mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-31 10:12:23 +06:00
Add hallucination filter (#18675)
* Add hallucination penalty * Make quality changes * Inverse penalty * Fix imports & quality * Fix name spelling issue * set encoder_repetition_penalty and fix quality * Fix failing test * Add to config_common_kwargs * Fix modelling_rag error * Update src/transformers/generation_logits_process.py Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com> * Remove breakpoint * Make style fixes * Update encoder_repetition_penalty default value * Merge latest main changes * Make fixup changes * Add EncoderRepetitionPenaltyLogitsProcessor to generation/__init__.py * Fix repo-inconsistency * Remove venv * Remove tensorflow-macos & add tests * Add documentation * Fix quality issues * move encoder_repetition_penalty to config * Update src/transformers/configuration_utils.py Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com> * Update src/transformers/generation/configuration_utils.py Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com> * Remove encoder_repetition_penalty from tests * Fix type error * Fix format error Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
This commit is contained in:
parent
e9b4800dda
commit
b9403e9516
@ -58,6 +58,7 @@ else:
|
||||
"NoRepeatNGramLogitsProcessor",
|
||||
"PrefixConstrainedLogitsProcessor",
|
||||
"RepetitionPenaltyLogitsProcessor",
|
||||
"EncoderRepetitionPenaltyLogitsProcessor",
|
||||
"TemperatureLogitsWarper",
|
||||
"TopKLogitsWarper",
|
||||
"TopPLogitsWarper",
|
||||
@ -164,6 +165,7 @@ if TYPE_CHECKING:
|
||||
from .beam_search import BeamHypotheses, BeamScorer, BeamSearchScorer, ConstrainedBeamSearchScorer
|
||||
from .logits_process import (
|
||||
EncoderNoRepeatNGramLogitsProcessor,
|
||||
EncoderRepetitionPenaltyLogitsProcessor,
|
||||
EpsilonLogitsWarper,
|
||||
EtaLogitsWarper,
|
||||
ExponentialDecayLengthPenalty,
|
||||
|
@ -127,6 +127,9 @@ class GenerationConfig(PushToHubMixin):
|
||||
repetition_penalty (`float`, *optional*, defaults to 1.0):
|
||||
The parameter for repetition penalty. 1.0 means no penalty. See [this
|
||||
paper](https://arxiv.org/pdf/1909.05858.pdf) for more details.
|
||||
encoder_repetition_penalty (`float`, *optional*, defaults to 1.0):
|
||||
The paramater for encoder_repetition_penalty. An exponential penalty on sequences that are not in the
|
||||
original input. 1.0 means no penalty.
|
||||
length_penalty (`float`, *optional*, defaults to 1.0):
|
||||
Exponential penalty to the length that is used with beam-based generation. It is applied as an exponent to
|
||||
the sequence length, which in turn is used to divide the score of the sequence. Since the score is the log
|
||||
@ -239,6 +242,7 @@ class GenerationConfig(PushToHubMixin):
|
||||
self.eta_cutoff = kwargs.pop("eta_cutoff", 0.0)
|
||||
self.diversity_penalty = kwargs.pop("diversity_penalty", 0.0)
|
||||
self.repetition_penalty = kwargs.pop("repetition_penalty", 1.0)
|
||||
self.encoder_repetition_penalty = kwargs.pop("encoder_repetition_penalty", 1.0)
|
||||
self.length_penalty = kwargs.pop("length_penalty", 1.0)
|
||||
self.no_repeat_ngram_size = kwargs.pop("no_repeat_ngram_size", 0)
|
||||
self.bad_words_ids = kwargs.pop("bad_words_ids", None)
|
||||
|
@ -204,6 +204,34 @@ class RepetitionPenaltyLogitsProcessor(LogitsProcessor):
|
||||
return scores
|
||||
|
||||
|
||||
class EncoderRepetitionPenaltyLogitsProcessor(LogitsProcessor):
|
||||
r"""
|
||||
[`LogitsProcessor`] enforcing an exponential penalty on tokens that are not in the original input.
|
||||
|
||||
Args:
|
||||
hallucination_penalty (`float`):
|
||||
The parameter for hallucination penalty. 1.0 means no penalty.
|
||||
encoder_input_ids (`torch.LongTensor`):
|
||||
The encoder_input_ids that should not be repeated within the decoder ids.
