element of the output tuple
|
||||
|
||||
"""
|
||||
def __init__(self, config):
|
||||
@ -805,14 +803,12 @@ class XLMForSequenceClassification(XLMPreTrainedModel):
|
||||
|
||||
Examples::
|
||||
|
||||
config = XLMConfig.from_pretrained('xlm-mlm-en-2048')
|
||||
tokenizer = XLMTokenizer.from_pretrained('xlm-mlm-en-2048')
|
||||
|
||||
model = XLMForSequenceClassification(config)
|
||||
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
|
||||
labels = torch.tensor([1]).unsqueeze(0) # Batch size 1
|
||||
outputs = model(input_ids, labels=labels)
|
||||
loss, logits = outputs[:2]
|
||||
>>> tokenizer = XLMTokenizer.from_pretrained('xlm-mlm-en-2048')
|
||||
>>> model = XLMForSequenceClassification.from_pretrained('xlm-mlm-en-2048')
|
||||
>>> input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
|
||||
>>> labels = torch.tensor([1]).unsqueeze(0) # Batch size 1
|
||||
>>> outputs = model(input_ids, labels=labels)
|
||||
>>> loss, logits = outputs[:2]
|
||||
|
||||
"""
|
||||
def __init__(self, config):
|
||||
@ -885,15 +881,13 @@ class XLMForQuestionAnswering(XLMPreTrainedModel):
|
||||
|
||||
Examples::
|
||||
|
||||
config = XLMConfig.from_pretrained('xlm-mlm-en-2048')
|
||||
tokenizer = XLMTokenizer.from_pretrained('xlm-mlm-en-2048')
|
||||
|
||||
model = XLMForQuestionAnswering(config)
|
||||
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
|
||||
start_positions = torch.tensor([1])
|
||||
end_positions = torch.tensor([3])
|
||||
outputs = model(input_ids, start_positions=start_positions, end_positions=end_positions)
|
||||
loss, start_scores, end_scores = outputs[:2]
|
||||
>>> tokenizer = XLMTokenizer.from_pretrained('xlm-mlm-en-2048')
|
||||
>>> model = XLMForQuestionAnswering.from_pretrained('xlm-mlm-en-2048')
|
||||
>>> input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
|
||||
>>> start_positions = torch.tensor([1])
|
||||
>>> end_positions = torch.tensor([3])
|
||||
>>> outputs = model(input_ids, start_positions=start_positions, end_positions=end_positions)
|
||||
>>> loss, start_scores, end_scores = outputs[:2]
|
||||
|
||||
"""
|
||||
def __init__(self, config):
|
||||
|
@ -712,12 +712,11 @@ class XLNetModel(XLNetPreTrainedModel):
|
||||
|
||||
Examples::
|
||||
|
||||
config = XLNetConfig.from_pretrained('xlnet-large-cased')
|
||||
tokenizer = XLNetTokenizer.from_pretrained('xlnet-large-cased')
|
||||
model = XLNetModel(config)
|
||||
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
|
||||
outputs = model(input_ids)
|
||||
last_hidden_states = outputs[0] # The last hidden-state is the first element of the output tuple
|
||||
>>> tokenizer = XLNetTokenizer.from_pretrained('xlnet-large-cased')
|
||||
>>> model = XLNetModel.from_pretrained('xlnet-large-cased')
|
||||
>>> input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
|
||||
>>> outputs = model(input_ids)
|
||||
>>> last_hidden_states = outputs[0] # The last hidden-state is the first element of the output tuple
|
||||
|
||||
"""
|
||||
def __init__(self, config):
|
||||
@ -1019,17 +1018,16 @@ class XLNetLMHeadModel(XLNetPreTrainedModel):
|
||||
|
||||
Examples::
|
||||
|
||||
config = XLNetConfig.from_pretrained('xlnet-large-cased')
|
||||
tokenizer = XLNetTokenizer.from_pretrained('xlnet-large-cased')
|
||||
model = XLNetLMHeadModel(config)
