mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-31 02:02:21 +06:00
Use tiny models for get_pretrained_model in TFEncoderDecoderModelTest (#15989)
* Use tiny model for TFRembertEncoderDecoderModelTest.get_pretrained_model() Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
This commit is contained in:
parent
8feede229c
commit
b7fa1e3dee
@ -509,8 +509,7 @@ class TFEncoderDecoderMixin:
|
||||
model = TFEncoderDecoderModel(encoder_decoder_config)
|
||||
model(**inputs_dict)
|
||||
|
||||
@slow
|
||||
def test_real_model_save_load_from_pretrained(self):
|
||||
def test_model_save_load_from_pretrained(self):
|
||||
model_2 = self.get_pretrained_model()
|
||||
input_ids = ids_tensor([13, 5], model_2.config.encoder.vocab_size)
|
||||
decoder_input_ids = ids_tensor([13, 1], model_2.config.decoder.vocab_size)
|
||||
@ -542,7 +541,10 @@ class TFEncoderDecoderMixin:
|
||||
@require_tf
|
||||
class TFBertEncoderDecoderModelTest(TFEncoderDecoderMixin, unittest.TestCase):
|
||||
def get_pretrained_model(self):
|
||||
return TFEncoderDecoderModel.from_encoder_decoder_pretrained("bert-base-uncased", "bert-base-uncased")
|
||||
return TFEncoderDecoderModel.from_encoder_decoder_pretrained(
|
||||
"hf-internal-testing/tiny-random-bert",
|
||||
"hf-internal-testing/tiny-random-bert",
|
||||
)
|
||||
|
||||
def get_encoder_decoder_model(self, config, decoder_config):
|
||||
encoder_model = TFBertModel(config, name="encoder")
|
||||
@ -637,7 +639,10 @@ class TFBertEncoderDecoderModelTest(TFEncoderDecoderMixin, unittest.TestCase):
|
||||
@require_tf
|
||||
class TFGPT2EncoderDecoderModelTest(TFEncoderDecoderMixin, unittest.TestCase):
|
||||
def get_pretrained_model(self):
|
||||
return TFEncoderDecoderModel.from_encoder_decoder_pretrained("bert-base-cased", "../gpt2")
|
||||
return TFEncoderDecoderModel.from_encoder_decoder_pretrained(
|
||||
"hf-internal-testing/tiny-random-bert",
|
||||
"hf-internal-testing/tiny-random-gpt2",
|
||||
)
|
||||
|
||||
def get_encoder_decoder_model(self, config, decoder_config):
|
||||
encoder_model = TFBertModel(config, name="encoder")
|
||||
@ -726,7 +731,10 @@ class TFGPT2EncoderDecoderModelTest(TFEncoderDecoderMixin, unittest.TestCase):
|
||||
@require_tf
|
||||
class TFRoBertaEncoderDecoderModelTest(TFEncoderDecoderMixin, unittest.TestCase):
|
||||
def get_pretrained_model(self):
|
||||
return TFEncoderDecoderModel.from_encoder_decoder_pretrained("roberta-base", "roberta-base")
|
||||
return TFEncoderDecoderModel.from_encoder_decoder_pretrained(
|
||||
"hf-internal-testing/tiny-random-roberta",
|
||||
"hf-internal-testing/tiny-random-roberta",
|
||||
)
|
||||
|
||||
def get_encoder_decoder_model(self, config, decoder_config):
|
||||
encoder_model = TFRobertaModel(config, name="encoder")
|
||||
@ -782,7 +790,10 @@ class TFRoBertaEncoderDecoderModelTest(TFEncoderDecoderMixin, unittest.TestCase)
|
||||
@require_tf
|
||||
class TFRembertEncoderDecoderModelTest(TFEncoderDecoderMixin, unittest.TestCase):
|
||||
def get_pretrained_model(self):
|
||||
return TFEncoderDecoderModel.from_encoder_decoder_pretrained("google/rembert", "google/rembert")
|
||||
return TFEncoderDecoderModel.from_encoder_decoder_pretrained(
|
||||
"hf-internal-testing/tiny-random-rembert",
|
||||
"hf-internal-testing/tiny-random-rembert",
|
||||
)
|
||||
|
||||
def get_encoder_decoder_model(self, config, decoder_config):
|
||||
encoder_model = TFRemBertModel(config, name="encoder")
|
||||
|
Loading…
Reference in New Issue
Block a user