Add support for auto_docstring with model outputs (#38242)

* experiment auto_docstring model outputs

* Fix PatchTSMixer

* Add check model output docstring to check_auto_docstring and fix all model outputs docstring

* add reordering of docstring in check_docstrings

* add check for redundant docstring in check_docstrings, remove redundant docstrings

* refactor check_auto_docstring

* make style

* fix copies

* remove commented code

* change List-> list Tuple-> tuple in docstrings

* fix modular

* make style

* Fix modular vipllava

---------

Co-authored-by: Cyril Vallez <cyril.vallez@huggingface.co>
This commit is contained in:
Yoni Gozlan 2025-06-23 10:39:41 -04:00 committed by GitHub
parent 0c98f24889
commit b6b4d43d6d
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
177 changed files with 6799 additions and 8820 deletions

View File

@ -570,11 +570,13 @@ class AlbertPreTrainedModel(PreTrainedModel):
@dataclass
class AlbertForPreTrainingOutput(ModelOutput):
"""
@auto_docstring(
custom_intro="""
Output type of [`AlbertForPreTraining`].
Args:
"""
)
class AlbertForPreTrainingOutput(ModelOutput):
r"""
loss (*optional*, returned when `labels` is provided, `torch.FloatTensor` of shape `(1,)`):
Total loss as the sum of the masked language modeling loss and the next sequence prediction
(classification) loss.
@ -583,17 +585,6 @@ class AlbertForPreTrainingOutput(ModelOutput):
sop_logits (`torch.FloatTensor` of shape `(batch_size, 2)`):
Prediction scores of the next sequence prediction (classification) head (scores of True/False continuation
before SoftMax).
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
loss: Optional[torch.FloatTensor] = None

View File

@ -40,20 +40,15 @@ logger = logging.get_logger(__name__)
@dataclass
class AlignVisionModelOutput(ModelOutput):
"""
@auto_docstring(
custom_intro="""
Base class for vision model's outputs that also contains image embeddings of the pooling of the last hidden states.
Args:
"""
)
class AlignVisionModelOutput(ModelOutput):
r"""
image_embeds (`torch.FloatTensor` of shape `(batch_size, output_dim)` *optional* returned when model is initialized with `with_projection=True`):
The image embeddings obtained by applying the projection layer to the pooler_output.
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the model.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
"""
image_embeds: Optional[torch.FloatTensor] = None
@ -62,26 +57,15 @@ class AlignVisionModelOutput(ModelOutput):
@dataclass
class AlignTextModelOutput(ModelOutput):
"""
@auto_docstring(
custom_intro="""
Base class for text model's outputs that also contains a pooling of the last hidden states.
Args:
"""
)
class AlignTextModelOutput(ModelOutput):
r"""
text_embeds (`torch.FloatTensor` of shape `(batch_size, output_dim)` *optional* returned when model is initialized with `with_projection=True`):
The text embeddings obtained by applying the projection layer to the pooler_output.
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the model.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
text_embeds: Optional[torch.FloatTensor] = None
@ -91,15 +75,15 @@ class AlignTextModelOutput(ModelOutput):
@dataclass
@auto_docstring
class AlignOutput(ModelOutput):
"""
Args:
r"""
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `return_loss` is `True`):
Contrastive loss for image-text similarity.
logits_per_image:(`torch.FloatTensor` of shape `(image_batch_size, text_batch_size)`):
logits_per_image (`torch.FloatTensor` of shape `(image_batch_size, text_batch_size)`):
The scaled dot product scores between `image_embeds` and `text_embeds`. This represents the image-text
similarity scores.
logits_per_text:(`torch.FloatTensor` of shape `(text_batch_size, image_batch_size)`):
logits_per_text (`torch.FloatTensor` of shape `(text_batch_size, image_batch_size)`):
The scaled dot product scores between `text_embeds` and `image_embeds`. This represents the text-image
similarity scores.
text_embeds (`torch.FloatTensor` of shape `(batch_size, output_dim`):

View File

@ -53,10 +53,10 @@ def clip_loss(similarity: torch.Tensor) -> torch.Tensor:
@dataclass
@auto_docstring
# Copied from transformers.models.clip.modeling_clip.CLIPOutput with CLIP->AltCLIP
class AltCLIPOutput(ModelOutput):
"""
Args:
r"""
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `return_loss` is `True`):
Contrastive loss for image-text similarity.
logits_per_image (`torch.FloatTensor` of shape `(image_batch_size, text_batch_size)`):

View File

@ -963,11 +963,13 @@ class AriaTextForCausalLM(AriaTextPreTrainedModel, GenerationMixin):
@dataclass
class AriaCausalLMOutputWithPast(ModelOutput):
"""
@auto_docstring(
custom_intro="""
Base class for Aria causal language model (or autoregressive) outputs.
Args:
"""
)
class AriaCausalLMOutputWithPast(ModelOutput):
r"""
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
Language modeling loss (for next-token prediction).
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
@ -978,17 +980,6 @@ class AriaCausalLMOutputWithPast(ModelOutput):
Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see
`past_key_values` input) to speed up sequential decoding.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
image_hidden_states (`torch.FloatTensor`, *optional*):
A `torch.FloatTensor` of size `(batch_size, num_images, sequence_length, hidden_size)`.
image_hidden_states of the model produced by the vision encoder and after projecting the last hidden state.
@ -1003,30 +994,19 @@ class AriaCausalLMOutputWithPast(ModelOutput):
@dataclass
class AriaModelOutputWithPast(BaseModelOutputWithPast):
"""
@auto_docstring(
custom_intro="""
Base class for Aria outputs, with hidden states and attentions.
Args:
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the model.
"""
)
class AriaModelOutputWithPast(BaseModelOutputWithPast):
r"""
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
`(batch_size, num_heads, sequence_length, embed_size_per_head)`)
Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see
`past_key_values` input) to speed up sequential decoding.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
image_hidden_states (`torch.FloatTensor`, *optional*):
A `torch.FloatTensor` of size `(batch_size, num_images, sequence_length, hidden_size)`.
image_hidden_states of the model produced by the vision encoder and after projecting the last hidden state.

View File

@ -46,11 +46,13 @@ logger = logging.get_logger(__name__)
@dataclass
class AutoFormerDecoderOutput(ModelOutput):
"""
@auto_docstring(
custom_intro="""
Base class for model's outputs that may also contain a past key/values (to speed up sequential decoding).
Args:
"""
)
class AutoFormerDecoderOutput(ModelOutput):
r"""
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the model.
@ -67,17 +69,6 @@ class AutoFormerDecoderOutput(ModelOutput):
Contains pre-computed hidden-states (key and values in the self-attention blocks and optionally if
`config.is_encoder_decoder=True` in the cross-attention blocks) that can be used (see `past_key_values`
input) to speed up sequential decoding.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` and `config.add_cross_attention=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
@ -95,11 +86,13 @@ class AutoFormerDecoderOutput(ModelOutput):
@dataclass
class AutoformerModelOutput(ModelOutput):
"""
@auto_docstring(
custom_intro="""
Autoformer model output that contains the additional trend output.
Args:
"""
)
class AutoformerModelOutput(ModelOutput):
r"""
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the decoder of the model.
@ -114,36 +107,6 @@ class AutoformerModelOutput(ModelOutput):
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
decoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the decoder at the output of each layer plus the optional initial embedding outputs.
decoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the
self-attention heads.
cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights of the decoder's cross-attention layer, after the attention softmax, used to compute the
weighted average in the cross-attention heads.
encoder_last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Sequence of hidden-states at the output of the last layer of the encoder of the model.
encoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the encoder at the output of each layer plus the optional initial embedding outputs.
encoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights of the encoder, after the attention softmax, used to compute the weighted average in the
self-attention heads.
loc (`torch.FloatTensor` of shape `(batch_size,)` or `(batch_size, input_size)`, *optional*):
Shift values of each time series' context window which is used to give the model inputs of the same
magnitude and then used to shift back to the original magnitude.
@ -1795,6 +1758,14 @@ class AutoformerForPrediction(AutoformerPreTrainedModel):
Transformer requires to provide additional features.
The Autoformer only learns additional embeddings for `static_categorical_features`.
future_observed_mask (`torch.BoolTensor` of shape `(batch_size, sequence_length)` or `(batch_size, sequence_length, input_size)`, *optional*):
Boolean mask to indicate which `future_values` were observed and which were missing. Mask values selected
in `[0, 1]`:
- 1 for values that are **observed**,
- 0 for values that are **missing** (i.e. NaNs that were replaced by zeros).
This mask is used to filter out missing values for the final loss calculation.
cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the cross-attention modules. Mask values selected in `[0, 1]`:
@ -1804,14 +1775,6 @@ class AutoformerForPrediction(AutoformerPreTrainedModel):
Tuple consists of `last_hidden_state`, `hidden_states` (*optional*) and `attentions` (*optional*)
`last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)` (*optional*) is a sequence of
hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder.
future_observed_mask (`torch.BoolTensor` of shape `(batch_size, sequence_length)` or `(batch_size, sequence_length, input_size)`, *optional*):
Boolean mask to indicate which `future_values` were observed and which were missing. Mask values selected
in `[0, 1]`:
- 1 for values that are **observed**,
- 0 for values that are **missing** (i.e. NaNs that were replaced by zeros).
This mask is used to filter out missing values for the final loss calculation.
Examples:

View File

@ -117,11 +117,13 @@ class AyaVisionPreTrainedModel(PreTrainedModel):
@dataclass
class AyaVisionCausalLMOutputWithPast(ModelOutput):
"""
@auto_docstring(
custom_intro="""
Base class for AyaVision causal language model (or autoregressive) outputs.
Args:
"""
)
class AyaVisionCausalLMOutputWithPast(ModelOutput):
r"""
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
Language modeling loss (for next-token prediction).
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
@ -132,17 +134,6 @@ class AyaVisionCausalLMOutputWithPast(ModelOutput):
Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see
`past_key_values` input) to speed up sequential decoding.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
image_hidden_states (`torch.FloatTensor`, *optional*):
A `torch.FloatTensor` of size `(batch_size, num_images, sequence_length, hidden_size)`.
image_hidden_states of the model produced by the vision encoder and after projecting the last hidden state.
@ -157,30 +148,19 @@ class AyaVisionCausalLMOutputWithPast(ModelOutput):
@dataclass
class AyaVisionModelOutputWithPast(BaseModelOutputWithPast):
"""
@auto_docstring(
custom_intro="""
Base class for AyaVision outputs, with hidden states and attentions.
Args:
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the model.
"""
)
class AyaVisionModelOutputWithPast(BaseModelOutputWithPast):
r"""
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
`(batch_size, num_heads, sequence_length, embed_size_per_head)`)
Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see
`past_key_values` input) to speed up sequential decoding.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
image_hidden_states (`torch.FloatTensor`, *optional*):
A `torch.FloatTensor` of size `(batch_size, num_images, sequence_length, hidden_size)`.
image_hidden_states of the model produced by the vision encoder and after projecting the last hidden state.

View File

@ -44,39 +44,19 @@ from .configuration_beit import BeitConfig
logger = logging.get_logger(__name__)
# General docstring
# Base docstring
_EXPECTED_OUTPUT_SHAPE = [1, 197, 768]
# Image classification docstring
_IMAGE_CLASS_CHECKPOINT = "microsoft/beit-base-patch16-224"
_IMAGE_CLASS_EXPECTED_OUTPUT = "tabby, tabby cat"
@dataclass
class BeitModelOutputWithPooling(BaseModelOutputWithPooling):
"""
@auto_docstring(
custom_intro="""
Class for outputs of [`BeitModel`].
Args:
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the model.
"""
)
class BeitModelOutputWithPooling(BaseModelOutputWithPooling):
r"""
pooler_output (`torch.FloatTensor` of shape `(batch_size, hidden_size)`):
Average of the last layer hidden states of the patch tokens (excluding the *[CLS]* token) if
*config.use_mean_pooling* is set to True. If set to False, then the final hidden state of the *[CLS]* token
will be returned.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""

View File

@ -805,11 +805,13 @@ class BertPreTrainedModel(PreTrainedModel):
@dataclass
class BertForPreTrainingOutput(ModelOutput):
"""
@auto_docstring(
custom_intro="""
Output type of [`BertForPreTraining`].
Args:
"""
)
class BertForPreTrainingOutput(ModelOutput):
r"""
loss (*optional*, returned when `labels` is provided, `torch.FloatTensor` of shape `(1,)`):
Total loss as the sum of the masked language modeling loss and the next sequence prediction
(classification) loss.
@ -818,17 +820,6 @@ class BertForPreTrainingOutput(ModelOutput):
seq_relationship_logits (`torch.FloatTensor` of shape `(batch_size, 2)`):
Prediction scores of the next sequence prediction (classification) head (scores of True/False continuation
before SoftMax).
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
loss: Optional[torch.FloatTensor] = None

View File

@ -1744,11 +1744,13 @@ class BigBirdPreTrainedModel(PreTrainedModel):
@dataclass
class BigBirdForPreTrainingOutput(ModelOutput):
"""
@auto_docstring(
custom_intro="""
Output type of [`BigBirdForPreTraining`].
Args:
"""
)
class BigBirdForPreTrainingOutput(ModelOutput):
r"""
loss (*optional*, returned when `labels` is provided, `torch.FloatTensor` of shape `(1,)`):
Total loss as the sum of the masked language modeling loss and the next sequence prediction
(classification) loss.
@ -1757,17 +1759,6 @@ class BigBirdForPreTrainingOutput(ModelOutput):
seq_relationship_logits (`torch.FloatTensor` of shape `(batch_size, 2)`):
Prediction scores of the next sequence prediction (classification) head (scores of True/False continuation
before SoftMax).
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
loss: Optional[torch.FloatTensor] = None
@ -1778,30 +1769,17 @@ class BigBirdForPreTrainingOutput(ModelOutput):
@dataclass
class BigBirdForQuestionAnsweringModelOutput(ModelOutput):
"""
@auto_docstring(
custom_intro="""
Base class for outputs of question answering models.
Args:
"""
)
class BigBirdForQuestionAnsweringModelOutput(ModelOutput):
r"""
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
Total span extraction loss is the sum of a Cross-Entropy for the start and end positions.
start_logits (`torch.FloatTensor` of shape `(batch_size, sequence_length)`):
Span-start scores (before SoftMax).
end_logits (`torch.FloatTensor` of shape `(batch_size, sequence_length)`):
Span-end scores (before SoftMax).
pooler_output (`torch.FloatTensor` of shape `(batch_size, 1)`):
pooler output from BigBigModel
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
loss: Optional[torch.FloatTensor] = None

View File

@ -49,20 +49,20 @@ def blip_loss(similarity: torch.Tensor) -> torch.Tensor:
@dataclass
class BlipForConditionalGenerationModelOutput(ModelOutput):
"""
@auto_docstring(
custom_intro="""
Adapted from the base class for vision model's outputs that also contains image embeddings of the pooling of the
last hidden states. This class also adds the loss term from the text decoder.
Args:
"""
)
class BlipForConditionalGenerationModelOutput(ModelOutput):
r"""
loss (`torch.FloatTensor`, *optional*, returned when `labels` is provided, `torch.FloatTensor` of shape `(1,)`):
Language modeling loss from the text decoder.
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`, *optional*):
Prediction scores of the language modeling head of the text decoder model.
image_embeds (`torch.FloatTensor` of shape `(batch_size, output_dim)`, *optional*):
The image embeddings obtained after applying the Vision Transformer model to the input image.
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Sequence of hidden-states at the output of the last layer of the model.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
@ -94,29 +94,18 @@ class BlipForConditionalGenerationModelOutput(ModelOutput):
@dataclass
class BlipTextVisionModelOutput(ModelOutput):
"""
@auto_docstring(
custom_intro="""
Adapted from the base class for vision model's outputs that also contains image embeddings of the pooling of the
last hidden states. This class also adds the loss term from the text decoder.
Args:
"""
)
class BlipTextVisionModelOutput(ModelOutput):
r"""
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
Language modeling loss from the text decoder.
image_embeds (`torch.FloatTensor` of shape `(batch_size, output_dim)` *optional* returned when model is initialized with `with_projection=True`):
The image embeddings obtained by applying the projection layer to the pooler_output.
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the model.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
loss: Optional[torch.FloatTensor] = None
@ -127,34 +116,23 @@ class BlipTextVisionModelOutput(ModelOutput):
@dataclass
class BlipImageTextMatchingModelOutput(ModelOutput):
"""
@auto_docstring(
custom_intro="""
Adapted from the base class for vision model's outputs that also contains image embeddings of the pooling of the
last hidden states. This class also adds the loss term from the text decoder as well as the image-text similarity
scores.
Args:
"""
)
class BlipImageTextMatchingModelOutput(ModelOutput):
r"""
itm_score (`torch.FloatTensor`):
The image-text similarity scores.
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
Language modeling loss from the text decoder.
image_embeds (`torch.FloatTensor` of shape `(batch_size, output_dim)` *optional* returned when model is initialized with `with_projection=True`):
The image embeddings obtained by applying the projection layer to the pooler_output.
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the model.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
vision_pooler_output (`torch.FloatTensor` of shape `(batch_size, hidden_size)`, *optional*):
Last layer hidden-state of the vision of the vision-only branch of the model.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
question_embeds (`torch.FloatTensor`):
The question embeddings obtained by the text projection layer.
"""
@ -170,15 +148,15 @@ class BlipImageTextMatchingModelOutput(ModelOutput):
@dataclass
@auto_docstring
class BlipOutput(ModelOutput):
"""
Args:
r"""
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `return_loss` is `True`):
Contrastive loss for image-text similarity.
logits_per_image:(`torch.FloatTensor` of shape `(image_batch_size, text_batch_size)`):
logits_per_image (`torch.FloatTensor` of shape `(image_batch_size, text_batch_size)`):
The scaled dot product scores between `image_embeds` and `text_embeds`. This represents the image-text
similarity scores.
logits_per_text:(`torch.FloatTensor` of shape `(text_batch_size, image_batch_size)`):
logits_per_text (`torch.FloatTensor` of shape `(text_batch_size, image_batch_size)`):
The scaled dot product scores between `text_embeds` and `image_embeds`. This represents the text-image
similarity scores.
text_embeds (`torch.FloatTensor` of shape `(batch_size, output_dim`):

View File

@ -45,11 +45,13 @@ logger = logging.get_logger(__name__)
@dataclass
class Blip2ForConditionalGenerationModelOutput(ModelOutput):
"""
@auto_docstring(
custom_intro="""
Class defining the outputs of [`Blip2ForConditionalGeneration`].
Args:
"""
)
class Blip2ForConditionalGenerationModelOutput(ModelOutput):
r"""
loss (`torch.FloatTensor`, *optional*, returned when `labels` is provided, `torch.FloatTensor` of shape `(1,)`):
Language modeling loss from the language model.
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
@ -78,9 +80,9 @@ class Blip2ForConditionalGenerationModelOutput(ModelOutput):
@dataclass
@auto_docstring
class Blip2ImageTextMatchingModelOutput(ModelOutput):
"""
Args:
r"""
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `return_loss` is `True`):
Contrastive loss for image-text similarity.
logits_per_image (`torch.FloatTensor` of shape `(image_batch_size, text_batch_size)`):
@ -115,27 +117,16 @@ class Blip2ImageTextMatchingModelOutput(ModelOutput):
@dataclass
@auto_docstring(
custom_intro="""
Base class for text model's outputs that also contains a pooling of the last hidden states.
"""
)
# Copied from transformers.models.clip.modeling_clip.CLIPTextModelOutput with CLIP->Blip2
class Blip2TextModelOutput(ModelOutput):
"""
Base class for text model's outputs that also contains a pooling of the last hidden states.
Args:
r"""
text_embeds (`torch.FloatTensor` of shape `(batch_size, output_dim)` *optional* returned when model is initialized with `with_projection=True`):
The text embeddings obtained by applying the projection layer to the pooler_output.
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the model.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
text_embeds: Optional[torch.FloatTensor] = None
@ -145,27 +136,16 @@ class Blip2TextModelOutput(ModelOutput):
@dataclass
@auto_docstring(
custom_intro="""
Base class for vision model's outputs that also contains image embeddings of the pooling of the last hidden states.
"""
)
# Copied from transformers.models.clip.modeling_clip.CLIPVisionModelOutput with CLIP->Blip2
class Blip2VisionModelOutput(ModelOutput):
"""
Base class for vision model's outputs that also contains image embeddings of the pooling of the last hidden states.
Args:
r"""
image_embeds (`torch.FloatTensor` of shape `(batch_size, output_dim)` *optional* returned when model is initialized with `with_projection=True`):
The image embeddings obtained by applying the projection layer to the pooler_output.
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the model.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
image_embeds: Optional[torch.FloatTensor] = None

View File

@ -45,11 +45,13 @@ _TOKENIZER_FOR_DOC = "RobertaTokenizer"
@dataclass
class BridgeTowerModelOutput(ModelOutput):
"""
@auto_docstring(
custom_intro="""
Output type of [`BridgeTowerModel`].
Args:
"""
)
class BridgeTowerModelOutput(ModelOutput):
r"""
text_features (`torch.FloatTensor` of shape `(batch_size, text_sequence_length, hidden_size)`):
Sequence of hidden-states at the text output of the last layer of the model.
image_features (`torch.FloatTensor` of shape `(batch_size, image_sequence_length, hidden_size)`):
@ -57,16 +59,6 @@ class BridgeTowerModelOutput(ModelOutput):
pooler_output (`torch.FloatTensor` of shape `(batch_size, hidden_size x 2)`):
Concatenation of last layer hidden-state of the first token of the text and image sequence (classification
token), respectively, after further processing through layers used for auxiliary pretraining tasks.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of
the model at the output of each layer plus the optional initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
text_features: Optional[torch.FloatTensor] = None
@ -77,12 +69,14 @@ class BridgeTowerModelOutput(ModelOutput):
@dataclass
class BridgeTowerContrastiveOutput(ModelOutput):
"""
@auto_docstring(
custom_intro="""
Output type of ['BridgeTowerForContrastiveLearning']
Args:
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `return_loss` is `True`:
"""
)
class BridgeTowerContrastiveOutput(ModelOutput):
r"""
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `return_loss` is `True`):
Image-text contrastive loss.
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
@ -92,10 +86,6 @@ class BridgeTowerContrastiveOutput(ModelOutput):
The image embeddings obtained by applying the projection layer to the pooler_output.
cross_embeds (`torch.FloatTensor)`, *optional*, returned when model is initialized with `with_projection=True`):
The text-image cross-modal embeddings obtained by applying the projection layer to the pooler_output.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of
the model at the output of each layer plus the optional initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.

