mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-03 12:50:06 +06:00
Add Fast Image Processor for MobileNetV1 (#37111)
* fast image processor template for MobileNetV1 via transformers-cli * Add fast image processors and unify tests for slow/fast image processor classes * added loop over image_processor_list for all tests and removed boilerplate comments. --------- Co-authored-by: Yoni Gozlan <74535834+yonigozlan@users.noreply.github.com>
This commit is contained in:
parent
dea1919be4
commit
b6d65e40b2
@ -77,6 +77,11 @@ If you're interested in submitting a resource to be included here, please feel f
|
||||
[[autodoc]] MobileNetV1ImageProcessor
|
||||
- preprocess
|
||||
|
||||
## MobileNetV1ImageProcessorFast
|
||||
|
||||
[[autodoc]] MobileNetV1ImageProcessorFast
|
||||
- preprocess
|
||||
|
||||
## MobileNetV1Model
|
||||
|
||||
[[autodoc]] MobileNetV1Model
|
||||
|
@ -117,7 +117,7 @@ else:
|
||||
("mistral3", ("PixtralImageProcessor", "PixtralImageProcessorFast")),
|
||||
("mlcd", ("CLIPImageProcessor", "CLIPImageProcessorFast")),
|
||||
("mllama", ("MllamaImageProcessor",)),
|
||||
("mobilenet_v1", ("MobileNetV1ImageProcessor",)),
|
||||
("mobilenet_v1", ("MobileNetV1ImageProcessor", "MobileNetV1ImageProcessorFast")),
|
||||
("mobilenet_v2", ("MobileNetV2ImageProcessor", "MobileNetV2ImageProcessorFast")),
|
||||
("mobilevit", ("MobileViTImageProcessor",)),
|
||||
("mobilevitv2", ("MobileViTImageProcessor",)),
|
||||
|
@ -21,6 +21,7 @@ if TYPE_CHECKING:
|
||||
from .configuration_mobilenet_v1 import *
|
||||
from .feature_extraction_mobilenet_v1 import *
|
||||
from .image_processing_mobilenet_v1 import *
|
||||
from .image_processing_mobilenet_v1_fast import *
|
||||
from .modeling_mobilenet_v1 import *
|
||||
else:
|
||||
import sys
|
||||
|
@ -0,0 +1,47 @@
|
||||
# coding=utf-8
|
||||
# Copyright 2025 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""Fast Image processor class for MobileNetV1."""
|
||||
|
||||
from ...image_processing_utils_fast import (
|
||||
BASE_IMAGE_PROCESSOR_FAST_DOCSTRING,
|
||||
BaseImageProcessorFast,
|
||||
DefaultFastImageProcessorKwargs,
|
||||
Unpack,
|
||||
)
|
||||
from ...image_utils import IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, PILImageResampling
|
||||
from ...utils import add_start_docstrings
|
||||
|
||||
|
||||
@add_start_docstrings(
|
||||
"Constructs a fast MobileNetV1 image processor.",
|
||||
BASE_IMAGE_PROCESSOR_FAST_DOCSTRING,
|
||||
)
|
||||
class MobileNetV1ImageProcessorFast(BaseImageProcessorFast):
|
||||
resample = PILImageResampling.BILINEAR
|
||||
image_mean = IMAGENET_STANDARD_MEAN
|
||||
image_std = IMAGENET_STANDARD_STD
|
||||
size = {"shortest_edge": 256}
|
||||
default_to_square = False
|
||||
crop_size = {"height": 224, "width": 224}
|
||||
do_resize = True
|
||||
do_center_crop = True
|
||||
do_rescale = True
|
||||
do_normalize = True
|
||||
|
||||
def __init__(self, **kwargs: Unpack[DefaultFastImageProcessorKwargs]) -> None:
|
||||
super().__init__(**kwargs)
|
||||
|
||||
|
||||
__all__ = ["MobileNetV1ImageProcessorFast"]
|
@ -16,7 +16,7 @@
|
||||
import unittest
|
||||
|
||||
from transformers.testing_utils import require_torch, require_vision
|
||||
from transformers.utils import is_vision_available
|
||||
from transformers.utils import is_torchvision_available, is_vision_available
|
||||
|
||||
from ...test_image_processing_common import ImageProcessingTestMixin, prepare_image_inputs
|
||||
|
||||
@ -24,6 +24,9 @@ from ...test_image_processing_common import ImageProcessingTestMixin, prepare_im
|
||||
if is_vision_available():
|
||||
from transformers import MobileNetV1ImageProcessor
|
||||
|
||||
if is_torchvision_available():
|
||||
from transformers import MobileNetV1ImageProcessorFast
|
||||
|
||||
|
||||
class MobileNetV1ImageProcessingTester:
|
||||
def __init__(
|
||||
@ -79,6 +82,7 @@ class MobileNetV1ImageProcessingTester:
|
||||
@require_vision
|
||||
class MobileNetV1ImageProcessingTest(ImageProcessingTestMixin, unittest.TestCase):
|
||||
image_processing_class = MobileNetV1ImageProcessor if is_vision_available() else None
|
||||
fast_image_processing_class = MobileNetV1ImageProcessorFast if is_torchvision_available() else None
|
||||
|
||||
def setUp(self):
|
||||
super().setUp()
|
||||
@ -89,17 +93,19 @@ class MobileNetV1ImageProcessingTest(ImageProcessingTestMixin, unittest.TestCase
|
||||
return self.image_processor_tester.prepare_image_processor_dict()
|
||||
|
||||
def test_image_processor_properties(self):
|
||||
image_processing = self.image_processing_class(**self.image_processor_dict)
|
||||
self.assertTrue(hasattr(image_processing, "do_resize"))
|
||||
self.assertTrue(hasattr(image_processing, "size"))
|
||||
self.assertTrue(hasattr(image_processing, "do_center_crop"))
|
||||
self.assertTrue(hasattr(image_processing, "center_crop"))
|
||||
for image_processing_class in self.image_processor_list:
|
||||
image_processing = image_processing_class(**self.image_processor_dict)
|
||||
self.assertTrue(hasattr(image_processing, "do_resize"))
|
||||
self.assertTrue(hasattr(image_processing, "size"))
|
||||
self.assertTrue(hasattr(image_processing, "do_center_crop"))
|
||||
self.assertTrue(hasattr(image_processing, "center_crop"))
|
||||
|
||||
def test_image_processor_from_dict_with_kwargs(self):
|
||||
image_processor = self.image_processing_class.from_dict(self.image_processor_dict)
|
||||
self.assertEqual(image_processor.size, {"shortest_edge": 20})
|
||||
self.assertEqual(image_processor.crop_size, {"height": 18, "width": 18})
|
||||
for image_processing_class in self.image_processor_list:
|
||||
image_processor = image_processing_class.from_dict(self.image_processor_dict)
|
||||
self.assertEqual(image_processor.size, {"shortest_edge": 20})
|
||||
self.assertEqual(image_processor.crop_size, {"height": 18, "width": 18})
|
||||
|
||||
image_processor = self.image_processing_class.from_dict(self.image_processor_dict, size=42, crop_size=84)
|
||||
self.assertEqual(image_processor.size, {"shortest_edge": 42})
|
||||
self.assertEqual(image_processor.crop_size, {"height": 84, "width": 84})
|
||||
image_processor = image_processing_class.from_dict(self.image_processor_dict, size=42, crop_size=84)
|
||||
self.assertEqual(image_processor.size, {"shortest_edge": 42})
|
||||
self.assertEqual(image_processor.crop_size, {"height": 84, "width": 84})
|
||||
|
Loading…
Reference in New Issue
Block a user