|
||||
# We show how to setup inputs to predict a next token using a bi-directional context.
|
||||
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is very <mask>")).unsqueeze(0) # We will predict the masked token
|
||||
perm_mask = torch.zeros((1, input_ids.shape[1], input_ids.shape[1]), dtype=torch.float)
|
||||
perm_mask[:, :, -1] = 1.0 # Previous tokens don't see last token
|
||||
target_mapping = torch.zeros((1, 1, input_ids.shape[1]), dtype=torch.float) # Shape [1, 1, seq_length] => let's predict one token
|
||||
target_mapping[0, 0, -1] = 1.0 # Our first (and only) prediction will be the last token of the sequence (the masked token)
|
||||
outputs = model(input_ids, perm_mask=perm_mask, target_mapping=target_mapping)
|
||||
next_token_logits = outputs[0] # Output has shape [target_mapping.size(0), target_mapping.size(1), config.vocab_size]
|
||||
>>> tokenizer = XLNetTokenizer.from_pretrained('xlnet-large-cased')
|
||||
>>> model = XLNetLMHeadModel.from_pretrained('xlnet-large-cased')
|
||||
>>> # We show how to setup inputs to predict a next token using a bi-directional context.
|
||||
>>> input_ids = torch.tensor(tokenizer.encode("Hello, my dog is very <mask>")).unsqueeze(0) # We will predict the masked token
|
||||
>>> perm_mask = torch.zeros((1, input_ids.shape[1], input_ids.shape[1]), dtype=torch.float)
|
||||
>>> perm_mask[:, :, -1] = 1.0 # Previous tokens don't see last token
|
||||
>>> target_mapping = torch.zeros((1, 1, input_ids.shape[1]), dtype=torch.float) # Shape [1, 1, seq_length] => let's predict one token
|
||||
>>> target_mapping[0, 0, -1] = 1.0 # Our first (and only) prediction will be the last token of the sequence (the masked token)
|
||||
>>> outputs = model(input_ids, perm_mask=perm_mask, target_mapping=target_mapping)
|
||||
>>> next_token_logits = outputs[0] # Output has shape [target_mapping.size(0), target_mapping.size(1), config.vocab_size]
|
||||
|
||||
"""
|
||||
def __init__(self, config):
|
||||
@ -1100,14 +1098,12 @@ class XLNetForSequenceClassification(XLNetPreTrainedModel):
|
||||
|
||||
Examples::
|
||||
|
||||
config = XLNetConfig.from_pretrained('xlnet-large-cased')
|
||||
tokenizer = XLNetTokenizer.from_pretrained('xlnet-large-cased')
|
||||
|
||||
model = XLNetForSequenceClassification(config)
|
||||
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
|
||||
labels = torch.tensor([1]).unsqueeze(0) # Batch size 1
|
||||
outputs = model(input_ids, labels=labels)
|
||||
loss, logits = outputs[:2]
|
||||
>>> tokenizer = XLNetTokenizer.from_pretrained('xlnet-large-cased')
|
||||
>>> model = XLNetForSequenceClassification.from_pretrained('xlnet-large-cased')
|
||||
>>> input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
|
||||
>>> labels = torch.tensor([1]).unsqueeze(0) # Batch size 1
|
||||
>>> outputs = model(input_ids, labels=labels)
|
||||
>>> loss, logits = outputs[:2]
|
||||
|
||||
"""
|
||||
def __init__(self, config):
|
||||
@ -1200,15 +1196,13 @@ class XLNetForQuestionAnswering(XLNetPreTrainedModel):
|
||||
|
||||
Examples::
|
||||
|
||||
config = XLMConfig.from_pretrained('xlm-mlm-en-2048')
|
||||
tokenizer = XLMTokenizer.from_pretrained('xlm-mlm-en-2048')
|
||||
|
||||
model = XLMForQuestionAnswering(config)
|
||||
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
|
||||
start_positions = torch.tensor([1])
|
||||
end_positions = torch.tensor([3])
|
||||
outputs = model(input_ids, start_positions=start_positions, end_positions=end_positions)
|
||||
loss, start_scores, end_scores = outputs[:2]
|
||||
>>> tokenizer = XLMTokenizer.from_pretrained('xlm-mlm-en-2048')
|
||||
>>> model = XLMForQuestionAnswering.from_pretrained('xlnet-large-cased')
|
||||
>>> input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
|
||||
>>> start_positions = torch.tensor([1])
|
||||
>>> end_positions = torch.tensor([3])
|
||||
>>> outputs = model(input_ids, start_positions=start_positions, end_positions=end_positions)
|
||||
>>> loss, start_scores, end_scores = outputs[:2]
|
||||
|
||||
"""
|
||||
def __init__(self, config):
|
||||
|
Loading…
Reference in New Issue
Block a user