View File

@ -40,28 +40,19 @@ logger = logging.get_logger(__name__)
@dataclass
class BrosSpadeOutput(ModelOutput):
"""
@auto_docstring(
custom_intro="""
Base class for outputs of token classification models.
Args:
"""
)
class BrosSpadeOutput(ModelOutput):
r"""
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
Classification loss.
initial_token_logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.num_labels)`):
Classification scores for entity initial tokens (before SoftMax).
subsequent_token_logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, sequence_length+1)`):
Classification scores for entity sequence tokens (before SoftMax).
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
loss: Optional[torch.FloatTensor] = None

View File

@ -49,13 +49,15 @@ _PRIMES = [31, 43, 59, 61, 73, 97, 103, 113, 137, 149, 157, 173, 181, 193, 211,
@dataclass
class CanineModelOutputWithPooling(ModelOutput):
"""
@auto_docstring(
custom_intro="""
Output type of [`CanineModel`]. Based on [`~modeling_outputs.BaseModelOutputWithPooling`], but with slightly
different `hidden_states` and `attentions`, as these also include the hidden states and attentions of the shallow
Transformer encoders.
Args:
"""
)
class CanineModelOutputWithPooling(ModelOutput):
r"""
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the model (i.e. the output of the final
shallow Transformer encoder).

View File

@ -52,15 +52,15 @@ def chinese_clip_loss(similarity: torch.Tensor) -> torch.Tensor:
@dataclass
@auto_docstring
class ChineseCLIPOutput(ModelOutput):
"""
Args:
r"""
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `return_loss` is `True`):
Contrastive loss for image-text similarity.
logits_per_image:(`torch.FloatTensor` of shape `(image_batch_size, text_batch_size)`):
logits_per_image (`torch.FloatTensor` of shape `(image_batch_size, text_batch_size)`):
The scaled dot product scores between `image_embeds` and `text_embeds`. This represents the image-text
similarity scores.
logits_per_text:(`torch.FloatTensor` of shape `(text_batch_size, image_batch_size)`):
logits_per_text (`torch.FloatTensor` of shape `(text_batch_size, image_batch_size)`):
The scaled dot product scores between `text_embeds` and `image_embeds`. This represents the text-image
similarity scores.
text_embeds (`torch.FloatTensor` of shape `(batch_size, output_dim`):

View File

@ -122,27 +122,16 @@ def contrastive_loss(logits: torch.Tensor) -> torch.Tensor:
@dataclass
@auto_docstring(
custom_intro="""
Base class for text model's outputs that also contains a pooling of the last hidden states.
"""
)
# Copied from transformers.models.clip.modeling_clip.CLIPTextModelOutput with CLIP->Clap
class ClapTextModelOutput(ModelOutput):
"""
Base class for text model's outputs that also contains a pooling of the last hidden states.
Args:
r"""
text_embeds (`torch.FloatTensor` of shape `(batch_size, output_dim)` *optional* returned when model is initialized with `with_projection=True`):
The text embeddings obtained by applying the projection layer to the pooler_output.
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the model.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
text_embeds: Optional[torch.FloatTensor] = None
@ -152,26 +141,15 @@ class ClapTextModelOutput(ModelOutput):
@dataclass
class ClapAudioModelOutput(ModelOutput):
"""
@auto_docstring(
custom_intro="""
ClapAudio model output to mimic the output of the original implementation.
Args:
"""
)
class ClapAudioModelOutput(ModelOutput):
r"""
audio_embeds (`torch.FloatTensor` of shape `(batch_size, hidden_size)`):
The Audio embeddings obtained by applying the projection layer to the pooler_output.
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the model.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
"""
audio_embeds: Optional[torch.FloatTensor] = None
@ -181,10 +159,10 @@ class ClapAudioModelOutput(ModelOutput):
@dataclass
@auto_docstring
# Copied from transformers.models.clip.modeling_clip.CLIPOutput with CLIP->Clap, vision->audio, Vision->Audio, image->audio
class ClapOutput(ModelOutput):
"""
Args:
r"""
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `return_loss` is `True`):
Contrastive loss for audio-text similarity.
logits_per_audio (`torch.FloatTensor` of shape `(audio_batch_size, text_batch_size)`):
@ -1931,11 +1909,11 @@ class ClapModel(ClapPreTrainedModel):
input_features (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
Input audio features. This should be returned by the [`ClapFeatureExtractor`] class that you can also
retrieve from [`AutoFeatureExtractor`]. See [`ClapFeatureExtractor.__call__`] for details.
return_loss (`bool`, *optional*):
Whether or not to return the contrastive loss.
is_longer (`torch.FloatTensor`, of shape `(batch_size, 1)`, *optional*):
Whether the audio clip is longer than `max_length`. If `True`, a feature fusion will be enabled to enhance
the features.
return_loss (`bool`, *optional*):
Whether or not to return the contrastive loss.
Examples:

View File

@ -57,26 +57,15 @@ def _get_vector_norm(tensor: torch.Tensor) -> torch.Tensor:
@dataclass
class CLIPVisionModelOutput(ModelOutput):
"""
@auto_docstring(
custom_intro="""
Base class for vision model's outputs that also contains image embeddings of the pooling of the last hidden states.
Args:
"""
)
class CLIPVisionModelOutput(ModelOutput):
r"""
image_embeds (`torch.FloatTensor` of shape `(batch_size, output_dim)` *optional* returned when model is initialized with `with_projection=True`):
The image embeddings obtained by applying the projection layer to the pooler_output.
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the model.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
image_embeds: Optional[torch.FloatTensor] = None
@ -86,26 +75,15 @@ class CLIPVisionModelOutput(ModelOutput):
@dataclass
class CLIPTextModelOutput(ModelOutput):
"""
@auto_docstring(
custom_intro="""
Base class for text model's outputs that also contains a pooling of the last hidden states.
Args:
"""
)
class CLIPTextModelOutput(ModelOutput):
r"""
text_embeds (`torch.FloatTensor` of shape `(batch_size, output_dim)` *optional* returned when model is initialized with `with_projection=True`):
The text embeddings obtained by applying the projection layer to the pooler_output.
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the model.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
text_embeds: Optional[torch.FloatTensor] = None
@ -115,9 +93,9 @@ class CLIPTextModelOutput(ModelOutput):
@dataclass
@auto_docstring
class CLIPOutput(ModelOutput):
"""
Args:
r"""
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `return_loss` is `True`):
Contrastive loss for image-text similarity.
logits_per_image (`torch.FloatTensor` of shape `(image_batch_size, text_batch_size)`):

View File

@ -49,10 +49,10 @@ def clipseg_loss(similarity: torch.Tensor) -> torch.Tensor:
@dataclass
@auto_docstring
# Copied from transformers.models.clip.modeling_clip.CLIPOutput with CLIP->CLIPSeg
class CLIPSegOutput(ModelOutput):
"""
Args:
r"""
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `return_loss` is `True`):
Contrastive loss for image-text similarity.
logits_per_image (`torch.FloatTensor` of shape `(image_batch_size, text_batch_size)`):
@ -87,18 +87,11 @@ class CLIPSegOutput(ModelOutput):
@dataclass
@auto_docstring
class CLIPSegDecoderOutput(ModelOutput):
"""
Args:
r"""
logits (`torch.FloatTensor` of shape `(batch_size, height, width)`):
Classification scores for each pixel.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in
the self-attention heads.
"""
logits: Optional[torch.FloatTensor] = None
@ -107,14 +100,21 @@ class CLIPSegDecoderOutput(ModelOutput):
@dataclass
@auto_docstring
class CLIPSegImageSegmentationOutput(ModelOutput):
"""
Args:
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `return_loss` is `True`):
Contrastive loss for image-text similarity.
...
r"""
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
Binary cross entropy loss for segmentation.
logits (`torch.FloatTensor` of shape `(batch_size, height, width)`):
Classification scores for each pixel.
conditional_embeddings (`torch.FloatTensor` of shape `(batch_size, projection_dim)`):
Conditional embeddings used for segmentation.
pooled_output (`torch.FloatTensor` of shape `(batch_size, embed_dim)`):
Pooled output of the [`CLIPSegVisionModel`].
vision_model_output (`BaseModelOutputWithPooling`):
The output of the [`CLIPSegVisionModel`].
decoder_output (`CLIPSegDecoderOutput`):
The output of the [`CLIPSegDecoder`].
"""
loss: Optional[torch.FloatTensor] = None
@ -1260,15 +1260,15 @@ class CLIPSegForImageSegmentation(CLIPSegPreTrainedModel):
return_dict: Optional[bool] = None,
) -> Union[tuple, CLIPSegOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
conditional_pixel_values (`torch.FloatTensor`, *optional*):
The pixel values of the conditional images.
conditional_embeddings (`torch.FloatTensor` of shape `(batch_size, config.projection_dim)`, *optional*):
The conditional embeddings for the query images. If provided, the model will use this instead of computing
the embeddings from the conditional_pixel_values.
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
Examples:

View File

@ -144,26 +144,20 @@ def _pad_extra_bos_eos_tokens(
@dataclass
class ClvpEncoderOutput(ModelOutput):
"""
@auto_docstring(
custom_intro="""
Base class for CLVP encoder's outputs that contains a pooling of the last hidden states as well as a projection
output (a linear layer on top of the pooled output).
Args:
"""
)
class ClvpEncoderOutput(ModelOutput):
r"""
embeds (`torch.FloatTensor` of shape `(batch_size, output_dim)`, *optional*, returned when model is initialized with `with_projection=True`):
The embeddings obtained by applying the projection layer to the pooler_output.
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
The hidden state of the last layer of the model.
pooler_output (`torch.FloatTensor` of shape `(batch_size, hidden_size)`):
Pooled output of the `last_hidden_state`.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of
the model at the output of each layer plus the optional initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in
the self-attention heads.
"""
embeds: Optional[torch.FloatTensor] = None
@ -174,9 +168,9 @@ class ClvpEncoderOutput(ModelOutput):
@dataclass
@auto_docstring
class ClvpOutput(ModelOutput):
"""
Args:
r"""
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `return_loss` is `True`):
Contrastive loss for speech-text similarity.
speech_ids (`torch.LongTensor`, *optional*):

View File

@ -28,6 +28,7 @@ from ...utils import ModelOutput, auto_docstring, can_return_tuple
from .configuration_colpali import ColPaliConfig
@auto_docstring
class ColPaliPreTrainedModel(PreTrainedModel):
config_class = ColPaliConfig
base_model_prefix = "model"
@ -51,11 +52,13 @@ class ColPaliPreTrainedModel(PreTrainedModel):
@dataclass
class ColPaliForRetrievalOutput(ModelOutput):
"""
@auto_docstring(
custom_intro="""
Base class for ColPali embeddings output.
Args:
"""
)
class ColPaliForRetrievalOutput(ModelOutput):
r"""
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
Language modeling loss (for next-token prediction).
embeddings (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
@ -66,17 +69,6 @@ class ColPaliForRetrievalOutput(ModelOutput):
Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see
`past_key_values` input) to speed up sequential decoding.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
image_hidden_states (`torch.FloatTensor`, *optional*):
A `torch.FloatTensor` of size `(batch_size, num_images, sequence_length, hidden_size)`.
image_hidden_states of the model produced by the vision encoder after projecting last hidden state.

View File

@ -36,6 +36,7 @@ if is_torch_available():
import torch
@auto_docstring
class ColQwen2PreTrainedModel(PreTrainedModel):
config_class = ColQwen2Config
base_model_prefix = "model"
@ -62,11 +63,13 @@ class ColQwen2PreTrainedModel(PreTrainedModel):
@dataclass
class ColQwen2ForRetrievalOutput(ModelOutput):
"""
@auto_docstring(
custom_intro="""
Base class for ColQwen2 embeddings output.
Args:
"""
)
class ColQwen2ForRetrievalOutput(ModelOutput):
r"""
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
Language modeling loss (for next-token prediction).
embeddings (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
@ -77,17 +80,6 @@ class ColQwen2ForRetrievalOutput(ModelOutput):
Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see
`past_key_values` input) to speed up sequential decoding.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
loss: Optional[torch.FloatTensor] = None

View File

@ -231,11 +231,13 @@ class ColQwen2PreTrainedModel(ColPaliPreTrainedModel):
@dataclass
class ColQwen2ForRetrievalOutput(ModelOutput):
"""
@auto_docstring(
custom_intro="""
Base class for ColQwen2 embeddings output.
Args:
"""
)
class ColQwen2ForRetrievalOutput(ModelOutput):
r"""
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
Language modeling loss (for next-token prediction).
embeddings (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
@ -246,17 +248,6 @@ class ColQwen2ForRetrievalOutput(ModelOutput):
Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see
`past_key_values` input) to speed up sequential decoding.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
loss: Optional[torch.FloatTensor] = None

View File

@ -39,24 +39,16 @@ logger = logging.get_logger(__name__)
@dataclass
class ConditionalDetrDecoderOutput(BaseModelOutputWithCrossAttentions):
"""
@auto_docstring(
custom_intro="""
Base class for outputs of the Conditional DETR decoder. This class adds one attribute to
BaseModelOutputWithCrossAttentions, namely an optional stack of intermediate decoder activations, i.e. the output
of each decoder layer, each of them gone through a layernorm. This is useful when training the model with auxiliary
decoding losses.
Args:
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the model.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer
plus the initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in
the self-attention heads.
"""
)
class ConditionalDetrDecoderOutput(BaseModelOutputWithCrossAttentions):
r"""
cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` and `config.add_cross_attention=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`. Attentions weights of the decoder's cross-attention layer, after the attention softmax,
@ -73,38 +65,18 @@ class ConditionalDetrDecoderOutput(BaseModelOutputWithCrossAttentions):
@dataclass
class ConditionalDetrModelOutput(Seq2SeqModelOutput):
"""
@auto_docstring(
custom_intro="""
Base class for outputs of the Conditional DETR encoder-decoder model. This class adds one attribute to
Seq2SeqModelOutput, namely an optional stack of intermediate decoder activations, i.e. the output of each decoder
layer, each of them gone through a layernorm. This is useful when training the model with auxiliary decoding
losses.
Args:
"""
)
class ConditionalDetrModelOutput(Seq2SeqModelOutput):
r"""
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the decoder of the model.
decoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the decoder at the output of each
layer plus the initial embedding outputs.
decoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`. Attentions weights of the decoder, after the attention softmax, used to compute the
weighted average in the self-attention heads.
cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`. Attentions weights of the decoder's cross-attention layer, after the attention softmax,
used to compute the weighted average in the cross-attention heads.
encoder_last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Sequence of hidden-states at the output of the last layer of the encoder of the model.
encoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the encoder at the output of each
layer plus the initial embedding outputs.
encoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`. Attentions weights of the encoder, after the attention softmax, used to compute the
weighted average in the self-attention heads.
intermediate_hidden_states (`torch.FloatTensor` of shape `(config.decoder_layers, batch_size, sequence_length, hidden_size)`, *optional*, returned when `config.auxiliary_loss=True`):
Intermediate decoder activations, i.e. the output of each decoder layer, each of them gone through a
layernorm.
@ -117,12 +89,14 @@ class ConditionalDetrModelOutput(Seq2SeqModelOutput):
@dataclass
@auto_docstring(
custom_intro="""
Output type of [`ConditionalDetrForObjectDetection`].
"""
)
# Copied from transformers.models.detr.modeling_detr.DetrObjectDetectionOutput with Detr->ConditionalDetr
class ConditionalDetrObjectDetectionOutput(ModelOutput):
"""
Output type of [`ConditionalDetrForObjectDetection`].
Args:
r"""
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` are provided)):
Total loss as a linear combination of a negative log-likehood (cross-entropy) for class prediction and a
bounding box loss. The latter is defined as a linear combination of the L1 loss and the generalized
@ -142,28 +116,6 @@ class ConditionalDetrObjectDetectionOutput(ModelOutput):
`pred_boxes`) for each decoder layer.
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Sequence of hidden-states at the output of the last layer of the decoder of the model.
decoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the decoder at the output of each
layer plus the initial embedding outputs.
decoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`. Attentions weights of the decoder, after the attention softmax, used to compute the
weighted average in the self-attention heads.
cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`. Attentions weights of the decoder's cross-attention layer, after the attention softmax,
used to compute the weighted average in the cross-attention heads.
encoder_last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Sequence of hidden-states at the output of the last layer of the encoder of the model.
encoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the encoder at the output of each
layer plus the initial embedding outputs.
encoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`. Attentions weights of the encoder, after the attention softmax, used to compute the
weighted average in the self-attention heads.
"""
loss: Optional[torch.FloatTensor] = None
@ -181,12 +133,14 @@ class ConditionalDetrObjectDetectionOutput(ModelOutput):
@dataclass
@auto_docstring(
custom_intro="""
Output type of [`ConditionalDetrForSegmentation`].
"""
)
# Copied from transformers.models.detr.modeling_detr.DetrSegmentationOutput with Detr->ConditionalDetr
class ConditionalDetrSegmentationOutput(ModelOutput):
"""
Output type of [`ConditionalDetrForSegmentation`].
Args:
r"""
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` are provided)):
Total loss as a linear combination of a negative log-likehood (cross-entropy) for class prediction and a
bounding box loss. The latter is defined as a linear combination of the L1 loss and the generalized
@ -212,28 +166,6 @@ class ConditionalDetrSegmentationOutput(ModelOutput):
`pred_boxes`) for each decoder layer.
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Sequence of hidden-states at the output of the last layer of the decoder of the model.
decoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the decoder at the output of each
layer plus the initial embedding outputs.
decoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`. Attentions weights of the decoder, after the attention softmax, used to compute the
weighted average in the self-attention heads.
cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`. Attentions weights of the decoder's cross-attention layer, after the attention softmax,
used to compute the weighted average in the cross-attention heads.
encoder_last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Sequence of hidden-states at the output of the last layer of the encoder of the model.
encoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the encoder at the output of each
layer plus the initial embedding outputs.
encoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`. Attentions weights of the encoder, after the attention softmax, used to compute the
weighted average in the self-attention heads.
"""
loss: Optional[torch.FloatTensor] = None
@ -1022,7 +954,6 @@ class MLP(nn.Module):
@auto_docstring
# Copied from transformers.models.detr.modeling_detr.DetrPreTrainedModel with Detr->ConditionalDetr
class ConditionalDetrPreTrainedModel(PreTrainedModel):
config_class = ConditionalDetrConfig

View File

@ -46,11 +46,13 @@ logger = logging.get_logger(__name__)
@dataclass
class CsmOutputWithPast(ModelOutput):
"""
@auto_docstring(
custom_intro="""
Base class for the model autoregressive outputs.
Args:
"""
)
class CsmOutputWithPast(ModelOutput):
r"""
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
Language modeling loss (for next-token prediction).
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
@ -61,17 +63,6 @@ class CsmOutputWithPast(ModelOutput):
Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see
`past_key_values` input) to speed up sequential decoding.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
depth_decoder_loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
Language modeling loss (for next-token prediction) of the depth decoder model.
depth_decoder_logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):