|
||||
"""
|
||||
|
||||
def __init__(self, penalty: float, encoder_input_ids: torch.LongTensor):
|
||||
if not isinstance(penalty, float) or not (penalty > 0):
|
||||
raise ValueError(f"`penalty` has to be a strictly positive float, but is {penalty}")
|
||||
|
||||
self.penalty = 1 / penalty
|
||||
self.encoder_input_ids = encoder_input_ids
|
||||
|
||||
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
|
||||
score = torch.gather(scores, 1, self.encoder_input_ids)
|
||||
|
||||
# if score < 0 then repetition penalty has to be multiplied to reduce the previous token probability
|
||||
score = torch.where(score < 0, score * self.penalty, score / self.penalty)
|
||||
|
||||
scores.scatter_(1, self.encoder_input_ids, score)
|
||||
return scores
|
||||
|
||||
|
||||
class TopPLogitsWarper(LogitsWarper):
|
||||
"""
|
||||
[`LogitsWarper`] that performs top-p, i.e. restricting to top tokens summing to prob_cut_off <= prob_cut_off.
|
||||
|
@ -39,6 +39,7 @@ from .beam_search import BeamScorer, BeamSearchScorer, ConstrainedBeamSearchScor
|
||||
from .configuration_utils import GenerationConfig
|
||||
from .logits_process import (
|
||||
EncoderNoRepeatNGramLogitsProcessor,
|
||||
EncoderRepetitionPenaltyLogitsProcessor,
|
||||
EpsilonLogitsWarper,
|
||||
EtaLogitsWarper,
|
||||
ExponentialDecayLengthPenalty,
|
||||
@ -799,6 +800,15 @@ class GenerationMixin:
|
||||
num_beam_groups=generation_config.num_beam_groups,
|
||||
)
|
||||
)
|
||||
if (
|
||||
generation_config.encoder_repetition_penalty is not None
|
||||
and generation_config.encoder_repetition_penalty != 1.0
|
||||
):
|
||||
processors.append(
|
||||
EncoderRepetitionPenaltyLogitsProcessor(
|
||||
penalty=generation_config.encoder_repetition_penalty, encoder_input_ids=encoder_input_ids
|
||||
)
|
||||
)
|
||||
if generation_config.repetition_penalty is not None and generation_config.repetition_penalty != 1.0:
|
||||
processors.append(RepetitionPenaltyLogitsProcessor(penalty=generation_config.repetition_penalty))
|
||||
if generation_config.no_repeat_ngram_size is not None and generation_config.no_repeat_ngram_size > 0:
|
||||
|
@ -28,6 +28,7 @@ if is_torch_available():
|
||||
|
||||
from transformers.generation import (
|
||||
EncoderNoRepeatNGramLogitsProcessor,
|
||||
EncoderRepetitionPenaltyLogitsProcessor,
|
||||
EpsilonLogitsWarper,
|
||||
EtaLogitsWarper,
|
||||
ExponentialDecayLengthPenalty,
|
||||
@ -175,6 +176,31 @@ class LogitsProcessorTest(unittest.TestCase):
|
||||
self.assertAlmostEqual(scores[1, 0].item(), (1 / vocab_size) / 2)
|
||||
self.assertAlmostEqual(scores[1, 5].item(), (4 / vocab_size) / 2)
|
||||
|
||||
def test_encoder_repetition_penalty_dist_process(self):
|
||||
input_ids = torch.tensor([[0, 1], [5, 0]], device=torch_device, dtype=torch.long)
|
||||
vocab_size = 10
|
||||
|
||||
scores = self._get_uniform_logits(batch_size=2, length=vocab_size)
|
||||
|
||||
# give values special values
|
||||
scores[0, 0] = -(1 / vocab_size)
|
||||
scores[1, 5] = 4 / vocab_size
|
||||
|
||||
rep_penalty_proc = EncoderRepetitionPenaltyLogitsProcessor(penalty=2.0, encoder_input_ids=input_ids)
|
||||
|
||||
scores = rep_penalty_proc(input_ids, scores.clone())
|
||||
|
||||
# check that values were correctly changed
|
||||
self.assertAlmostEqual(scores[0, 0].item(), -(1 / vocab_size) / 2)
|
||||
self.assertAlmostEqual(scores[0, 1].item(), (1 / vocab_size) * 2)
|
||||
|
||||
self.assertAlmostEqual(scores[1, 0].item(), (1 / vocab_size) * 2)
|
||||
self.assertAlmostEqual(scores[1, 5].item(), (4 / vocab_size) * 2)
|
||||
|
||||
# check that values not in the encoder ids were NOT changed
|
||||
self.assertAlmostEqual(scores[0, 2].item(), (1 / vocab_size))
|
||||
self.assertAlmostEqual(scores[1, 2].item(), (1 / vocab_size))
|
||||
|
||||
def test_top_k_dist_warper(self):
|
||||
input_ids = None
|
||||
vocab_size = 10
|
||||
|
Loading…
Reference in New Issue
Block a user