View File

@ -46,11 +46,13 @@ logger = logging.get_logger(__name__)
@dataclass
class CsmOutputWithPast(ModelOutput):
"""
@auto_docstring(
custom_intro="""
Base class for the model autoregressive outputs.
Args:
"""
)
class CsmOutputWithPast(ModelOutput):
r"""
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
Language modeling loss (for next-token prediction).
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
@ -61,17 +63,6 @@ class CsmOutputWithPast(ModelOutput):
Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see
`past_key_values` input) to speed up sequential decoding.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
depth_decoder_loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
Language modeling loss (for next-token prediction) of the depth decoder model.
depth_decoder_logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):

View File

@ -33,19 +33,15 @@ logger = logging.get_logger(__name__)
@dataclass
class BaseModelOutputWithCLSToken(ModelOutput):
"""
@auto_docstring(
custom_intro="""
Base class for model's outputs, with potential hidden states and attentions.
Args:
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the model.
"""
)
class BaseModelOutputWithCLSToken(ModelOutput):
r"""
cls_token_value (`torch.FloatTensor` of shape `(batch_size, 1, hidden_size)`):
Classification token at the output of the last layer of the model.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer
plus the initial embedding outputs.
"""
last_hidden_state: Optional[torch.FloatTensor] = None

View File

@ -433,11 +433,13 @@ class DFineDecoderLayer(nn.Module):
@dataclass
class DFineModelOutput(ModelOutput):
"""
@auto_docstring(
custom_intro="""
Base class for outputs of the RT-DETR encoder-decoder model.
Args:
"""
)
class DFineModelOutput(ModelOutput):
r"""
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, num_queries, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the decoder of the model.
intermediate_hidden_states (`torch.FloatTensor` of shape `(batch_size, config.decoder_layers, num_queries, hidden_size)`):
@ -446,28 +448,10 @@ class DFineModelOutput(ModelOutput):
Stacked intermediate logits (logits of each layer of the decoder).
intermediate_reference_points (`torch.FloatTensor` of shape `(batch_size, config.decoder_layers, num_queries, 4)`):
Stacked intermediate reference points (reference points of each layer of the decoder).
decoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, num_queries, hidden_size)`. Hidden-states of the decoder at the output of each layer
plus the initial embedding outputs.
decoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, num_queries,
num_queries)`. Attentions weights of the decoder, after the attention softmax, used to compute the weighted
average in the self-attention heads.
cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_queries, num_heads, 4, 4)`.
Attentions weights of the decoder's cross-attention layer, after the attention softmax, used to compute the
weighted average in the cross-attention heads.
encoder_last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Sequence of hidden-states at the output of the last layer of the encoder of the model.
encoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the encoder at the output of each
layer plus the initial embedding outputs.
encoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_queries, num_heads, 4, 4)`.
Attentions weights of the encoder, after the attention softmax, used to compute the weighted average in the
self-attention heads.
intermediate_predicted_corners (`torch.FloatTensor` of shape `(batch_size, config.decoder_layers, num_queries, 4)`):
Stacked intermediate predicted corners (predicted corners of each layer of the decoder).
initial_reference_points (`torch.FloatTensor` of shape `(batch_size, num_queries, 4)`):
Initial reference points used for the first decoder layer.
init_reference_points (`torch.FloatTensor` of shape `(batch_size, num_queries, 4)`):
Initial reference points sent through the Transformer decoder.
enc_topk_logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.num_labels)`):
@ -483,7 +467,7 @@ class DFineModelOutput(ModelOutput):
enc_outputs_coord_logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, 4)`, *optional*, returned when `config.with_box_refine=True` and `config.two_stage=True`):
Logits of predicted bounding boxes coordinates in the first stage.
denoising_meta_values (`dict`):
Extra dictionary for the denoising related values
Extra dictionary for the denoising related values.
"""
last_hidden_state: Optional[torch.FloatTensor] = None
@ -507,11 +491,13 @@ class DFineModelOutput(ModelOutput):
@dataclass
class DFineObjectDetectionOutput(ModelOutput):
"""
@auto_docstring(
custom_intro="""
Output type of [`DFineForObjectDetection`].
Args:
"""
)
class DFineObjectDetectionOutput(ModelOutput):
r"""
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` are provided)):
Total loss as a linear combination of a negative log-likehood (cross-entropy) for class prediction and a
bounding box loss. The latter is defined as a linear combination of the L1 loss and the generalized
@ -541,28 +527,6 @@ class DFineObjectDetectionOutput(ModelOutput):
Stacked intermediate predicted corners (predicted corners of each layer of the decoder).
initial_reference_points (`torch.FloatTensor` of shape `(batch_size, config.decoder_layers, num_queries, 4)`):
Stacked initial reference points (initial reference points of each layer of the decoder).
decoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, num_queries, hidden_size)`. Hidden-states of the decoder at the output of each layer
plus the initial embedding outputs.
decoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, num_queries,
num_queries)`. Attentions weights of the decoder, after the attention softmax, used to compute the weighted
average in the self-attention heads.
cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_queries, num_heads, 4, 4)`.
Attentions weights of the decoder's cross-attention layer, after the attention softmax, used to compute the
weighted average in the cross-attention heads.
encoder_last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Sequence of hidden-states at the output of the last layer of the encoder of the model.
encoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the encoder at the output of each
layer plus the initial embedding outputs.
encoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_queries, num_heads, 4, 4)`.
Attentions weights of the encoder, after the attention softmax, used to compute the weighted average in the
self-attention heads.
init_reference_points (`torch.FloatTensor` of shape `(batch_size, num_queries, 4)`):
Initial reference points sent through the Transformer decoder.
enc_topk_logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.num_labels)`, *optional*, returned when `config.with_box_refine=True` and `config.two_stage=True`):
@ -1008,16 +972,16 @@ class DFineIntegral(nn.Module):
@dataclass
class DFineDecoderOutput(ModelOutput):
"""
@auto_docstring(
custom_intro="""
Base class for outputs of the DFineDecoder. This class adds two attributes to
BaseModelOutputWithCrossAttentions, namely:
- a stacked tensor of intermediate decoder hidden states (i.e. the output of each decoder layer)
- a stacked tensor of intermediate reference points.
Args:
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the model.
"""
)
class DFineDecoderOutput(ModelOutput):
r"""
intermediate_hidden_states (`torch.FloatTensor` of shape `(batch_size, config.decoder_layers, num_queries, hidden_size)`):
Stacked intermediate hidden states (output of each layer of the decoder).
intermediate_logits (`torch.FloatTensor` of shape `(batch_size, config.decoder_layers, sequence_length, config.num_labels)`):
@ -1028,14 +992,6 @@ class DFineDecoderOutput(ModelOutput):
Stacked intermediate predicted corners (predicted corners of each layer of the decoder).
initial_reference_points (`torch.FloatTensor` of shape `(batch_size, config.decoder_layers, num_queries, 4)`):
Stacked initial reference points (initial reference points of each layer of the decoder).
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer
plus the initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in
the self-attention heads.
cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` and `config.add_cross_attention=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`. Attentions weights of the decoder's cross-attention layer, after the attention softmax,

View File

@ -39,25 +39,17 @@ logger = logging.get_logger(__name__)
@dataclass
# Copied from transformers.models.conditional_detr.modeling_conditional_detr.ConditionalDetrDecoderOutput with ConditionalDetr->DabDetr,Conditional DETR->DAB-DETR,2 (anchor points)->4 (anchor points)
class DabDetrDecoderOutput(BaseModelOutputWithCrossAttentions):
"""
@auto_docstring(
custom_intro="""
Base class for outputs of the Conditional DETR decoder. This class adds one attribute to
BaseModelOutputWithCrossAttentions, namely an optional stack of intermediate decoder activations, i.e. the output
of each decoder layer, each of them gone through a layernorm. This is useful when training the model with auxiliary
decoding losses.
Args:
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the model.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer
plus the initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in
the self-attention heads.
"""
)
# Copied from transformers.models.conditional_detr.modeling_conditional_detr.ConditionalDetrDecoderOutput with ConditionalDetr->DabDetr,Conditional DETR->DAB-DETR,2 (anchor points)->4 (anchor points)
class DabDetrDecoderOutput(BaseModelOutputWithCrossAttentions):
r"""
cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` and `config.add_cross_attention=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`. Attentions weights of the decoder's cross-attention layer, after the attention softmax,
@ -74,39 +66,19 @@ class DabDetrDecoderOutput(BaseModelOutputWithCrossAttentions):
@dataclass
# Copied from transformers.models.conditional_detr.modeling_conditional_detr.ConditionalDetrModelOutput with ConditionalDetr->DabDetr,Conditional DETR->DAB-DETR,2 (anchor points)->4 (anchor points)
class DabDetrModelOutput(Seq2SeqModelOutput):
"""
@auto_docstring(
custom_intro="""
Base class for outputs of the Conditional DETR encoder-decoder model. This class adds one attribute to
Seq2SeqModelOutput, namely an optional stack of intermediate decoder activations, i.e. the output of each decoder
layer, each of them gone through a layernorm. This is useful when training the model with auxiliary decoding
losses.
Args:
"""
)
# Copied from transformers.models.conditional_detr.modeling_conditional_detr.ConditionalDetrModelOutput with ConditionalDetr->DabDetr,Conditional DETR->DAB-DETR,2 (anchor points)->4 (anchor points)
class DabDetrModelOutput(Seq2SeqModelOutput):
r"""
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the decoder of the model.
decoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the decoder at the output of each
layer plus the initial embedding outputs.
decoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`. Attentions weights of the decoder, after the attention softmax, used to compute the
weighted average in the self-attention heads.
cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`. Attentions weights of the decoder's cross-attention layer, after the attention softmax,
used to compute the weighted average in the cross-attention heads.
encoder_last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Sequence of hidden-states at the output of the last layer of the encoder of the model.
encoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the encoder at the output of each
layer plus the initial embedding outputs.
encoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`. Attentions weights of the encoder, after the attention softmax, used to compute the
weighted average in the self-attention heads.
intermediate_hidden_states (`torch.FloatTensor` of shape `(config.decoder_layers, batch_size, sequence_length, hidden_size)`, *optional*, returned when `config.auxiliary_loss=True`):
Intermediate decoder activations, i.e. the output of each decoder layer, each of them gone through a
layernorm.
@ -119,12 +91,14 @@ class DabDetrModelOutput(Seq2SeqModelOutput):
@dataclass
@auto_docstring(
custom_intro="""
Output type of [`DabDetrForObjectDetection`].
"""
)
# Copied from transformers.models.detr.modeling_detr.DetrObjectDetectionOutput with Detr->DabDetr
class DabDetrObjectDetectionOutput(ModelOutput):
"""
Output type of [`DabDetrForObjectDetection`].
Args:
r"""
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` are provided)):
Total loss as a linear combination of a negative log-likehood (cross-entropy) for class prediction and a
bounding box loss. The latter is defined as a linear combination of the L1 loss and the generalized
@ -144,28 +118,6 @@ class DabDetrObjectDetectionOutput(ModelOutput):
`pred_boxes`) for each decoder layer.
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Sequence of hidden-states at the output of the last layer of the decoder of the model.
decoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the decoder at the output of each
layer plus the initial embedding outputs.
decoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`. Attentions weights of the decoder, after the attention softmax, used to compute the
weighted average in the self-attention heads.
cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`. Attentions weights of the decoder's cross-attention layer, after the attention softmax,
used to compute the weighted average in the cross-attention heads.
encoder_last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Sequence of hidden-states at the output of the last layer of the encoder of the model.
encoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the encoder at the output of each
layer plus the initial embedding outputs.
encoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`. Attentions weights of the encoder, after the attention softmax, used to compute the
weighted average in the self-attention heads.
"""
loss: Optional[torch.FloatTensor] = None

View File

@ -29,9 +29,9 @@ from .configuration_dac import DacConfig
@dataclass
@auto_docstring
class DacOutput(ModelOutput):
"""
Args:
r"""
loss (`torch.Tensor`):
Loss from the encoder model, comprising the weighted combination of the commitment and codebook losses.
audio_values (`torch.Tensor` of shape `(batch_size, input_length)`):
@ -52,9 +52,9 @@ class DacOutput(ModelOutput):
@dataclass
@auto_docstring
class DacEncoderOutput(ModelOutput):
"""
Args:
r"""
loss (`torch.Tensor`):
Loss from the encoder model, comprising the weighted combination of the commitment and codebook losses.
quantized_representation (`torch.Tensor` of shape `(batch_size, dimension, time_steps)`, *optional*):
@ -72,10 +72,10 @@ class DacEncoderOutput(ModelOutput):
@dataclass
@auto_docstring
# Copied from transformers.models.encodec.modeling_encodec.EncodecDecoderOutput with Encodec->Dac, segment_length->input_length
class DacDecoderOutput(ModelOutput):
"""
Args:
r"""
audio_values (`torch.FloatTensor` of shape `(batch_size, input_length)`, *optional*):
Decoded audio values, obtained using the decoder part of Dac.
"""

View File

@ -43,29 +43,18 @@ logger = logging.get_logger(__name__)
@dataclass
@auto_docstring(
custom_intro="""
Class for outputs of [`Data2VecVisionModel`].
"""
)
# Copied from transformers.models.beit.modeling_beit.BeitModelOutputWithPooling with Beit->Data2VecVision
class Data2VecVisionModelOutputWithPooling(BaseModelOutputWithPooling):
"""
Class for outputs of [`Data2VecVisionModel`].
Args:
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the model.
r"""
pooler_output (`torch.FloatTensor` of shape `(batch_size, hidden_size)`):
Average of the last layer hidden states of the patch tokens (excluding the *[CLS]* token) if
*config.use_mean_pooling* is set to True. If set to False, then the final hidden state of the *[CLS]* token
will be returned.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""

View File

@ -711,30 +711,19 @@ class DecisionTransformerGPT2Model(DecisionTransformerGPT2PreTrainedModel):
@dataclass
class DecisionTransformerOutput(ModelOutput):
"""
@auto_docstring(
custom_intro="""
Base class for model's outputs that also contains a pooling of the last hidden states.
Args:
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the model.
"""
)
class DecisionTransformerOutput(ModelOutput):
r"""
state_preds (`torch.FloatTensor` of shape `(batch_size, sequence_length, state_dim)`):
Environment state predictions
action_preds (`torch.FloatTensor` of shape `(batch_size, sequence_length, action_dim)`):
Model action predictions
return_preds (`torch.FloatTensor` of shape `(batch_size, sequence_length, 1)`):
Predicted returns for each state
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
state_preds: Optional[torch.FloatTensor] = None

View File

@ -108,28 +108,20 @@ class MultiScaleDeformableAttention(nn.Module):
@dataclass
class DeformableDetrDecoderOutput(ModelOutput):
"""
@auto_docstring(
custom_intro="""
Base class for outputs of the DeformableDetrDecoder. This class adds two attributes to
BaseModelOutputWithCrossAttentions, namely:
- a stacked tensor of intermediate decoder hidden states (i.e. the output of each decoder layer)
- a stacked tensor of intermediate reference points.
Args:
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the model.
"""
)
class DeformableDetrDecoderOutput(ModelOutput):
r"""
intermediate_hidden_states (`torch.FloatTensor` of shape `(batch_size, config.decoder_layers, num_queries, hidden_size)`):
Stacked intermediate hidden states (output of each layer of the decoder).
intermediate_reference_points (`torch.FloatTensor` of shape `(batch_size, config.decoder_layers, sequence_length, hidden_size)`):
Stacked intermediate reference points (reference points of each layer of the decoder).
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer
plus the initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in
the self-attention heads.
cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` and `config.add_cross_attention=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`. Attentions weights of the decoder's cross-attention layer, after the attention softmax,
@ -145,11 +137,13 @@ class DeformableDetrDecoderOutput(ModelOutput):
@dataclass
class DeformableDetrModelOutput(ModelOutput):
"""
@auto_docstring(
custom_intro="""
Base class for outputs of the Deformable DETR encoder-decoder model.
Args:
"""
)
class DeformableDetrModelOutput(ModelOutput):
r"""
init_reference_points (`torch.FloatTensor` of shape `(batch_size, num_queries, 4)`):
Initial reference points sent through the Transformer decoder.
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, num_queries, hidden_size)`):
@ -158,28 +152,6 @@ class DeformableDetrModelOutput(ModelOutput):
Stacked intermediate hidden states (output of each layer of the decoder).
intermediate_reference_points (`torch.FloatTensor` of shape `(batch_size, config.decoder_layers, num_queries, 4)`):
Stacked intermediate reference points (reference points of each layer of the decoder).
decoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, num_queries, hidden_size)`. Hidden-states of the decoder at the output of each layer
plus the initial embedding outputs.
decoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, num_queries,
num_queries)`. Attentions weights of the decoder, after the attention softmax, used to compute the weighted
average in the self-attention heads.
cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_queries, num_heads, 4, 4)`.
Attentions weights of the decoder's cross-attention layer, after the attention softmax, used to compute the
weighted average in the cross-attention heads.
encoder_last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Sequence of hidden-states at the output of the last layer of the encoder of the model.
encoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the encoder at the output of each
layer plus the initial embedding outputs.
encoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_queries, num_heads, 4, 4)`.
Attentions weights of the encoder, after the attention softmax, used to compute the weighted average in the
self-attention heads.
enc_outputs_class (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.num_labels)`, *optional*, returned when `config.with_box_refine=True` and `config.two_stage=True`):
Predicted bounding boxes scores where the top `config.two_stage_num_proposals` scoring bounding boxes are
picked as region proposals in the first stage. Output of bounding box binary classification (i.e.
@ -203,11 +175,13 @@ class DeformableDetrModelOutput(ModelOutput):
@dataclass
class DeformableDetrObjectDetectionOutput(ModelOutput):
"""
@auto_docstring(
custom_intro="""
Output type of [`DeformableDetrForObjectDetection`].
Args:
"""
)
class DeformableDetrObjectDetectionOutput(ModelOutput):
r"""
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` are provided)):
Total loss as a linear combination of a negative log-likehood (cross-entropy) for class prediction and a
bounding box loss. The latter is defined as a linear combination of the L1 loss and the generalized
@ -225,36 +199,14 @@ class DeformableDetrObjectDetectionOutput(ModelOutput):
Optional, only returned when auxiliary losses are activated (i.e. `config.auxiliary_loss` is set to `True`)
and labels are provided. It is a list of dictionaries containing the two above keys (`logits` and
`pred_boxes`) for each decoder layer.
init_reference_points (`torch.FloatTensor` of shape `(batch_size, num_queries, 4)`):
Initial reference points sent through the Transformer decoder.
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, num_queries, hidden_size)`, *optional*):
Sequence of hidden-states at the output of the last layer of the decoder of the model.
decoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, num_queries, hidden_size)`. Hidden-states of the decoder at the output of each layer
plus the initial embedding outputs.
decoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, num_queries,
num_queries)`. Attentions weights of the decoder, after the attention softmax, used to compute the weighted
average in the self-attention heads.
cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_queries, num_heads, 4, 4)`.
Attentions weights of the decoder's cross-attention layer, after the attention softmax, used to compute the
weighted average in the cross-attention heads.
encoder_last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Sequence of hidden-states at the output of the last layer of the encoder of the model.
encoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the encoder at the output of each
layer plus the initial embedding outputs.
encoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, sequence_length, num_heads, 4,
4)`. Attentions weights of the encoder, after the attention softmax, used to compute the weighted average
in the self-attention heads.
intermediate_hidden_states (`torch.FloatTensor` of shape `(batch_size, config.decoder_layers, num_queries, hidden_size)`):
Stacked intermediate hidden states (output of each layer of the decoder).
intermediate_reference_points (`torch.FloatTensor` of shape `(batch_size, config.decoder_layers, num_queries, 4)`):
Stacked intermediate reference points (reference points of each layer of the decoder).
init_reference_points (`torch.FloatTensor` of shape `(batch_size, num_queries, 4)`):
Initial reference points sent through the Transformer decoder.
enc_outputs_class (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.num_labels)`, *optional*, returned when `config.with_box_refine=True` and `config.two_stage=True`):
Predicted bounding boxes scores where the top `config.two_stage_num_proposals` scoring bounding boxes are
picked as region proposals in the first stage. Output of bounding box binary classification (i.e.

View File

@ -807,11 +807,13 @@ class DeiTForImageClassification(DeiTPreTrainedModel):
@dataclass
class DeiTForImageClassificationWithTeacherOutput(ModelOutput):
"""
@auto_docstring(
custom_intro="""
Output type of [`DeiTForImageClassificationWithTeacher`].
Args:
"""
)
class DeiTForImageClassificationWithTeacherOutput(ModelOutput):
r"""
logits (`torch.FloatTensor` of shape `(batch_size, config.num_labels)`):
Prediction scores as the average of the cls_logits and distillation logits.
cls_logits (`torch.FloatTensor` of shape `(batch_size, config.num_labels)`):
@ -820,14 +822,6 @@ class DeiTForImageClassificationWithTeacherOutput(ModelOutput):
distillation_logits (`torch.FloatTensor` of shape `(batch_size, config.num_labels)`):
Prediction scores of the distillation head (i.e. the linear layer on top of the final hidden state of the
distillation token).
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer
plus the initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in
the self-attention heads.
"""
logits: Optional[torch.FloatTensor] = None

View File

@ -32,26 +32,17 @@ logger = logging.get_logger(__name__)
@dataclass
class DepthProOutput(ModelOutput):
"""
@auto_docstring(
custom_intro="""
Base class for DepthPro's outputs.
Args:
"""
)
class DepthProOutput(ModelOutput):
r"""
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, n_patches_per_batch, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the model.
features (`Union[torch.FloatTensor, list[torch.FloatTensor]]`, *optional*):
features (`Union[torch.FloatTensor, List[torch.FloatTensor]]`, *optional*):
Features from encoders. Can be a single feature or a list of features.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, n_patches_per_batch, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer and the optional initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, n_patches_per_batch, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
last_hidden_state: Optional[torch.FloatTensor] = None
@ -61,28 +52,17 @@ class DepthProOutput(ModelOutput):
@dataclass
class DepthProDepthEstimatorOutput(ModelOutput):
"""
@auto_docstring(
custom_intro="""
Base class for DepthProForDepthEstimation's output.
Args:
"""
)
class DepthProDepthEstimatorOutput(ModelOutput):
r"""
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
Classification (or regression if config.num_labels==1) loss.
predicted_depth (`torch.FloatTensor` of shape `(batch_size, height, width)`):
Predicted depth for each pixel.
field_of_view (`torch.FloatTensor` of shape `(batch_size,)`, *optional*, returned when `use_fov_model` is provided):
Field of View Scaler.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, n_patches_per_batch, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer and the optional initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, n_patches_per_batch, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
loss: Optional[torch.FloatTensor] = None

View File

@ -45,23 +45,15 @@ logger = logging.get_logger(__name__)
@dataclass
class DetrDecoderOutput(BaseModelOutputWithCrossAttentions):
"""
@auto_docstring(
custom_intro="""
Base class for outputs of the DETR decoder. This class adds one attribute to BaseModelOutputWithCrossAttentions,
namely an optional stack of intermediate decoder activations, i.e. the output of each decoder layer, each of them
gone through a layernorm. This is useful when training the model with auxiliary decoding losses.
Args:
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the model.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer
plus the initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in
the self-attention heads.
"""
)
class DetrDecoderOutput(BaseModelOutputWithCrossAttentions):
r"""
cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` and `config.add_cross_attention=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`. Attentions weights of the decoder's cross-attention layer, after the attention softmax,
@ -75,37 +67,17 @@ class DetrDecoderOutput(BaseModelOutputWithCrossAttentions):
@dataclass
class DetrModelOutput(Seq2SeqModelOutput):
"""
@auto_docstring(
custom_intro="""
Base class for outputs of the DETR encoder-decoder model. This class adds one attribute to Seq2SeqModelOutput,
namely an optional stack of intermediate decoder activations, i.e. the output of each decoder layer, each of them
gone through a layernorm. This is useful when training the model with auxiliary decoding losses.
Args:
"""
)
class DetrModelOutput(Seq2SeqModelOutput):
r"""
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the decoder of the model.
decoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the decoder at the output of each
layer plus the initial embedding outputs.
decoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`. Attentions weights of the decoder, after the attention softmax, used to compute the
weighted average in the self-attention heads.
cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`. Attentions weights of the decoder's cross-attention layer, after the attention softmax,
used to compute the weighted average in the cross-attention heads.
encoder_last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Sequence of hidden-states at the output of the last layer of the encoder of the model.
encoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the encoder at the output of each
layer plus the initial embedding outputs.
encoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`. Attentions weights of the encoder, after the attention softmax, used to compute the
weighted average in the self-attention heads.
intermediate_hidden_states (`torch.FloatTensor` of shape `(config.decoder_layers, batch_size, sequence_length, hidden_size)`, *optional*, returned when `config.auxiliary_loss=True`):
Intermediate decoder activations, i.e. the output of each decoder layer, each of them gone through a
layernorm.
@ -115,11 +87,13 @@ class DetrModelOutput(Seq2SeqModelOutput):
@dataclass
class DetrObjectDetectionOutput(ModelOutput):
"""
@auto_docstring(
custom_intro="""
Output type of [`DetrForObjectDetection`].
Args:
"""
)
class DetrObjectDetectionOutput(ModelOutput):
r"""
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` are provided)):
Total loss as a linear combination of a negative log-likehood (cross-entropy) for class prediction and a
bounding box loss. The latter is defined as a linear combination of the L1 loss and the generalized
@ -139,28 +113,6 @@ class DetrObjectDetectionOutput(ModelOutput):
`pred_boxes`) for each decoder layer.
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Sequence of hidden-states at the output of the last layer of the decoder of the model.
decoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the decoder at the output of each
layer plus the initial embedding outputs.
decoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`. Attentions weights of the decoder, after the attention softmax, used to compute the
weighted average in the self-attention heads.
cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`. Attentions weights of the decoder's cross-attention layer, after the attention softmax,
used to compute the weighted average in the cross-attention heads.
encoder_last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Sequence of hidden-states at the output of the last layer of the encoder of the model.
encoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the encoder at the output of each
layer plus the initial embedding outputs.
encoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`. Attentions weights of the encoder, after the attention softmax, used to compute the
weighted average in the self-attention heads.
"""
loss: Optional[torch.FloatTensor] = None
@ -178,11 +130,13 @@ class DetrObjectDetectionOutput(ModelOutput):
@dataclass
class DetrSegmentationOutput(ModelOutput):
"""
@auto_docstring(
custom_intro="""
Output type of [`DetrForSegmentation`].
Args:
"""
)
class DetrSegmentationOutput(ModelOutput):
r"""
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` are provided)):
Total loss as a linear combination of a negative log-likehood (cross-entropy) for class prediction and a
bounding box loss. The latter is defined as a linear combination of the L1 loss and the generalized
@ -208,28 +162,6 @@ class DetrSegmentationOutput(ModelOutput):
`pred_boxes`) for each decoder layer.
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Sequence of hidden-states at the output of the last layer of the decoder of the model.
decoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the decoder at the output of each
layer plus the initial embedding outputs.
decoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`. Attentions weights of the decoder, after the attention softmax, used to compute the
weighted average in the self-attention heads.
cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`. Attentions weights of the decoder's cross-attention layer, after the attention softmax,
used to compute the weighted average in the cross-attention heads.
encoder_last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Sequence of hidden-states at the output of the last layer of the encoder of the model.
encoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the encoder at the output of each
layer plus the initial embedding outputs.
encoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`. Attentions weights of the encoder, after the attention softmax, used to compute the
weighted average in the self-attention heads.
"""
loss: Optional[torch.FloatTensor] = None

View File

@ -57,24 +57,13 @@ logger = logging.get_logger(__name__)
@dataclass
class DinatEncoderOutput(ModelOutput):
"""
@auto_docstring(
custom_intro="""
Dinat encoder's outputs, with potential hidden states and attentions.
Args:
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the model.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of
shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each stage) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
)
class DinatEncoderOutput(ModelOutput):
r"""
reshaped_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of
shape `(batch_size, hidden_size, height, width)`.
@ -90,26 +79,15 @@ class DinatEncoderOutput(ModelOutput):
@dataclass
class DinatModelOutput(ModelOutput):
"""
@auto_docstring(
custom_intro="""
Dinat model's outputs that also contains a pooling of the last hidden states.
Args:
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the model.
"""
)
class DinatModelOutput(ModelOutput):
r"""
pooler_output (`torch.FloatTensor` of shape `(batch_size, hidden_size)`, *optional*, returned when `add_pooling_layer=True` is passed):
Average pooling of the last layer hidden-state.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of
shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each stage) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
reshaped_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of
shape `(batch_size, hidden_size, height, width)`.
@ -126,26 +104,17 @@ class DinatModelOutput(ModelOutput):
@dataclass
class DinatImageClassifierOutput(ModelOutput):
"""
@auto_docstring(
custom_intro="""
Dinat outputs for image classification.
Args:
"""
)
class DinatImageClassifierOutput(ModelOutput):
r"""
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
Classification (or regression if config.num_labels==1) loss.
logits (`torch.FloatTensor` of shape `(batch_size, config.num_labels)`):
Classification (or regression if config.num_labels==1) scores (before SoftMax).
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of
shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each stage) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
reshaped_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of
shape `(batch_size, hidden_size, height, width)`.

View File

@ -38,25 +38,14 @@ logger = logging.get_logger(__name__)
@dataclass
@auto_docstring(
custom_intro="""
DonutSwin encoder's outputs, with potential hidden states and attentions.
"""
)
# Copied from transformers.models.swin.modeling_swin.SwinEncoderOutput with Swin->DonutSwin
class DonutSwinEncoderOutput(ModelOutput):
"""
DonutSwin encoder's outputs, with potential hidden states and attentions.
Args:
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the model.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of
shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each stage) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
r"""
reshaped_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of
shape `(batch_size, hidden_size, height, width)`.
@ -72,27 +61,16 @@ class DonutSwinEncoderOutput(ModelOutput):
@dataclass
@auto_docstring(
custom_intro="""
DonutSwin model's outputs that also contains a pooling of the last hidden states.
"""
)
# Copied from transformers.models.swin.modeling_swin.SwinModelOutput with Swin->DonutSwin
class DonutSwinModelOutput(ModelOutput):
"""
DonutSwin model's outputs that also contains a pooling of the last hidden states.
Args:
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the model.
r"""
pooler_output (`torch.FloatTensor` of shape `(batch_size, hidden_size)`, *optional*, returned when `add_pooling_layer=True` is passed):
Average pooling of the last layer hidden-state.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of
shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each stage) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
reshaped_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of
shape `(batch_size, hidden_size, height, width)`.
@ -109,27 +87,18 @@ class DonutSwinModelOutput(ModelOutput):
@dataclass
@auto_docstring(
custom_intro="""
DonutSwin outputs for image classification.
"""
)
# Copied from transformers.models.swin.modeling_swin.SwinImageClassifierOutput with Swin->DonutSwin
class DonutSwinImageClassifierOutput(ModelOutput):
"""
DonutSwin outputs for image classification.
Args:
r"""
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
Classification (or regression if config.num_labels==1) loss.
logits (`torch.FloatTensor` of shape `(batch_size, config.num_labels)`):
Classification (or regression if config.num_labels==1) scores (before SoftMax).
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of
shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each stage) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
reshaped_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of
shape `(batch_size, hidden_size, height, width)`.

View File

@ -40,26 +40,17 @@ logger = logging.get_logger(__name__)
@dataclass
class DPRContextEncoderOutput(ModelOutput):
"""
@auto_docstring(
custom_intro="""
Class for outputs of [`DPRQuestionEncoder`].
Args:
"""
)
class DPRContextEncoderOutput(ModelOutput):
r"""
pooler_output (`torch.FloatTensor` of shape `(batch_size, embeddings_size)`):
The DPR encoder outputs the *pooler_output* that corresponds to the context representation. Last layer
hidden-state of the first token of the sequence (classification token) further processed by a Linear layer.
This output is to be used to embed contexts for nearest neighbors queries with questions embeddings.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
pooler_output: torch.FloatTensor
@ -68,26 +59,17 @@ class DPRContextEncoderOutput(ModelOutput):
@dataclass
class DPRQuestionEncoderOutput(ModelOutput):
"""
@auto_docstring(
custom_intro="""
Class for outputs of [`DPRQuestionEncoder`].
Args:
"""
)
class DPRQuestionEncoderOutput(ModelOutput):
r"""
pooler_output (`torch.FloatTensor` of shape `(batch_size, embeddings_size)`):
The DPR encoder outputs the *pooler_output* that corresponds to the question representation. Last layer
hidden-state of the first token of the sequence (classification token) further processed by a Linear layer.
This output is to be used to embed questions for nearest neighbors queries with context embeddings.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
pooler_output: torch.FloatTensor
@ -96,11 +78,13 @@ class DPRQuestionEncoderOutput(ModelOutput):
@dataclass
class DPRReaderOutput(ModelOutput):
"""
@auto_docstring(
custom_intro="""
Class for outputs of [`DPRQuestionEncoder`].
Args:
"""
)
class DPRReaderOutput(ModelOutput):
r"""
start_logits (`torch.FloatTensor` of shape `(n_passages, sequence_length)`):
Logits of the start index of the span for each passage.
end_logits (`torch.FloatTensor` of shape `(n_passages, sequence_length)`):
@ -108,17 +92,6 @@ class DPRReaderOutput(ModelOutput):
relevance_logits (`torch.FloatTensor` of shape `(n_passages, )`):
Outputs of the QA classifier of the DPRReader that corresponds to the scores of each passage to answer the
question, compared to all the other passages.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
start_logits: torch.FloatTensor

View File

@ -42,13 +42,15 @@ logger = logging.get_logger(__name__)
@dataclass
class BaseModelOutputWithIntermediateActivations(ModelOutput):
"""
@auto_docstring(
custom_intro="""
Base class for model's outputs that also contains intermediate activations that can be used at later stages. Useful
in the context of Vision models.:
Args:
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
"""
)
class BaseModelOutputWithIntermediateActivations(ModelOutput):
r"""
last_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the model.
intermediate_activations (`tuple(torch.FloatTensor)`, *optional*):
Intermediate activations that can be used to compute hidden states of the model at various layers.
@ -59,30 +61,19 @@ class BaseModelOutputWithIntermediateActivations(ModelOutput):
@dataclass
class BaseModelOutputWithPoolingAndIntermediateActivations(ModelOutput):
"""
@auto_docstring(
custom_intro="""
Base class for model's outputs that also contains a pooling of the last hidden states as well as intermediate
activations that can be used by the model at later stages.
Args:
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the model.
"""
)
class BaseModelOutputWithPoolingAndIntermediateActivations(ModelOutput):
r"""
pooler_output (`torch.FloatTensor` of shape `(batch_size, hidden_size)`):
Last layer hidden-state of the first token of the sequence (classification token) after further processing
through the layers used for the auxiliary pretraining task. E.g. for BERT-family of models, this returns
the classification token after processing through a linear layer and a tanh activation function. The linear
layer weights are trained from the next sentence prediction (classification) objective during pretraining.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
intermediate_activations (`tuple(torch.FloatTensor)`, *optional*):
Intermediate activations that can be used to compute hidden states of the model at various layers.
"""

View File

@ -667,26 +667,17 @@ class ElectraPreTrainedModel(PreTrainedModel):
@dataclass
class ElectraForPreTrainingOutput(ModelOutput):
"""
@auto_docstring(
custom_intro="""
Output type of [`ElectraForPreTraining`].
Args:
"""
)
class ElectraForPreTrainingOutput(ModelOutput):
r"""
loss (*optional*, returned when `labels` is provided, `torch.FloatTensor` of shape `(1,)`):
Total loss of the ELECTRA objective.
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length)`):
Prediction scores of the head (scores for each token before SoftMax).
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
loss: Optional[torch.FloatTensor] = None

View File

@ -38,12 +38,12 @@ logger = logging.get_logger(__name__)
@dataclass
@auto_docstring
class EncodecOutput(ModelOutput):
"""
Args:
r"""
audio_codes (`torch.LongTensor` of shape `(batch_size, nb_chunks, chunk_length)`, *optional*):
Discret code embeddings computed using `model.encode`.
audio_values (`torch.FlaotTensor` of shape `(batch_size, sequence_length)`, *optional*)
audio_values (`torch.FloatTensor` of shape `(batch_size, segment_length)`, *optional*):
Decoded audio values, obtained using the decoder part of Encodec.
"""
@ -52,9 +52,9 @@ class EncodecOutput(ModelOutput):
@dataclass
@auto_docstring
class EncodecEncoderOutput(ModelOutput):
"""
Args:
r"""
audio_codes (`torch.LongTensor` of shape `(batch_size, nb_chunks, chunk_length)`, *optional*):
Discret code embeddings computed using `model.encode`.
audio_scales (`torch.Tensor` of shape `(batch_size, nb_chunks)`, *optional*):
@ -66,9 +66,9 @@ class EncodecEncoderOutput(ModelOutput):
@dataclass
@auto_docstring
class EncodecDecoderOutput(ModelOutput):
"""
Args:
r"""
audio_values (`torch.FloatTensor` of shape `(batch_size, segment_length)`, *optional*):
Decoded audio values, obtained using the decoder part of Encodec.
"""

View File

@ -647,12 +647,14 @@ class ErniePreTrainedModel(PreTrainedModel):
@dataclass
@auto_docstring(
custom_intro="""
Output type of [`ErnieForPreTraining`].
"""
)
# Copied from transformers.models.bert.modeling_bert.BertForPreTrainingOutput with Bert->Ernie
class ErnieForPreTrainingOutput(ModelOutput):
"""
Output type of [`ErnieForPreTraining`].
Args:
r"""
loss (*optional*, returned when `labels` is provided, `torch.FloatTensor` of shape `(1,)`):
Total loss as the sum of the masked language modeling loss and the next sequence prediction
(classification) loss.
@ -661,17 +663,6 @@ class ErnieForPreTrainingOutput(ModelOutput):
seq_relationship_logits (`torch.FloatTensor` of shape `(batch_size, 2)`):
Prediction scores of the next sequence prediction (classification) head (scores of True/False continuation
before SoftMax).
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
loss: Optional[torch.FloatTensor] = None

View File

@ -53,11 +53,13 @@ logger = logging.get_logger(__name__)
@dataclass
class EsmForProteinFoldingOutput(ModelOutput):
"""
@auto_docstring(
custom_intro="""
Output type of [`EsmForProteinFoldingOutput`].
Args:
"""
)
class EsmForProteinFoldingOutput(ModelOutput):
r"""
frames (`torch.FloatTensor`):
Output frames.
sidechain_frames (`torch.FloatTensor`):

View File

@ -492,24 +492,19 @@ class FalconMambaPreTrainedModel(PreTrainedModel):
@dataclass
@auto_docstring(
custom_intro="""
Class for the FALCONMAMBA model outputs.
"""
)
# Copied from transformers.models.mamba.modeling_mamba.MambaOutput with MAMBA->FALCONMAMBA,Mamba->FalconMamba,FalconMambaCache->MambaCache
class FalconMambaOutput(ModelOutput):
"""
Class for the FALCONMAMBA model outputs.
Args:
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the model.
r"""
cache_params (`MambaCache`):
The state of the model at the last time step. Can be used in a forward method with the next `input_ids` to
avoid providing the old `input_ids`.
Includes both the State space model state matrices after the selective scan, and the Convolutional states
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
"""
last_hidden_state: Optional[torch.FloatTensor] = None
@ -518,12 +513,14 @@ class FalconMambaOutput(ModelOutput):
@dataclass
@auto_docstring(
custom_intro="""
Base class for causal language model (or autoregressive) outputs.
"""
)
# Copied from transformers.models.mamba.modeling_mamba.MambaCausalLMOutput with Mamba->FalconMamba,FalconMambaCache->MambaCache
class FalconMambaCausalLMOutput(ModelOutput):
"""
Base class for causal language model (or autoregressive) outputs.
Args:
r"""
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
Language modeling loss (for next-token prediction).
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
@ -533,11 +530,6 @@ class FalconMambaCausalLMOutput(ModelOutput):
avoid providing the old `input_ids`.
Includes both the State space model state matrices after the selective scan, and the Convolutional states
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
"""
loss: Optional[torch.FloatTensor] = None

View File

@ -35,46 +35,21 @@ logger = logging.get_logger(__name__)
@dataclass
class FastSpeech2ConformerModelOutput(ModelOutput):
"""
@auto_docstring(
custom_intro="""
Output type of [`FastSpeech2ConformerModel`].
Args:
"""
)
class FastSpeech2ConformerModelOutput(ModelOutput):
r"""
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
Spectrogram generation loss.
spectrogram (`torch.FloatTensor` of shape `(batch_size, sequence_length, num_bins)`):
The predicted spectrogram.
encoder_last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Sequence of hidden-states at the output of the last layer of the encoder of the model.
encoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the encoder at the output of each layer plus the initial embedding outputs.
encoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights of the encoder, after the attention softmax, used to compute the weighted average in the
self-attention heads.
decoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the decoder at the output of each layer plus the initial embedding outputs.
decoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the
self-attention heads.
duration_outputs (`torch.LongTensor` of shape `(batch_size, max_text_length + 1)`, *optional*):
Outputs of the duration predictor.
pitch_outputs (`torch.FloatTensor` of shape `(batch_size, max_text_length + 1, 1)`, *optional*):
Outputs of the pitch predictor.
energy_outputs (`torch.FloatTensor` of shape `(batch_size, max_text_length + 1, 1)`, *optional*):
Outputs of the energy predictor.
"""
loss: Optional[torch.FloatTensor] = None
@ -90,47 +65,23 @@ class FastSpeech2ConformerModelOutput(ModelOutput):
@dataclass
class FastSpeech2ConformerWithHifiGanOutput(FastSpeech2ConformerModelOutput):
"""
@auto_docstring(
custom_intro="""
Output type of [`FastSpeech2ConformerWithHifiGan`].
Args:
waveform (`torch.FloatTensor` of shape `(batch_size, audio_length)`):
Speech output as a result of passing the predicted mel spectrogram through the vocoder.
"""
)
class FastSpeech2ConformerWithHifiGanOutput(FastSpeech2ConformerModelOutput):
r"""
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
Spectrogram generation loss.
spectrogram (`torch.FloatTensor` of shape `(batch_size, sequence_length, num_bins)`):
The predicted spectrogram.
encoder_last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Sequence of hidden-states at the output of the last layer of the encoder of the model.
encoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the encoder at the output of each layer plus the initial embedding outputs.
encoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights of the encoder, after the attention softmax, used to compute the weighted average in the
self-attention heads.
decoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the decoder at the output of each layer plus the initial embedding outputs.
decoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the
self-attention heads.
duration_outputs (`torch.LongTensor` of shape `(batch_size, max_text_length + 1)`, *optional*):
Outputs of the duration predictor.
pitch_outputs (`torch.FloatTensor` of shape `(batch_size, max_text_length + 1, 1)`, *optional*):
Outputs of the pitch predictor.
energy_outputs (`torch.FloatTensor` of shape `(batch_size, max_text_length + 1, 1)`, *optional*):
Outputs of the energy predictor.
waveform (`torch.FloatTensor` of shape `(batch_size, audio_length)`):
Speech output as a result of passing the predicted mel spectrogram through the vocoder.
"""
waveform: Optional[torch.FloatTensor] = None

View File

@ -246,12 +246,14 @@ class FlaubertPredLayer(nn.Module):
@dataclass
@auto_docstring(
custom_intro="""
Base class for outputs of question answering models using a [`~modeling_utils.FlaubertSQuADHead`].
"""
)
# Copied from transformers.models.xlm.modeling_xlm.XLMSquadHeadOutput with XLM->Flaubert
class FlaubertSquadHeadOutput(ModelOutput):
"""
Base class for outputs of question answering models using a [`~modeling_utils.FlaubertSQuADHead`].
Args:
r"""
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned if both `start_positions` and `end_positions` are provided):
Classification loss as the sum of start token, end token (and is_impossible if provided) classification
losses.
@ -266,7 +268,6 @@ class FlaubertSquadHeadOutput(ModelOutput):
Indices for the top `config.start_n_top * config.end_n_top` end token possibilities (beam-search).
cls_logits (`torch.FloatTensor` of shape `(batch_size,)`, *optional*, returned if `start_positions` or `end_positions` is not provided):
Log probabilities for the `is_impossible` label of the answers.
"""
loss: Optional[torch.FloatTensor] = None
@ -815,6 +816,14 @@ class FlaubertModel(FlaubertPreTrainedModel):
return_dict: Optional[bool] = None,
) -> Union[tuple, BaseModelOutput]:
r"""
langs (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
A parallel sequence of tokens to be used to indicate the language of each token in the input. Indices are
languages ids which can be obtained from the language names by using two conversion mappings provided in
the configuration of the model (only provided for multilingual models). More precisely, the *language name
to language id* mapping is in `model.config.lang2id` (which is a dictionary string to int) and the
*language id to language name* mapping is in `model.config.id2lang` (dictionary int to string).
See usage examples detailed in the [multilingual documentation](../multilingual).
lengths (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Length of each sentence that can be used to avoid performing attention on padding token indices. You can
also use `attention_mask` for the same result (see above), kept here for compatibility. Indices selected in
@ -824,14 +833,6 @@ class FlaubertModel(FlaubertPreTrainedModel):
attention blocks) as computed by the model (see `cache` output below). Can be used to speed up sequential
decoding. The dictionary object will be modified in-place during the forward pass to add newly computed
hidden-states.
langs (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
A parallel sequence of tokens to be used to indicate the language of each token in the input. Indices are
languages ids which can be obtained from the language names by using two conversion mappings provided in
the configuration of the model (only provided for multilingual models). More precisely, the *language name
to language id* mapping is in `model.config.lang2id` (which is a dictionary string to int) and the
*language id to language name* mapping is in `model.config.id2lang` (dictionary int to string).
See usage examples detailed in the [multilingual documentation](../multilingual).
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
@ -1040,6 +1041,14 @@ class FlaubertWithLMHeadModel(FlaubertPreTrainedModel, GenerationMixin):
return_dict: Optional[bool] = None,
) -> Union[tuple, MaskedLMOutput]:
r"""
langs (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
A parallel sequence of tokens to be used to indicate the language of each token in the input. Indices are
languages ids which can be obtained from the language names by using two conversion mappings provided in
the configuration of the model (only provided for multilingual models). More precisely, the *language name
to language id* mapping is in `model.config.lang2id` (which is a dictionary string to int) and the
*language id to language name* mapping is in `model.config.id2lang` (dictionary int to string).
See usage examples detailed in the [multilingual documentation](../multilingual).
lengths (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Length of each sentence that can be used to avoid performing attention on padding token indices. You can
also use `attention_mask` for the same result (see above), kept here for compatibility. Indices selected in
@ -1053,14 +1062,6 @@ class FlaubertWithLMHeadModel(FlaubertPreTrainedModel, GenerationMixin):
Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
`labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100`
are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]`
langs (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
A parallel sequence of tokens to be used to indicate the language of each token in the input. Indices are
languages ids which can be obtained from the language names by using two conversion mappings provided in
the configuration of the model (only provided for multilingual models). More precisely, the *language name
to language id* mapping is in `model.config.lang2id` (which is a dictionary string to int) and the
*language id to language name* mapping is in `model.config.id2lang` (dictionary int to string).
See usage examples detailed in the [multilingual documentation](../multilingual).
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
@ -1413,12 +1414,14 @@ class FlaubertForQuestionAnsweringSimple(FlaubertPreTrainedModel):
@dataclass
@auto_docstring(
custom_intro="""
Base class for outputs of question answering models using a `SquadHead`.
"""
)
# Copied from transformer.models.xlm.modeling_xlm.XLMForQuestionAnsweringOutput with XLM->Flaubert
class FlaubertForQuestionAnsweringOutput(ModelOutput):
"""
Base class for outputs of question answering models using a `SquadHead`.
Args:
r"""
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned if both `start_positions` and `end_positions` are provided):
Classification loss as the sum of start token, end token (and is_impossible if provided) classification
losses.
@ -1433,17 +1436,6 @@ class FlaubertForQuestionAnsweringOutput(ModelOutput):
Indices for the top `config.start_n_top * config.end_n_top` end token possibilities (beam-search).
cls_logits (`torch.FloatTensor` of shape `(batch_size,)`, *optional*, returned if `start_positions` or `end_positions` is not provided):
Log probabilities for the `is_impossible` label of the answers.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
loss: Optional[torch.FloatTensor] = None

View File

@ -49,15 +49,17 @@ FlavaPossibleConfigs = Union[FlavaTextConfig, FlavaImageConfig, FlavaMultimodalC
@dataclass
class FlavaModelOutput(ModelOutput):
"""
@auto_docstring(
custom_intro="""
Output from FlavaModel containing embeddings and outputs from individual encoders.
Note that `image_embeddings` and `text_embeddigns` returned are similar to pooled output returned from a
transformer. If you want embeddings for contrastive loss or retrieval use a FLAVA model's `image_projection` and
`text_projection` layers on `image_embeddings` and `text_embeddings` respectively.
Args:
"""
)
class FlavaModelOutput(ModelOutput):
r"""
image_embeddings (`torch.FloatTensor` of shape `(batch_size, output_dim)`, *optional*, returned when `pixel_values` are present):
The image embeddings which are basically the pooled output of [`FlavaImageModel`].
image_output (`BaseModelOutputWithPooling`, *optional*, returned when `pixel_values` are present):
@ -87,23 +89,26 @@ class FlavaModelOutput(ModelOutput):
@dataclass
@auto_docstring(
custom_intro="""
Class representing pretraining losses from FLAVA model
"""
)
class FlavaLosses(ModelOutput):
"""Class representing pretraining losses from FLAVA model
Args:
mim (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `mim_labels` and `pixel_values` are present, `input_ids_masked` is absent and `mim_weight` > 0.:
r"""
mim (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `mim_labels` and `pixel_values` are present, `input_ids_masked` is absent and `mim_weight` > 0.):
Masked Image Modeling loss as used in BeIT calculated only for unimodal image data.
mlm (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `mlm_labels` and `input_ids_masked` are present, `pixel_values` is absent and `mlm_weight` > 0.:
mlm (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `mlm_labels` and `input_ids_masked` are present, `pixel_values` is absent and `mlm_weight` > 0.):
Masked Language Modeling loss as used in BERT calculated only for unimodal text data.
itm (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `itm_labels`, `input_ids_masked`, `pixel_values` are present and `itm_weight` > 0.:
itm (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `itm_labels`, `input_ids_masked`, `pixel_values` are present and `itm_weight` > 0.):
Image Text Matching (ITM) loss calculated for paired image-text data. Note that ITM loss is calculated on
masked pairs in FLAVA.
global_contrastive (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `input_ids` and `pixel_values` are present and `global_contrastive_weight` > 0.:
global_contrastive (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `input_ids` and `pixel_values` are present and `global_contrastive_weight` > 0.):
Contrastive loss for image-text similarity similar to CLIP but calculated globally for paired image-text
data. This is calculated on unmasked images and texts.
mmm_image (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `mim_labels`, `pixel_values` and `input_ids_masked` are present and `mmm_image_weight` > 0.:
mmm_image (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `mim_labels`, `pixel_values` and `input_ids_masked` are present and `mmm_image_weight` > 0.):
Masked Multimodal Modeling loss's image component calculated on paired image-text data.
mmm_text (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `mlm_labels`, `pixel_values` and `input_ids_masked` are present and `mmm_text_weight` > 0.:
mmm_text (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `mlm_labels`, `pixel_values` and `input_ids_masked` are present and `mmm_text_weight` > 0.):
Masked Multimodal Modeling loss's text component calculated on paired image-text data.
"""
@ -124,15 +129,17 @@ class FlavaLosses(ModelOutput):
@dataclass
class FlavaForPreTrainingOutput(ModelOutput):
"""
@auto_docstring(
custom_intro="""
Output from FlavaForPreTraining containing embeddings, and outputs from individual encoders.
Note that `image_embeddings` and `text_embeddings` returned are similar to pooled output returned from a
transformer. If you want embeddings for contrastive loss or retrieval use a FLAVA model's `image_projection` and
`text_projection` layers on `image_embeddings` and `text_embeddings` respectively.
Args:
"""
)
class FlavaForPreTrainingOutput(ModelOutput):
r"""
loss (`torch.FloatTensor`, *optional*, returned when `return_loss` is True):
Total loss calculated for this model.
loss_info (`FlavaLosses`):
@ -150,7 +157,6 @@ class FlavaForPreTrainingOutput(ModelOutput):
The multimodal embeddings which are basically the pooled output of [`FlavaTextModel`].
multimodal_output (`BaseModelOutputWithPooling`, returned when `input_ids` and `pixel_values` are present and `skip_unmasked_multimodal_encoder` is `None` or `False`):
The output of the [`FlavaMultimodalModel`].
image_masked_embeddings (`torch.FloatTensor` of shape `(batch_size, output_dim)`, *optional*, returned when `pixel_values` are present):
The image embeddings which are basically the pooled output of [`FlavaImageModel`]. Uses `bool_masked_pos`
to create masked images.
@ -164,7 +170,6 @@ class FlavaForPreTrainingOutput(ModelOutput):
The multimodal embeddings which are basically the pooled output of [`FlavaTextModel`].
multimodal_masked_output (`BaseModelOutputWithPooling`, *optional*, returned when `input_ids_masked` and `pixel_values` are present):
The output of the [`FlavaMultimodalModel`].
mim_logits (`torch.FloatTensor` of shape `(batch_size, num_image_patches, image_vocab_size)` or of shape `(total_masked_patches, image_vocab_size)` , *optional*, returned when `pixel_values` are present and `input_ids_masked` are not):
The logits for MIM unimodal loss. Uses `book_masked_pos` to get masked patches. The flattened output is
returned when `bool_masked_pos` has some of the patches masked.
@ -173,12 +178,6 @@ class FlavaForPreTrainingOutput(ModelOutput):
the tokens masked.
itm_logits (`torch.FloatTensor` of shape `(batch_size, 2)`, *optional*, returned when `input_ids_masked` and `pixel_values` are present):
The logits for ITM loss. Note that ITM loss is calculated on masked pairs in FLAVA.
mmm_image_logits (`torch.FloatTensor` of shape `(batch_size, num_image_patches, image_vocab_size)` or of shape`(total_masked_patches, image_vocab_size)`, *optional*, returned when `pixel_values` and `input_ids_masked` are present):
The logits for MMM image multimodal loss. Uses `book_masked_pos` to get masked patches. The flattened
output is returned when `bool_masked_pos` has some of the patches masked.
mmm_text_logits (`torch.FloatTensor` of shape `(batch_size, text_seq_length, text_vocab_size)` or of shape `(`(total_masked_seq_length, text_vocab_size)`), *optional*, returned when `pixel_values` and `input_ids_masked` are present):
The logits for MMM text multimodal loss. The flattened output is returned when `input_ids_masked` has
some of the tokens masked.
contrastive_logits_per_image (`torch.FloatTensor` of shape `(image_batch_size, text_batch_size)`):
The scaled dot product scores between `image_embeddings` and `text_embeddings` but passed through FLAVA's
`image_projection` and `text_projection` layers respectively. This represents the image-text similarity
@ -187,6 +186,12 @@ class FlavaForPreTrainingOutput(ModelOutput):
The scaled dot product scores between `text_embeddings` and `image_embeddings` but passed through FLAVA's
`text_projection` and `image_projection` layers respectively. This is calculated on unmasked images and
texts.
mmm_image_logits (`torch.FloatTensor` of shape `(batch_size, num_image_patches, image_vocab_size)` or of shape`(total_masked_patches, image_vocab_size)`, *optional*, returned when `pixel_values` and `input_ids_masked` are present):
The logits for MMM image multimodal loss. Uses `book_masked_pos` to get masked patches. The flattened
output is returned when `bool_masked_pos` has some of the patches masked.
mmm_text_logits (`torch.FloatTensor` of shape `(batch_size, text_seq_length, text_vocab_size)` or of shape `(`(total_masked_seq_length, text_vocab_size)`), *optional*, returned when `pixel_values` and `input_ids_masked` are present):
The logits for MMM text multimodal loss. The flattened output is returned when `input_ids_masked` has
some of the tokens masked.
"""
loss: Optional[torch.FloatTensor] = None
@ -1207,12 +1212,12 @@ class FlavaModel(FlavaPreTrainedModel):
[What are token type IDs?](../glossary#token-type-ids)
bool_masked_pos (`torch.BoolTensor` of shape `(batch_size, image_num_patches)`):
Boolean masked positions. Indicates which patches are masked (1) and which aren't (0).
skip_multimodal_encoder (*bool*, *optional*):
Skip any calculations for multimodal encoder. Useful if multimodal encoding is not going to be used.
image_attention_mask (`torch.Tensor` of shape `(batch_size, image_num_patches)`, *optional*):
Mask to avoid performing attention on padding pixel values for image inputs. Mask values selected in `[0, 1]`:
- 1 for pixel values that are real (i.e., **not masked**),
- 0 for pixel values that are padding (i.e., **masked**).
skip_multimodal_encoder (*bool*, *optional*):
Skip any calculations for multimodal encoder. Useful if multimodal encoding is not going to be used.
Examples:
@ -1681,6 +1686,8 @@ class FlavaForPreTraining(FlavaPreTrainedModel):
to be used with MLM. Indices can be obtained using [`AutoTokenizer`] along with
[`DataCollatorForMaskedLanguageModeling`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids)
codebook_pixel_values (`torch.FloatTensor` of shape `(batch_size, num_image_patches, patch_size, patch_size, 3)`, *optional*):
Pixel values for image patches that are used to compute the image codebook labels for masked image modeling.
token_type_ids (`torch.LongTensor` of shape `(batch_size, text_seq_len)`, *optional*):
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
1]`:
@ -1714,8 +1721,6 @@ class FlavaForPreTraining(FlavaPreTrainedModel):
The pairs with 0 will be skipped for calculation of MMM and global contrastive losses as well.
return_loss (`bool`, *optional*, default to None):
Whether to return calculated loss or not.
codebook_pixel_values (`torch.FloatTensor` of shape `(batch_size, num_image_patches, patch_size, patch_size, 3)`, *optional*):
Pixel values for image patches that are used to compute the image codebook labels for masked image modeling.
Examples:
```python

View File

@ -409,11 +409,13 @@ class FNetPreTrainedModel(PreTrainedModel):
@dataclass
class FNetForPreTrainingOutput(ModelOutput):
"""
@auto_docstring(
custom_intro="""
Output type of [`FNetForPreTraining`].
Args:
"""
)
class FNetForPreTrainingOutput(ModelOutput):
r"""
loss (*optional*, returned when `labels` is provided, `torch.FloatTensor` of shape `(1,)`):
Total loss as the sum of the masked language modeling loss and the next sequence prediction
(classification) loss.
@ -422,10 +424,6 @@ class FNetForPreTrainingOutput(ModelOutput):
seq_relationship_logits (`torch.FloatTensor` of shape `(batch_size, 2)`):
Prediction scores of the next sequence prediction (classification) head (scores of True/False continuation
before SoftMax).
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer
plus the initial embedding outputs.
"""
loss: Optional[torch.FloatTensor] = None

View File

@ -37,19 +37,13 @@ logger = logging.get_logger(__name__)
@dataclass
class FocalNetEncoderOutput(ModelOutput):
"""
@auto_docstring(
custom_intro="""
FocalNet encoder's outputs, with potential hidden states.
Args:
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the model.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of
shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
"""
)
class FocalNetEncoderOutput(ModelOutput):
r"""
reshaped_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of
shape `(batch_size, hidden_size, height, width)`.
@ -64,20 +58,15 @@ class FocalNetEncoderOutput(ModelOutput):
@dataclass
class FocalNetModelOutput(ModelOutput):
"""
@auto_docstring(
custom_intro="""
FocalNet model's outputs that also contains a pooling of the last hidden states.
Args:
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the model.
"""
)
class FocalNetModelOutput(ModelOutput):
r"""
pooler_output (`torch.FloatTensor` of shape `(batch_size, hidden_size)`, *optional*, returned when `add_pooling_layer=True` is passed):
Average pooling of the last layer hidden-state.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of
shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
reshaped_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of
shape `(batch_size, hidden_size, height, width)`.
@ -93,20 +82,17 @@ class FocalNetModelOutput(ModelOutput):
@dataclass
class FocalNetMaskedImageModelingOutput(ModelOutput):
"""
@auto_docstring(
custom_intro="""
FocalNet masked image model outputs.
Args:
"""
)
class FocalNetMaskedImageModelingOutput(ModelOutput):
r"""
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `bool_masked_pos` is provided):
Masked image modeling (MLM) loss.
reconstruction (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
Reconstructed pixel values.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of
shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
reshaped_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of
shape `(batch_size, hidden_size, height, width)`.
@ -122,20 +108,17 @@ class FocalNetMaskedImageModelingOutput(ModelOutput):
@dataclass
class FocalNetImageClassifierOutput(ModelOutput):
"""
@auto_docstring(
custom_intro="""
FocalNet outputs for image classification.
Args:
"""
)
class FocalNetImageClassifierOutput(ModelOutput):
r"""
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
Classification (or regression if config.num_labels==1) loss.
logits (`torch.FloatTensor` of shape `(batch_size, config.num_labels)`):
Classification (or regression if config.num_labels==1) scores (before SoftMax).
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of
shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
reshaped_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of
shape `(batch_size, hidden_size, height, width)`.

View File

@ -804,26 +804,17 @@ class FunnelClassificationHead(nn.Module):
@dataclass
class FunnelForPreTrainingOutput(ModelOutput):
"""
@auto_docstring(
custom_intro="""
Output type of [`FunnelForPreTraining`].
Args:
"""
)
class FunnelForPreTrainingOutput(ModelOutput):
r"""
loss (*optional*, returned when `labels` is provided, `torch.FloatTensor` of shape `(1,)`):
Total loss of the ELECTRA-style objective.
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length)`):
Prediction scores of the head (scores for each token before SoftMax).
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
loss: Optional[torch.FloatTensor] = None

View File

@ -290,12 +290,12 @@ class FuyuForCausalLM(FuyuPreTrainedModel, GenerationMixin):
image_patches (`torch.FloatTensor` of shape `(batch_size, num_total_patches, patch_size_ x patch_size x num_channels)`, *optional*):
Image patches to be used as continuous embeddings. The patches are flattened and then projected to the
hidden size of the model.
image_patches_indices (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Tensor of indices of the image patches in the input_ids tensor.
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
config.text_config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.text_config.vocab_size]`.
image_patches_indices (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Tensor of indices of the image patches in the input_ids tensor.
Examples:

View File

@ -48,30 +48,19 @@ logger = logging.get_logger(__name__)
@dataclass
class Gemma3ModelOutputWithPast(BaseModelOutputWithPast):
"""
@auto_docstring(
custom_intro="""
Base class for Gemma3 outputs, with hidden states and attentions.
Args:
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the model.
"""
)
class Gemma3ModelOutputWithPast(BaseModelOutputWithPast):
r"""
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
`(batch_size, num_heads, sequence_length, embed_size_per_head)`)
Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see
`past_key_values` input) to speed up sequential decoding.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
image_hidden_states (`torch.FloatTensor`, *optional*):
A `torch.FloatTensor` of size `(batch_size, num_images, sequence_length, hidden_size)`.
image_hidden_states of the model produced by the vision encoder and after projecting the last hidden state.
@ -81,11 +70,13 @@ class Gemma3ModelOutputWithPast(BaseModelOutputWithPast):
@dataclass
class Gemma3CausalLMOutputWithPast(ModelOutput):
"""
@auto_docstring(
custom_intro="""
Base class for Gemma3 causal language model (or autoregressive) outputs.
Args:
"""
)
class Gemma3CausalLMOutputWithPast(ModelOutput):
r"""
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
Language modeling loss (for next-token prediction).
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.text_config.vocab_size)`):
@ -96,17 +87,6 @@ class Gemma3CausalLMOutputWithPast(ModelOutput):
Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see
`past_key_values` input) to speed up sequential decoding.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
image_hidden_states (`torch.FloatTensor`, *optional*):
A `torch.FloatTensor` of size `(batch_size, num_images, sequence_length, hidden_size)`.
image_hidden_states of the model produced by the vision encoder after projecting last hidden state.

View File

@ -15,7 +15,6 @@
# limitations under the License.
import copy
from collections.abc import Callable
from dataclasses import dataclass
from typing import Any, Optional, Union
import torch
@ -346,12 +345,10 @@ class Gemma3Config(PretrainedConfig):
super().__init__(**kwargs)
@dataclass
class Gemma3ModelOutputWithPast(PaligemmaModelOutputWithPast):
pass
@dataclass
class Gemma3CausalLMOutputWithPast(PaligemmaCausalLMOutputWithPast):
pass

View File

@ -49,27 +49,16 @@ logger = logging.get_logger(__name__)
@dataclass
@auto_docstring(
custom_intro="""
Base class for vision model's outputs that also contains image embeddings of the pooling of the last hidden states.
"""
)
# Copied from transformers.models.clip.modeling_clip.CLIPVisionModelOutput with CLIP->Git
class GitVisionModelOutput(ModelOutput):
"""
Base class for vision model's outputs that also contains image embeddings of the pooling of the last hidden states.
Args:
r"""
image_embeds (`torch.FloatTensor` of shape `(batch_size, output_dim)` *optional* returned when model is initialized with `with_projection=True`):
The image embeddings obtained by applying the projection layer to the pooler_output.
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the model.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
image_embeds: Optional[torch.FloatTensor] = None

View File

@ -289,27 +289,16 @@ class GotOcr2VisionLayer(GradientCheckpointingLayer):
@dataclass
class GotOcr2VisionEncoderOutput(ModelOutput):
"""
@auto_docstring(
custom_intro="""
Base class for got_ocr2 vision model's outputs that also contains image embeddings obtained by applying the projection
layer to the pooler_output.
Args:
"""
)
class GotOcr2VisionEncoderOutput(ModelOutput):
r"""
image_embeds (`torch.FloatTensor` of shape `(batch_size, output_dim)` *optional* returned when model is initialized with `with_projection=True`):
The image embeddings obtained by applying the projection layer to the pooler_output.
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the model.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
image_embeds: Optional[torch.FloatTensor] = None
@ -505,11 +494,13 @@ class GotOcr2MultiModalProjector(nn.Module):
@dataclass
class GotOcr2CausalLMOutputWithPast(ModelOutput):
"""
@auto_docstring(
custom_intro="""
Base class for GotOcr2 causal language model (or autoregressive) outputs.
Args:
"""
)
class GotOcr2CausalLMOutputWithPast(ModelOutput):
r"""
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
Language modeling loss (for next-token prediction).
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
@ -520,17 +511,6 @@ class GotOcr2CausalLMOutputWithPast(ModelOutput):
Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see
`past_key_values` input) to speed up sequential decoding.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
image_hidden_states (`torch.FloatTensor`, *optional*):
A `torch.FloatTensor` of size `(batch_size, num_images, sequence_length, hidden_size)`.
image_hidden_states of the model produced by the vision encoder and after projecting the last hidden state.
@ -545,30 +525,19 @@ class GotOcr2CausalLMOutputWithPast(ModelOutput):
@dataclass
class GotOcr2ModelOutputWithPast(BaseModelOutputWithPast):
"""
@auto_docstring(
custom_intro="""
Base class for GotOcr2 outputs, with hidden states and attentions.
Args:
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the model.
"""
)
class GotOcr2ModelOutputWithPast(BaseModelOutputWithPast):
r"""
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
`(batch_size, num_heads, sequence_length, embed_size_per_head)`)
Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see
`past_key_values` input) to speed up sequential decoding.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
image_hidden_states (`torch.FloatTensor`, *optional*):
A `torch.FloatTensor` of size `(batch_size, num_images, sequence_length, hidden_size)`.
image_hidden_states of the model produced by the vision encoder and after projecting the last hidden state.

View File

@ -597,11 +597,13 @@ class GPT2PreTrainedModel(PreTrainedModel):
@dataclass
class GPT2DoubleHeadsModelOutput(ModelOutput):
"""
@auto_docstring(
custom_intro="""
Base class for outputs of models predicting if two sentences are consecutive or not.
Args:
"""
)
class GPT2DoubleHeadsModelOutput(ModelOutput):
r"""
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
Language modeling loss.
mc_loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `mc_labels` is provided):
@ -616,17 +618,6 @@ class GPT2DoubleHeadsModelOutput(ModelOutput):
Contains pre-computed hidden-states (key and values in the attention blocks) that can be used (see
`past_key_values` input) to speed up sequential decoding.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
GPT2Attentions weights after the attention softmax, used to compute the weighted average in the
self-attention heads.
"""
loss: Optional[torch.FloatTensor] = None

View File

@ -33,11 +33,13 @@ logger = logging.get_logger(__name__)
@dataclass
class GraniteSpeechCausalLMOutputWithPast(ModelOutput):
"""
@auto_docstring(
custom_intro="""
Base class for LlavaNext causal language model (or autoregressive) outputs.
Args:
"""
)
class GraniteSpeechCausalLMOutputWithPast(ModelOutput):
r"""
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
Language modeling loss (for next-token prediction).
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
@ -48,17 +50,6 @@ class GraniteSpeechCausalLMOutputWithPast(ModelOutput):
Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see
`past_key_values` input) to speed up sequential decoding.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
loss: Optional[torch.FloatTensor] = None
@ -382,12 +373,12 @@ class GraniteSpeechForConditionalGeneration(GraniteSpeechPreTrainedModel, Genera
The tensors corresponding to the input audios. input features can be obtained using
[`AutoFeatureExtractor`]. See [`GraniteSpeechFeatureExtractor.__call__`] for details.
[`GraniteSpeechProcessor`] uses [`GraniteSpeechFeatureExtractor`] for processing audio.
input_features_mask (`torch.Tensor`, *optional*):
Mask to be applied to audio features prior to scattering into the language embeddings.
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
input_features_mask (`torch.Tensor`, *optional*):
Mask to be applied to audio features prior to scattering into the language embeddings.
"""
# TODO (@alex-jw-brooks) add an example to this docstring once models are released
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions

View File

@ -102,28 +102,20 @@ class MultiScaleDeformableAttention(nn.Module):
@dataclass
class GroundingDinoDecoderOutput(ModelOutput):
"""
@auto_docstring(
custom_intro="""
Base class for outputs of the GroundingDinoDecoder. This class adds two attributes to
BaseModelOutputWithCrossAttentions, namely:
- a stacked tensor of intermediate decoder hidden states (i.e. the output of each decoder layer)
- a stacked tensor of intermediate reference points.
Args:
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the model.
"""
)
class GroundingDinoDecoderOutput(ModelOutput):
r"""
intermediate_hidden_states (`torch.FloatTensor` of shape `(batch_size, config.decoder_layers, num_queries, hidden_size)`):
Stacked intermediate hidden states (output of each layer of the decoder).
intermediate_reference_points (`torch.FloatTensor` of shape `(batch_size, config.decoder_layers, sequence_length, hidden_size)`):
Stacked intermediate reference points (reference points of each layer of the decoder).
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer
plus the initial embedding outputs.
attentions (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of tuples of `torch.FloatTensor` (one for attention for each layer) of shape `(batch_size, num_heads,
sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the
weighted average in the self-attention, cross-attention and multi-scale deformable attention heads.
"""
last_hidden_state: Optional[torch.FloatTensor] = None
@ -134,13 +126,15 @@ class GroundingDinoDecoderOutput(ModelOutput):
@dataclass
class GroundingDinoEncoderOutput(ModelOutput):
"""
@auto_docstring(
custom_intro="""
Base class for outputs of the GroundingDinoEncoder. This class extends BaseModelOutput, due to:
- vision and text last hidden states
- vision and text intermediate hidden states
Args:
"""
)
class GroundingDinoEncoderOutput(ModelOutput):
r"""
last_hidden_state_vision (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the vision encoder.
last_hidden_state_text (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
@ -153,11 +147,6 @@ class GroundingDinoEncoderOutput(ModelOutput):
Tuple of `torch.FloatTensor` (one for the output of the text embeddings + one for the output of each layer)
of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the text encoder at the output of
each layer plus the initial embedding outputs.
attentions (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of tuples of `torch.FloatTensor` (one for attention for each layer) of shape `(batch_size, num_heads,
sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the
weighted average in the text-vision attention, vision-text attention, text-enhancer (self-attention) and
multi-scale deformable attention heads.
"""
last_hidden_state_vision: Optional[torch.FloatTensor] = None
@ -168,11 +157,13 @@ class GroundingDinoEncoderOutput(ModelOutput):
@dataclass
class GroundingDinoModelOutput(ModelOutput):
"""
@auto_docstring(
custom_intro="""
Base class for outputs of the Grounding DINO encoder-decoder model.
Args:
"""
)
class GroundingDinoModelOutput(ModelOutput):
r"""
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, num_queries, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the decoder of the model.
init_reference_points (`torch.FloatTensor` of shape `(batch_size, num_queries, 4)`):
@ -181,14 +172,6 @@ class GroundingDinoModelOutput(ModelOutput):
Stacked intermediate hidden states (output of each layer of the decoder).
intermediate_reference_points (`torch.FloatTensor` of shape `(batch_size, config.decoder_layers, num_queries, 4)`):
Stacked intermediate reference points (reference points of each layer of the decoder).
decoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, num_queries, hidden_size)`. Hidden-states of the decoder at the output of each layer
plus the initial embedding outputs.
decoder_attentions (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of tuples of `torch.FloatTensor` (one for attention for each layer) of shape `(batch_size, num_heads,
sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the
weighted average in the self-attention, cross-attention and multi-scale deformable attention heads.
encoder_last_hidden_state_vision (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Sequence of hidden-states at the output of the last layer of the encoder of the model.
encoder_last_hidden_state_text (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
@ -237,11 +220,13 @@ class GroundingDinoModelOutput(ModelOutput):
@dataclass
class GroundingDinoObjectDetectionOutput(ModelOutput):
"""
@auto_docstring(
custom_intro="""
Output type of [`GroundingDinoForObjectDetection`].
Args:
"""
)
class GroundingDinoObjectDetectionOutput(ModelOutput):
r"""
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` are provided)):
Total loss as a linear combination of a negative log-likehood (cross-entropy) for class prediction and a
bounding box loss. The latter is defined as a linear combination of the L1 loss and the generalized
@ -261,14 +246,12 @@ class GroundingDinoObjectDetectionOutput(ModelOutput):
`pred_boxes`) for each decoder layer.
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, num_queries, hidden_size)`, *optional*):
Sequence of hidden-states at the output of the last layer of the decoder of the model.
decoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, num_queries, hidden_size)`. Hidden-states of the decoder at the output of each layer
plus the initial embedding outputs.
decoder_attentions (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of tuples of `torch.FloatTensor` (one for attention for each layer) of shape `(batch_size, num_heads,
sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the
weighted average in the self-attention, cross-attention and multi-scale deformable attention heads.
init_reference_points (`torch.FloatTensor` of shape `(batch_size, num_queries, 4)`):
Initial reference points sent through the Transformer decoder.
intermediate_hidden_states (`torch.FloatTensor` of shape `(batch_size, config.decoder_layers, num_queries, hidden_size)`):
Stacked intermediate hidden states (output of each layer of the decoder).
intermediate_reference_points (`torch.FloatTensor` of shape `(batch_size, config.decoder_layers, num_queries, 4)`):
Stacked intermediate reference points (reference points of each layer of the decoder).
encoder_last_hidden_state_vision (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Sequence of hidden-states at the output of the last layer of the encoder of the model.
encoder_last_hidden_state_text (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
@ -281,17 +264,6 @@ class GroundingDinoObjectDetectionOutput(ModelOutput):
Tuple of `torch.FloatTensor` (one for the output of the text embeddings + one for the output of each layer)
of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the text encoder at the output of
each layer plus the initial embedding outputs.
encoder_attentions (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of tuples of `torch.FloatTensor` (one for attention for each layer) of shape `(batch_size, num_heads,
sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the
weighted average in the text-vision attention, vision-text attention, text-enhancer (self-attention) and
multi-scale deformable attention heads.
intermediate_hidden_states (`torch.FloatTensor` of shape `(batch_size, config.decoder_layers, num_queries, hidden_size)`):
Stacked intermediate hidden states (output of each layer of the decoder).
intermediate_reference_points (`torch.FloatTensor` of shape `(batch_size, config.decoder_layers, num_queries, 4)`):
Stacked intermediate reference points (reference points of each layer of the decoder).
init_reference_points (`torch.FloatTensor` of shape `(batch_size, num_queries, 4)`):
Initial reference points sent through the Transformer decoder.
enc_outputs_class (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.num_labels)`, *optional*, returned when `config.two_stage=True`):
Predicted bounding boxes scores where the top `config.num_queries` scoring bounding boxes are picked as
region proposals in the first stage. Output of bounding box binary classification (i.e. foreground and

View File

@ -259,9 +259,9 @@ class GroupViTTokenAssign(nn.Module):
@dataclass
@auto_docstring
class GroupViTModelOutput(ModelOutput):
"""
Args:
r"""
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `return_loss` is `True`):
Contrastive loss for image-text similarity.
logits_per_image (`torch.FloatTensor` of shape `(image_batch_size, text_batch_size)`):
@ -280,7 +280,6 @@ class GroupViTModelOutput(ModelOutput):
original image size as post-processing. You should always check your logits shape and resize as needed.
</Tip>
text_embeds (`torch.FloatTensor` of shape `(batch_size, output_dim`):
The text embeddings obtained by applying the projection layer to the pooled output of
[`GroupViTTextModel`].

View File

@ -42,24 +42,13 @@ logger = logging.get_logger(__name__)
@dataclass
class HieraEncoderOutput(ModelOutput):
"""
@auto_docstring(
custom_intro="""
Hiera encoder's outputs, with potential hidden states and attentions.
Args:
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the model.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of
shape `(batch_size, sequence_length, hidden_size)`. Thesre are the unrolled hidden states of the model.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each stage) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
)
class HieraEncoderOutput(ModelOutput):
r"""
reshaped_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of
shape `(batch_size, height, width, hidden_size)`. These are the reshaped and re-rolled hidden states of the model.
@ -75,30 +64,19 @@ class HieraEncoderOutput(ModelOutput):
@dataclass
class HieraModelOutput(ModelOutput):
"""
@auto_docstring(
custom_intro="""
Hiera model's outputs that also contains a pooling of the last hidden states.
Args:
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the model.
"""
)
class HieraModelOutput(ModelOutput):
r"""
pooler_output (`torch.FloatTensor` of shape `(batch_size, hidden_size)`, *optional*, returned when `add_pooling_layer=True` is passed):
Average pooling of the last layer hidden-state.
bool_masked_pos (`torch.BoolTensor` of shape `(batch_size, sequence_length)`):
Tensor indicating which patches are masked (0) and which are not (1).
ids_restore (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Tensor containing the original index of the (shuffled) masked patches.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of
shape `(batch_size, sequence_length, hidden_size)`. These are the unrolled hidden states of the model.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each stage) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
reshaped_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of
shape `(batch_size, height, width, hidden_size)`. These are the reshaped and re-rolled hidden states of the model.
@ -117,11 +95,13 @@ class HieraModelOutput(ModelOutput):
@dataclass
class HieraForImageClassificationOutput(ImageClassifierOutput):
"""
@auto_docstring(
custom_intro="""
Hiera image classification outputs.
Args:
"""
)
class HieraForImageClassificationOutput(ImageClassifierOutput):
r"""
loss (`torch.FloatTensor` of shape `(1,)`, `optional`):
Loss value for the training task.
logits (`torch.FloatTensor` of shape `(batch_size, num_labels)`):
@ -153,11 +133,13 @@ class HieraForImageClassificationOutput(ImageClassifierOutput):
@dataclass
class HieraForPreTrainingOutput(ModelOutput):
"""
@auto_docstring(
custom_intro="""
Class for HieraForPreTraining's outputs, with potential hidden states and attentions.
Args:
"""
)
class HieraForPreTrainingOutput(ModelOutput):
r"""
loss (`torch.FloatTensor` of shape `(1,)`):
Pixel reconstruction loss.
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, patch_size ** 2 * num_channels)`):
@ -166,14 +148,6 @@ class HieraForPreTrainingOutput(ModelOutput):
Tensor indicating which patches are masked (0) and which are not (1).
ids_restore (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Tensor containing the original index of the (shuffled) masked patches.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer
plus the initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in
the self-attention heads.
reshaped_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, height, width, hidden_size)`. Hidden-states of the model at the output of each layer

View File

@ -52,11 +52,13 @@ logger = logging.get_logger(__name__)
@dataclass
class IdeficsBaseModelOutputWithPast(ModelOutput):
"""
@auto_docstring(
custom_intro="""
Base class for Idefics model's outputs that may also contain a past key/values (to speed up sequential decoding).
Args:
"""
)
class IdeficsBaseModelOutputWithPast(ModelOutput):
r"""
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the model.
@ -71,17 +73,6 @@ class IdeficsBaseModelOutputWithPast(ModelOutput):
Contains pre-computed hidden-states (key and values in the self-attention blocks and optionally if
`config.is_encoder_decoder=True` in the cross-attention blocks) that can be used (see `past_key_values`
input) to speed up sequential decoding.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
image_hidden_states (`tuple(torch.FloatTensor)`, *optional*):
Tuple of `torch.FloatTensor` (one for the output of the image embeddings, `(batch_size, num_images,
sequence_length, hidden_size)`.
@ -97,11 +88,13 @@ class IdeficsBaseModelOutputWithPast(ModelOutput):
@dataclass
class IdeficsCausalLMOutputWithPast(ModelOutput):
"""
@auto_docstring(
custom_intro="""
Base class for Idefics causal language model (or autoregressive) outputs.
Args:
"""
)
class IdeficsCausalLMOutputWithPast(ModelOutput):
r"""
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
Language modeling loss (for next-token prediction).
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
@ -112,17 +105,6 @@ class IdeficsCausalLMOutputWithPast(ModelOutput):
Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see
`past_key_values` input) to speed up sequential decoding.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
image_hidden_states (`tuple(torch.FloatTensor)`, *optional*):
Tuple of `torch.FloatTensor` (one for the output of the image embeddings, `(batch_size, num_images,
sequence_length, hidden_size)`.
@ -1445,16 +1427,16 @@ class IdeficsForVisionText2Text(IdeficsPreTrainedModel, GenerationMixin):
**kwargs: Unpack[KwargsForCausalLM],
) -> Union[tuple, IdeficsCausalLMOutputWithPast]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
image_encoder_embeddings (`torch.FloatTensor`, *optional*):
The output of the image encoder.
perceiver_embeddings (`torch.FloatTensor`, *optional*):
The output of the perceiver resampler.
image_attention_mask (`torch.LongTensor`, *optional*):
The attention mask for the image encoder.
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
Example:

View File

@ -39,10 +39,13 @@ logger = logging.get_logger(__name__)
@dataclass
class Idefics2BaseModelOutputWithPast(ModelOutput):
"""
@auto_docstring(
custom_intro="""
Base class for Idefics2 model's outputs that may also contain a past key/values (to speed up sequential decoding).
Args:
"""
)
class Idefics2BaseModelOutputWithPast(ModelOutput):
r"""
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the model.
If `past_key_values` is used only the last hidden-state of the sequences of shape `(batch_size, 1,
@ -55,15 +58,6 @@ class Idefics2BaseModelOutputWithPast(ModelOutput):
Contains pre-computed hidden-states (key and values in the self-attention blocks and optionally if
`config.is_encoder_decoder=True` in the cross-attention blocks) that can be used (see `past_key_values`
input) to speed up sequential decoding.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
image_hidden_states (`tuple(torch.FloatTensor)`, *optional*):
Tuple of `torch.FloatTensor` (one for the output of the image embeddings, `(batch_size, num_images,
sequence_length, hidden_size)`.
@ -78,11 +72,14 @@ class Idefics2BaseModelOutputWithPast(ModelOutput):
@dataclass
@auto_docstring(
custom_intro="""
Base class for Idefics2 causal language model (or autoregressive) outputs.
"""
)
# Copied from transformers.models.idefics.modeling_idefics.IdeficsCausalLMOutputWithPast with Idefics->Idefics2
class Idefics2CausalLMOutputWithPast(ModelOutput):
"""
Base class for Idefics2 causal language model (or autoregressive) outputs.
Args:
r"""
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
Language modeling loss (for next-token prediction).
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
@ -92,15 +89,6 @@ class Idefics2CausalLMOutputWithPast(ModelOutput):
`(batch_size, num_heads, sequence_length, embed_size_per_head)`)
Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see
`past_key_values` input) to speed up sequential decoding.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
image_hidden_states (`tuple(torch.FloatTensor)`, *optional*):
Tuple of `torch.FloatTensor` (one for the output of the image embeddings, `(batch_size, num_images,
sequence_length, hidden_size)`.

View File

@ -39,10 +39,13 @@ logger = logging.get_logger(__name__)
@dataclass
class Idefics3BaseModelOutputWithPast(ModelOutput):
"""
@auto_docstring(
custom_intro="""
Base class for Idefics3 model's outputs that may also contain a past key/values (to speed up sequential decoding).
Args:
"""
)
class Idefics3BaseModelOutputWithPast(ModelOutput):
r"""
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the model.
If `past_key_values` is used only the last hidden-state of the sequences of shape `(batch_size, 1,
@ -55,15 +58,6 @@ class Idefics3BaseModelOutputWithPast(ModelOutput):
Contains pre-computed hidden-states (key and values in the self-attention blocks and optionally if
`config.is_encoder_decoder=True` in the cross-attention blocks) that can be used (see `past_key_values`
input) to speed up sequential decoding.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
image_hidden_states (`tuple(torch.FloatTensor)`, *optional*):
Tuple of `torch.FloatTensor` (one for the output of the image embeddings, `(batch_size, num_images,
sequence_length, hidden_size)`.
@ -78,11 +72,13 @@ class Idefics3BaseModelOutputWithPast(ModelOutput):
@dataclass
class Idefics3CausalLMOutputWithPast(ModelOutput):
"""
@auto_docstring(
custom_intro="""
Base class for Idefics causal language model (or autoregressive) outputs.
Args:
"""
)
class Idefics3CausalLMOutputWithPast(ModelOutput):
r"""
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
Language modeling loss (for next-token prediction).
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
@ -92,15 +88,6 @@ class Idefics3CausalLMOutputWithPast(ModelOutput):
`(batch_size, num_heads, sequence_length, embed_size_per_head)`)
Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see
`past_key_values` input) to speed up sequential decoding.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
image_hidden_states (`tuple(torch.FloatTensor)`, *optional*):
Tuple of `torch.FloatTensor` (one for the output of the image embeddings, `(batch_size, num_images,
sequence_length, hidden_size)`.

View File

@ -44,12 +44,14 @@ logger = logging.get_logger(__name__)
@dataclass
@auto_docstring(
custom_intro="""
Class defining the outputs of [`InstructBlipForConditionalGeneration`].
"""
)
# Copied from transformers.models.blip_2.modeling_blip_2.Blip2ForConditionalGenerationModelOutput with Blip2->InstructBlip
class InstructBlipForConditionalGenerationModelOutput(ModelOutput):
"""
Class defining the outputs of [`InstructBlipForConditionalGeneration`].
Args:
r"""
loss (`torch.FloatTensor`, *optional*, returned when `labels` is provided, `torch.FloatTensor` of shape `(1,)`):
Language modeling loss from the language model.
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):

View File

@ -1147,11 +1147,13 @@ class InstructBlipVideoQFormerModel(InstructBlipVideoPreTrainedModel):
@dataclass
class InstructBlipVideoForConditionalGenerationModelOutput(ModelOutput):
"""
@auto_docstring(
custom_intro="""
Class defining the outputs of [`InstructBlipVideoForConditionalGeneration`].
Args:
"""
)
class InstructBlipVideoForConditionalGenerationModelOutput(ModelOutput):
r"""
loss (`torch.FloatTensor`, *optional*, returned when `labels` is provided, `torch.FloatTensor` of shape `(1,)`):
Language modeling loss from the language model.
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):

View File

@ -13,7 +13,6 @@
# See the License for the specific language governing permissions and
# limitations under the License.
from dataclasses import dataclass
from typing import Optional, Union
import torch
@ -189,7 +188,6 @@ class InstructBlipVideoQFormerModel(InstructBlipQFormerModel):
pass
@dataclass
class InstructBlipVideoForConditionalGenerationModelOutput(InstructBlipForConditionalGenerationModelOutput):
pass

View File

@ -209,28 +209,17 @@ class InternVLVisionPreTrainedModel(PreTrainedModel):
@dataclass
class InternVLVisionModelOutputWithPooling(BaseModelOutputWithPooling):
"""
@auto_docstring(
custom_intro="""
Class for outputs of [`InternVLVisionModel`].
Args:
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the model.
"""
)
class InternVLVisionModelOutputWithPooling(BaseModelOutputWithPooling):
r"""
pooler_output (`torch.FloatTensor` of shape `(batch_size, hidden_size)`):
Average of the last layer hidden states of the patch tokens (excluding the *[CLS]* token) if
*config.use_mean_pooling* is set to True. If set to False, then the final hidden state of the *[CLS]* token
will be returned.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
@ -569,30 +558,19 @@ class InternVLMultiModalProjector(nn.Module):
@dataclass
class InternVLModelOutputWithPast(BaseModelOutputWithPast):
"""
@auto_docstring(
custom_intro="""
Base class for InternVL outputs, with hidden states and attentions.
Args:
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the model.
"""
)
class InternVLModelOutputWithPast(BaseModelOutputWithPast):
r"""
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
`(batch_size, num_heads, sequence_length, embed_size_per_head)`)
Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see
`past_key_values` input) to speed up sequential decoding.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
image_hidden_states (`torch.FloatTensor`, *optional*):
A `torch.FloatTensor` of size `(batch_size, num_images, sequence_length, hidden_size)`.
image_hidden_states of the model produced by the vision encoder and after projecting the last hidden state.
@ -805,11 +783,13 @@ class InternVLModel(InternVLPreTrainedModel):
@dataclass
class InternVLCausalLMOutputWithPast(ModelOutput):
"""
@auto_docstring(
custom_intro="""
Base class for InternVL causal language model (or autoregressive) outputs.
Args:
"""
)
class InternVLCausalLMOutputWithPast(ModelOutput):
r"""
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
Language modeling loss (for next-token prediction).
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
@ -820,17 +800,6 @@ class InternVLCausalLMOutputWithPast(ModelOutput):
Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see
`past_key_values` input) to speed up sequential decoding.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
image_hidden_states (`torch.FloatTensor`, *optional*):
A `torch.FloatTensor` of size `(batch_size, num_images, sequence_length, hidden_size)`.
image_hidden_states of the model produced by the vision encoder and after projecting the last hidden state.

View File

@ -171,28 +171,17 @@ class InternVLVisionPreTrainedModel(PreTrainedModel):
@dataclass
class InternVLVisionModelOutputWithPooling(BaseModelOutputWithPooling):
"""
@auto_docstring(
custom_intro="""
Class for outputs of [`InternVLVisionModel`].
Args:
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the model.
"""
)
class InternVLVisionModelOutputWithPooling(BaseModelOutputWithPooling):
r"""
pooler_output (`torch.FloatTensor` of shape `(batch_size, hidden_size)`):
Average of the last layer hidden states of the patch tokens (excluding the *[CLS]* token) if
*config.use_mean_pooling* is set to True. If set to False, then the final hidden state of the *[CLS]* token
will be returned.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""

View File

@ -87,10 +87,13 @@ class JanusPreTrainedModel(PreTrainedModel):
@dataclass
class JanusVQVAEOutput(ModelOutput):
"""
@auto_docstring(
custom_intro="""
Base class for Janus VQ-VAE mode model outputs.
Args:
"""
)
class JanusVQVAEOutput(ModelOutput):
r"""
decoded_pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, image_size, image_size)`):
Reconstructed pixel values after encoding and decoding the input.
embedding_loss (`torch.FloatTensor`):
@ -102,11 +105,13 @@ class JanusVQVAEOutput(ModelOutput):
@dataclass
class JanusBaseModelOutputWithPast(ModelOutput):
"""
@auto_docstring(
custom_intro="""
Base class for Janus model's outputs that may also contain a past key/values (to speed up sequential decoding).
Args:
"""
)
class JanusBaseModelOutputWithPast(ModelOutput):
r"""
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the model.
@ -121,17 +126,6 @@ class JanusBaseModelOutputWithPast(ModelOutput):
Contains pre-computed hidden-states (key and values in the self-attention blocks and optionally if
`config.is_encoder_decoder=True` in the cross-attention blocks) that can be used (see `past_key_values`
input) to speed up sequential decoding.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
image_hidden_states (`tuple(torch.FloatTensor)`, *optional*):
Tuple of `torch.FloatTensor` (one for the output of the image embeddings, `(batch_size, num_images,
sequence_length, hidden_size)`.
@ -147,11 +141,13 @@ class JanusBaseModelOutputWithPast(ModelOutput):
@dataclass
class JanusCausalLMOutputWithPast(ModelOutput):
"""
@auto_docstring(
custom_intro="""
Base class for Janus causal language model (or autoregressive) outputs.
Args:
"""
)
class JanusCausalLMOutputWithPast(ModelOutput):
r"""
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
Language modeling loss (for next-token prediction).
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
@ -162,17 +158,6 @@ class JanusCausalLMOutputWithPast(ModelOutput):
Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see
`past_key_values` input) to speed up sequential decoding.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
image_hidden_states (`tuple(torch.FloatTensor)`, *optional*):
Tuple of `torch.FloatTensor` (one for the output of the image embeddings, `(batch_size, num_images,
sequence_length, hidden_size)`.

View File

@ -408,10 +408,13 @@ class JanusPreTrainedModel(PreTrainedModel):
@dataclass
class JanusVQVAEOutput(ModelOutput):
"""
@auto_docstring(
custom_intro="""
Base class for Janus VQ-VAE mode model outputs.
Args:
"""
)
class JanusVQVAEOutput(ModelOutput):
r"""
decoded_pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, image_size, image_size)`):
Reconstructed pixel values after encoding and decoding the input.
embedding_loss (`torch.FloatTensor`):
@ -422,12 +425,10 @@ class JanusVQVAEOutput(ModelOutput):
embedding_loss: torch.FloatTensor = None
@dataclass
class JanusBaseModelOutputWithPast(IdeficsBaseModelOutputWithPast):
pass
@dataclass
class JanusCausalLMOutputWithPast(IdeficsCausalLMOutputWithPast):
pass

View File

@ -90,24 +90,22 @@ def create_position_ids_from_input_ids(input_ids, padding_idx, past_key_values_l
@dataclass
class Kosmos2ModelOutput(ModelOutput):
"""
@auto_docstring(
custom_intro="""
Base class for text model's outputs that also contains a pooling of the last hidden states.
"""
)
class Kosmos2ModelOutput(ModelOutput):
r"""
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and optionally if
`config.is_encoder_decoder=True` 2 additional tensors of shape `(batch_size, num_heads,
encoder_sequence_length, embed_size_per_head)`.
Args:
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the model.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
Contains pre-computed hidden-states (key and values in the self-attention blocks and optionally if
`config.is_encoder_decoder=True` in the cross-attention blocks) that can be used (see `past_key_values`
input) to speed up sequential decoding.
image_embeds (`torch.FloatTensor` of shape `(batch_size, latent_query_num, hidden_size)`, *optional*):
Sequence of hidden-states at the output of `Kosmos2ImageToTextProjection`.
projection_attentions (`tuple(torch.FloatTensor)`, *optional*):
@ -118,15 +116,6 @@ class Kosmos2ModelOutput(ModelOutput):
the weighted average in the self-attention heads.
vision_model_output (`BaseModelOutputWithPooling`, *optional*):
The output of the [`Kosmos2VisionModel`].
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and optionally if
`config.is_encoder_decoder=True` 2 additional tensors of shape `(batch_size, num_heads,
encoder_sequence_length, embed_size_per_head)`.
Contains pre-computed hidden-states (key and values in the self-attention blocks and optionally if
`config.is_encoder_decoder=True` in the cross-attention blocks) that can be used (see `past_key_values`
input) to speed up sequential decoding.
"""
last_hidden_state: Optional[torch.FloatTensor] = None
@ -145,26 +134,26 @@ class Kosmos2ModelOutput(ModelOutput):
@dataclass
class Kosmos2ForConditionalGenerationModelOutput(ModelOutput):
"""
@auto_docstring(
custom_intro="""
Model output class for `Kosmos2ForConditionalGeneration`.
Args:
"""
)
class Kosmos2ForConditionalGenerationModelOutput(ModelOutput):
r"""
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
Language modeling loss (for next-token prediction).
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and optionally if
`config.is_encoder_decoder=True` 2 additional tensors of shape `(batch_size, num_heads,
encoder_sequence_length, embed_size_per_head)`.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
Contains pre-computed hidden-states (key and values in the self-attention blocks and optionally if
`config.is_encoder_decoder=True` in the cross-attention blocks) that can be used (see `past_key_values`
input) to speed up sequential decoding.
image_embeds (`torch.FloatTensor` of shape `(batch_size, latent_query_num, hidden_size)`, *optional*):
Sequence of hidden-states at the output of `Kosmos2ImageToTextProjection`.
projection_attentions (`tuple(torch.FloatTensor)`, *optional*):
@ -175,15 +164,6 @@ class Kosmos2ForConditionalGenerationModelOutput(ModelOutput):
the weighted average in the self-attention heads.
vision_model_output (`BaseModelOutputWithPooling`, *optional*):
The output of the [`Kosmos2VisionModel`].
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and optionally if
`config.is_encoder_decoder=True` 2 additional tensors of shape `(batch_size, num_heads,
encoder_sequence_length, embed_size_per_head)`.
Contains pre-computed hidden-states (key and values in the self-attention blocks and optionally if
`config.is_encoder_decoder=True` in the cross-attention blocks) that can be used (see `past_key_values`
input) to speed up sequential decoding.
"""
loss: Optional[torch.FloatTensor] = None
@ -1332,6 +1312,8 @@ class Kosmos2TextModel(Kosmos2PreTrainedModel):
**kwargs: Unpack[FlashAttentionKwargs],
) -> Union[tuple, BaseModelOutputWithPastAndCrossAttentions]:
r"""
image_embeds (`torch.FloatTensor` of shape `(batch_size, latent_query_num, hidden_size)`, *optional*):
Sequence of hidden-states at the output of `Kosmos2ImageToTextProjection`.
image_embeds_position_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to indicate the location in a sequence to insert the image features . Mask values selected in `[0,
1]`:
@ -1343,8 +1325,6 @@ class Kosmos2TextModel(Kosmos2PreTrainedModel):
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
image_embeds (`torch.FloatTensor` of shape `(batch_size, latent_query_num, hidden_size)`, *optional*):
Sequence of hidden-states at the output of `Kosmos2ImageToTextProjection`.
"""
return self.model(
input_ids=input_ids,
@ -1423,6 +1403,8 @@ class Kosmos2TextForCausalLM(Kosmos2PreTrainedModel, GenerationMixin):
**kwargs: Unpack[KwargsForCausalLM],
) -> Union[tuple, CausalLMOutputWithCrossAttentions]:
r"""
image_embeds (`torch.FloatTensor` of shape `(batch_size, latent_query_num, hidden_size)`, *optional*):
Sequence of hidden-states at the output of `Kosmos2ImageToTextProjection`.
image_embeds_position_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to indicate the location in a sequence to insert the image features . Mask values selected in `[0,
1]`:
@ -1438,8 +1420,6 @@ class Kosmos2TextForCausalLM(Kosmos2PreTrainedModel, GenerationMixin):
Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in
`[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are
ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
image_embeds (`torch.FloatTensor` of shape `(batch_size, latent_query_num, hidden_size)`, *optional*):
Sequence of hidden-states at the output of `Kosmos2ImageToTextProjection`.
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
@ -1794,12 +1774,12 @@ class Kosmos2ForConditionalGeneration(Kosmos2PreTrainedModel, GenerationMixin):
- 1 for places where to put the image features,
- 0 for places that are not for image features (i.e. for text tokens).
image_embeds (`torch.FloatTensor` of shape `(batch_size, latent_query_num, hidden_size)`, *optional*):
Sequence of hidden-states at the output of `Kosmos2ImageToTextProjection`.
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in
`[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are
ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
image_embeds (`torch.FloatTensor` of shape `(batch_size, latent_query_num, hidden_size)`, *optional*):
Sequence of hidden-states at the output of `Kosmos2ImageToTextProjection`.
Examples:

View File

@ -1132,19 +1132,14 @@ class LEDPreTrainedModel(PreTrainedModel):
@dataclass
@auto_docstring(
custom_intro="""
Base class for LEDEncoder's outputs, with potential hidden states, local and global attentions.
"""
)
# Copied from transformers.models.longformer.modeling_longformer.LongformerBaseModelOutput with Longformer->LEDEncoder
class LEDEncoderBaseModelOutput(ModelOutput):
"""
Base class for LEDEncoder's outputs, with potential hidden states, local and global attentions.
Args:
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the model.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
r"""
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, x +
attention_window + 1)`, where `x` is the number of tokens with global attention mask.
@ -1176,12 +1171,14 @@ class LEDEncoderBaseModelOutput(ModelOutput):
@dataclass
class LEDSeq2SeqModelOutput(ModelOutput):
"""
@auto_docstring(
custom_intro="""
Base class for model encoder's outputs that also contains : pre-computed hidden states that can speed up sequential
decoding.
Args:
"""
)
class LEDSeq2SeqModelOutput(ModelOutput):
r"""
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the decoder of the model.
@ -1193,36 +1190,6 @@ class LEDSeq2SeqModelOutput(ModelOutput):
Contains pre-computed hidden-states (key and values in the attention blocks) of the decoder that can be
used (see `past_key_values` input) to speed up sequential decoding.
decoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the decoder at the output of each layer plus the initial embedding outputs.
decoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the
self-attention heads.
cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights of the decoder's cross-attention layer, after the attention softmax, used to compute the
weighted average in the cross-attention heads.
encoder_last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Sequence of hidden-states at the output of the last layer of the encoder of the model.
encoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the encoder at the output of each layer plus the initial embedding outputs.
encoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights of the encoder, after the attention softmax, used to compute the weighted average in the
self-attention heads.
encoder_global_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, x)`,
where `x` is the number of tokens with global attention mask.
@ -1244,11 +1211,13 @@ class LEDSeq2SeqModelOutput(ModelOutput):
@dataclass
class LEDSeq2SeqLMOutput(ModelOutput):
"""
@auto_docstring(
custom_intro="""
Base class for sequence-to-sequence language models outputs.
Args:
"""
)
class LEDSeq2SeqLMOutput(ModelOutput):
r"""
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
Language modeling loss.
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
@ -1259,36 +1228,6 @@ class LEDSeq2SeqLMOutput(ModelOutput):
Contains pre-computed hidden-states (key and values in the attention blocks) of the decoder that can be
used (see `past_key_values` input) to speed up sequential decoding.
decoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the decoder at the output of each layer plus the initial embedding outputs.
decoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the
self-attention heads.
cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights of the decoder's cross-attention layer, after the attention softmax, used to compute the
weighted average in the cross-attention heads.
encoder_last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Sequence of hidden-states at the output of the last layer of the encoder of the model.
encoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the encoder at the output of each layer plus the initial embedding outputs.
encoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights of the encoder, after the attention softmax, used to compute the weighted average in the
self-attention heads.
encoder_global_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, x)`,
where `x` is the number of tokens with global attention mask.
@ -1311,11 +1250,13 @@ class LEDSeq2SeqLMOutput(ModelOutput):
@dataclass
class LEDSeq2SeqSequenceClassifierOutput(ModelOutput):
"""
@auto_docstring(
custom_intro="""
Base class for outputs of sequence-to-sequence sentence classification models.
Args:
"""
)
class LEDSeq2SeqSequenceClassifierOutput(ModelOutput):
r"""
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `label` is provided):
Classification (or regression if config.num_labels==1) loss.
logits (`torch.FloatTensor` of shape `(batch_size, config.num_labels)`):
@ -1326,36 +1267,6 @@ class LEDSeq2SeqSequenceClassifierOutput(ModelOutput):
Contains pre-computed hidden-states (key and values in the attention blocks) of the decoder that can be
used (see `past_key_values` input) to speed up sequential decoding.
decoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the decoder at the output of each layer plus the initial embedding outputs.
decoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the
self-attention heads.
cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights of the decoder's cross-attention layer, after the attention softmax, used to compute the
weighted average in the cross-attention heads.
encoder_last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Sequence of hidden-states at the output of the last layer of the encoder of the model.
encoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the encoder at the output of each layer plus the initial embedding outputs.
encoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights of the encoder, after the attention softmax, used to compute the weighted average in the
self-attention heads.
encoder_global_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, x)`,
where `x` is the number of tokens with global attention mask.
@ -1378,53 +1289,21 @@ class LEDSeq2SeqSequenceClassifierOutput(ModelOutput):
@dataclass
class LEDSeq2SeqQuestionAnsweringModelOutput(ModelOutput):
"""
@auto_docstring(
custom_intro="""
Base class for outputs of sequence-to-sequence question answering models.
Args:
"""
)
class LEDSeq2SeqQuestionAnsweringModelOutput(ModelOutput):
r"""
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
Total span extraction loss is the sum of a Cross-Entropy for the start and end positions.
start_logits (`torch.FloatTensor` of shape `(batch_size, sequence_length)`):
Span-start scores (before SoftMax).
end_logits (`torch.FloatTensor` of shape `(batch_size, sequence_length)`):
Span-end scores (before SoftMax).
past_key_values (`list[torch.FloatTensor]`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
List of `torch.FloatTensor` of length `config.n_layers`, with each tensor of shape `(2, batch_size,
num_heads, sequence_length, embed_size_per_head)`).
Contains pre-computed hidden-states (key and values in the attention blocks) of the decoder that can be
used (see `past_key_values` input) to speed up sequential decoding.
decoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the decoder at the output of each layer plus the initial embedding outputs.
decoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the
self-attention heads.
cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights of the decoder's cross-attention layer, after the attention softmax, used to compute the
weighted average in the cross-attention heads.
encoder_last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Sequence of hidden-states at the output of the last layer of the encoder of the model.
encoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the encoder at the output of each layer plus the initial embedding outputs.
encoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights of the encoder, after the attention softmax, used to compute the weighted average in the
self-attention heads.
encoder_global_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, x)`,
where `x` is the number of tokens with global attention mask.

View File

@ -38,11 +38,13 @@ logger = logging.get_logger(__name__)
@dataclass
class LevitForImageClassificationWithTeacherOutput(ModelOutput):
"""
@auto_docstring(
custom_intro="""
Output type of [`LevitForImageClassificationWithTeacher`].
Args:
"""
)
class LevitForImageClassificationWithTeacherOutput(ModelOutput):
r"""
logits (`torch.FloatTensor` of shape `(batch_size, config.num_labels)`):
Prediction scores as the average of the `cls_logits` and `distillation_logits`.
cls_logits (`torch.FloatTensor` of shape `(batch_size, config.num_labels)`):
@ -51,10 +53,6 @@ class LevitForImageClassificationWithTeacherOutput(ModelOutput):
distillation_logits (`torch.FloatTensor` of shape `(batch_size, config.num_labels)`):
Prediction scores of the distillation head (i.e. the linear layer on top of the final hidden state of the
distillation token).
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer
plus the initial embedding outputs.
"""
logits: Optional[torch.FloatTensor] = None

View File

@ -36,15 +36,17 @@ from .configuration_lightglue import LightGlueConfig
@dataclass
class LightGlueKeypointMatchingOutput(ModelOutput):
"""
@auto_docstring(
custom_intro="""
Base class for outputs of LightGlue keypoint matching models. Due to the nature of keypoint detection and matching,
the number of keypoints is not fixed and can vary from image to image, which makes batching non-trivial. In the
batch of images, the maximum number of matches is set as the dimension of the matches and matching scores. The mask
tensor is used to indicate which values in the keypoints, matches, matching_scores and prune tensors are keypoint
matching information.
Args:
"""
)
class LightGlueKeypointMatchingOutput(ModelOutput):
r"""
loss (`torch.FloatTensor` of shape `(1,)`, *optional*):
Loss computed during training.
matches (`torch.FloatTensor` of shape `(batch_size, 2, num_matches)`):

View File

@ -37,9 +37,6 @@ from ..superpoint import SuperPointConfig
logger = logging.get_logger(__name__)
_CONFIG_FOR_DOC_ = "LightGlueConfig"
_CHECKPOINT_FOR_DOC_ = "ETH-CVG/lightglue_superpoint"
class LightGlueConfig(PretrainedConfig):
r"""
@ -158,15 +155,17 @@ class LightGlueConfig(PretrainedConfig):
@dataclass
class LightGlueKeypointMatchingOutput(ModelOutput):
"""
@auto_docstring(
custom_intro="""
Base class for outputs of LightGlue keypoint matching models. Due to the nature of keypoint detection and matching,
the number of keypoints is not fixed and can vary from image to image, which makes batching non-trivial. In the
batch of images, the maximum number of matches is set as the dimension of the matches and matching scores. The mask
tensor is used to indicate which values in the keypoints, matches, matching_scores and prune tensors are keypoint
matching information.
Args:
"""
)
class LightGlueKeypointMatchingOutput(ModelOutput):
r"""
loss (`torch.FloatTensor` of shape `(1,)`, *optional*):
Loss computed during training.
matches (`torch.FloatTensor` of shape `(batch_size, 2, num_matches)`):

View File

@ -719,11 +719,13 @@ class Llama4ForCausalLM(Llama4PreTrainedModel, GenerationMixin):
@dataclass
class Llama4CausalLMOutputWithPast(ModelOutput):
"""
@auto_docstring(
custom_intro="""
Base class for Llava causal language model (or autoregressive) outputs.
Args:
"""
)
class Llama4CausalLMOutputWithPast(ModelOutput):
r"""
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
Language modeling loss (for next-token prediction).
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
@ -734,17 +736,6 @@ class Llama4CausalLMOutputWithPast(ModelOutput):
Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see
`past_key_values` input) to speed up sequential decoding.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
image_hidden_states (`torch.FloatTensor`, *optional*):
A `torch.FloatTensor` of size (batch_size, num_images, sequence_length, hidden_size)`.
image_hidden_states of the model produced by the vision encoder and after projecting the last hidden state.

View File

@ -36,30 +36,19 @@ logger = logging.get_logger(__name__)
@dataclass
class LlavaModelOutputWithPast(BaseModelOutputWithPast):
"""
@auto_docstring(
custom_intro="""
Base class for Llava outputs, with hidden states and attentions.
Args:
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the model.
"""
)
class LlavaModelOutputWithPast(BaseModelOutputWithPast):
r"""
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
`(batch_size, num_heads, sequence_length, embed_size_per_head)`)
Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see
`past_key_values` input) to speed up sequential decoding.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
image_hidden_states (`torch.FloatTensor`, *optional*):
A `torch.FloatTensor` of size `(batch_size, num_images, sequence_length, hidden_size)`.
image_hidden_states of the model produced by the vision encoder and after projecting the last hidden state.
@ -69,11 +58,13 @@ class LlavaModelOutputWithPast(BaseModelOutputWithPast):
@dataclass
class LlavaCausalLMOutputWithPast(ModelOutput):
"""
@auto_docstring(
custom_intro="""
Base class for Llava causal language model (or autoregressive) outputs.
Args:
"""
)
class LlavaCausalLMOutputWithPast(ModelOutput):
r"""
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
Language modeling loss (for next-token prediction).
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
@ -84,17 +75,6 @@ class LlavaCausalLMOutputWithPast(ModelOutput):
Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see
`past_key_values` input) to speed up sequential decoding.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
image_hidden_states (`torch.FloatTensor`, *optional*):
A `torch.FloatTensor` of size `(batch_size, num_images, sequence_length, hidden_size)`.
image_hidden_states of the model produced by the vision encoder and after projecting the last hidden state.

View File

@ -145,30 +145,19 @@ def unpad_image(tensor, original_size):
@dataclass
class LlavaNextModelOutputWithPast(BaseModelOutputWithPast):
"""
@auto_docstring(
custom_intro="""
Base class for Llava outputs, with hidden states and attentions.
Args:
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the model.
"""
)
class LlavaNextModelOutputWithPast(BaseModelOutputWithPast):
r"""
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
`(batch_size, num_heads, sequence_length, embed_size_per_head)`)
Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see
`past_key_values` input) to speed up sequential decoding.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
image_hidden_states (`torch.FloatTensor`, *optional*):
A `torch.FloatTensor` of size `(batch_size, num_images, sequence_length, hidden_size)`.
image_hidden_states of the model produced by the vision encoder and after projecting the last hidden state.
@ -178,11 +167,13 @@ class LlavaNextModelOutputWithPast(BaseModelOutputWithPast):
@dataclass
class LlavaNextCausalLMOutputWithPast(ModelOutput):
"""
@auto_docstring(
custom_intro="""
Base class for LlavaNext causal language model (or autoregressive) outputs.
Args:
"""
)
class LlavaNextCausalLMOutputWithPast(ModelOutput):
r"""
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
Language modeling loss (for next-token prediction).
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
@ -193,17 +184,6 @@ class LlavaNextCausalLMOutputWithPast(ModelOutput):
Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see
`past_key_values` input) to speed up sequential decoding.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
image_hidden_states (`torch.FloatTensor`, *optional*):
A `torch.FloatTensor` of size (batch_size * num_patches, num_images, sequence_length, hidden_size)`.
image_hidden_states of the model produced by the vision encoder and after projecting the last hidden state.

View File

@ -43,34 +43,22 @@ logger = logging.get_logger(__name__)
@dataclass
class LlavaNextVideoModelOutputWithPast(BaseModelOutputWithPast):
"""
@auto_docstring(
custom_intro="""
Base class for Llava outputs, with hidden states and attentions.
Args:
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the model.
"""
)
class LlavaNextVideoModelOutputWithPast(BaseModelOutputWithPast):
r"""
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
`(batch_size, num_heads, sequence_length, embed_size_per_head)`)
Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see
`past_key_values` input) to speed up sequential decoding.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
image_hidden_states (`torch.FloatTensor`, *optional*):
A `torch.FloatTensor` of size `(batch_size, num_images, sequence_length, hidden_size)`.
image_hidden_states of the model produced by the vision encoder and after projecting the last hidden state.
video_hidden_states (`torch.FloatTensor`, *optional*):
A `torch.FloatTensor` of size `(batch_size * num_frames, num_videos, sequence_length, hidden_size)`.
video_hidden_states of the model produced by the vision encoder and after projecting the last hidden state.
@ -82,11 +70,13 @@ class LlavaNextVideoModelOutputWithPast(BaseModelOutputWithPast):
@dataclass
class LlavaNextVideoCausalLMOutputWithPast(ModelOutput):
"""
@auto_docstring(
custom_intro="""
Base class for LlavaNextVideo causal language model (or autoregressive) outputs.
Args:
"""
)
class LlavaNextVideoCausalLMOutputWithPast(ModelOutput):
r"""
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
Language modeling loss (for next-token prediction).
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
@ -97,21 +87,9 @@ class LlavaNextVideoCausalLMOutputWithPast(ModelOutput):
Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see
`past_key_values` input) to speed up sequential decoding.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
image_hidden_states (`torch.FloatTensor`, *optional*):
A `torch.FloatTensor` of size (batch_size * num_patches, num_images, sequence_length, hidden_size)`.
image_hidden_states of the model produced by the vision encoder and after projecting the last hidden state.
video_hidden_states (`torch.FloatTensor`, *optional*):
A `torch.FloatTensor` of size `(batch_size * num_frames, num_videos, sequence_length, hidden_size)`.
video_hidden_states of the model produced by the vision encoder and after projecting the last hidden state.

View File

@ -14,7 +14,6 @@
# limitations under the License.
import math
from dataclasses import dataclass
from typing import Optional, Union
import torch
@ -182,9 +181,17 @@ class LlavaNextVideoConfig(PretrainedConfig):
super().__init__(tie_word_embeddings=tie_word_embeddings, **kwargs)
@dataclass
class LlavaNextVideoModelOutputWithPast(LlavaNextModelOutputWithPast):
"""
r"""
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
`(batch_size, num_heads, sequence_length, embed_size_per_head)`)
Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see
`past_key_values` input) to speed up sequential decoding.
image_hidden_states (`torch.FloatTensor`, *optional*):
A `torch.FloatTensor` of size `(batch_size, num_images, sequence_length, hidden_size)`.
image_hidden_states of the model produced by the vision encoder and after projecting the last hidden state.
video_hidden_states (`torch.FloatTensor`, *optional*):
A `torch.FloatTensor` of size `(batch_size * num_frames, num_videos, sequence_length, hidden_size)`.
video_hidden_states of the model produced by the vision encoder and after projecting the last hidden state.
@ -193,9 +200,21 @@ class LlavaNextVideoModelOutputWithPast(LlavaNextModelOutputWithPast):
video_hidden_states: Optional[torch.FloatTensor] = None
@dataclass
class LlavaNextVideoCausalLMOutputWithPast(LlavaNextCausalLMOutputWithPast):
"""
r"""
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
Language modeling loss (for next-token prediction).
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
`(batch_size, num_heads, sequence_length, embed_size_per_head)`)
Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see
`past_key_values` input) to speed up sequential decoding.
image_hidden_states (`torch.FloatTensor`, *optional*):
A `torch.FloatTensor` of size (batch_size * num_patches, num_images, sequence_length, hidden_size)`.
image_hidden_states of the model produced by the vision encoder and after projecting the last hidden state.
video_hidden_states (`torch.FloatTensor`, *optional*):
A `torch.FloatTensor` of size `(batch_size * num_frames, num_videos, sequence_length, hidden_size)`.
video_hidden_states of the model produced by the vision encoder and after projecting the last hidden state.

View File

@ -49,34 +49,22 @@ logger = logging.get_logger(__name__)
@dataclass
class LlavaOnevisionModelOutputWithPast(BaseModelOutputWithPast):
"""
@auto_docstring(
custom_intro="""
Base class for Llava outputs, with hidden states and attentions.
Args:
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the model.
"""
)
class LlavaOnevisionModelOutputWithPast(BaseModelOutputWithPast):
r"""
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
`(batch_size, num_heads, sequence_length, embed_size_per_head)`)
Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see
`past_key_values` input) to speed up sequential decoding.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
image_hidden_states (`torch.FloatTensor`, *optional*):
A `torch.FloatTensor` of size `(batch_size, num_images, sequence_length, hidden_size)`.
image_hidden_states of the model produced by the vision encoder and after projecting the last hidden state.
video_hidden_states (`torch.FloatTensor`, *optional*):
A `torch.FloatTensor` of size `(batch_size * num_frames, num_videos, sequence_length, hidden_size)`.
video_hidden_states of the model produced by the vision encoder and after projecting the last hidden state.
@ -88,11 +76,13 @@ class LlavaOnevisionModelOutputWithPast(BaseModelOutputWithPast):
@dataclass
class LlavaOnevisionCausalLMOutputWithPast(ModelOutput):
"""
@auto_docstring(
custom_intro="""
Base class for LlavaOnevision causal language model (or autoregressive) outputs.
Args:
"""
)
class LlavaOnevisionCausalLMOutputWithPast(ModelOutput):
r"""
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
Language modeling loss (for next-token prediction).
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
@ -103,21 +93,9 @@ class LlavaOnevisionCausalLMOutputWithPast(ModelOutput):
Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see
`past_key_values` input) to speed up sequential decoding.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
image_hidden_states (`torch.FloatTensor`, *optional*):
A `torch.FloatTensor` of size (batch_size * num_patches, num_images, sequence_length, hidden_size)`.
image_hidden_states of the model produced by the vision encoder and after projecting the last hidden state.
video_hidden_states (`torch.FloatTensor`, *optional*):
A `torch.FloatTensor` of size `(batch_size * num_frames, num_videos, sequence_length, hidden_size)`.
video_hidden_states of the model produced by the vision encoder and after projecting the last hidden state.

View File

@ -35,18 +35,13 @@ logger = logging.get_logger(__name__)
@dataclass
class LongformerBaseModelOutput(ModelOutput):
"""
@auto_docstring(
custom_intro="""
Base class for Longformer's outputs, with potential hidden states, local and global attentions.
Args:
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the model.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
"""
)
class LongformerBaseModelOutput(ModelOutput):
r"""
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, x +
attention_window + 1)`, where `x` is the number of tokens with global attention mask.
@ -78,22 +73,17 @@ class LongformerBaseModelOutput(ModelOutput):
@dataclass
class LongformerBaseModelOutputWithPooling(ModelOutput):
"""
@auto_docstring(
custom_intro="""
Base class for Longformer's outputs that also contains a pooling of the last hidden states.
Args:
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the model.
"""
)
class LongformerBaseModelOutputWithPooling(ModelOutput):
r"""
pooler_output (`torch.FloatTensor` of shape `(batch_size, hidden_size)`):
Last layer hidden-state of the first token of the sequence (classification token) further processed by a
Linear layer and a Tanh activation function. The Linear layer weights are trained from the next sentence
prediction (classification) objective during pretraining.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, x +
attention_window + 1)`, where `x` is the number of tokens with global attention mask.
@ -126,20 +116,17 @@ class LongformerBaseModelOutputWithPooling(ModelOutput):
@dataclass
class LongformerMaskedLMOutput(ModelOutput):
"""
@auto_docstring(
custom_intro="""
Base class for masked language models outputs.
Args:
"""
)
class LongformerMaskedLMOutput(ModelOutput):
r"""
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
Masked language modeling (MLM) loss.
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, x +
attention_window + 1)`, where `x` is the number of tokens with global attention mask.
@ -172,22 +159,15 @@ class LongformerMaskedLMOutput(ModelOutput):
@dataclass
class LongformerQuestionAnsweringModelOutput(ModelOutput):
"""
@auto_docstring(
custom_intro="""
Base class for outputs of question answering Longformer models.
Args:
"""
)
class LongformerQuestionAnsweringModelOutput(ModelOutput):
r"""
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
Total span extraction loss is the sum of a Cross-Entropy for the start and end positions.
start_logits (`torch.FloatTensor` of shape `(batch_size, sequence_length)`):
Span-start scores (before SoftMax).
end_logits (`torch.FloatTensor` of shape `(batch_size, sequence_length)`):
Span-end scores (before SoftMax).
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, x +
attention_window + 1)`, where `x` is the number of tokens with global attention mask.
@ -221,20 +201,17 @@ class LongformerQuestionAnsweringModelOutput(ModelOutput):
@dataclass
class LongformerSequenceClassifierOutput(ModelOutput):
"""
@auto_docstring(
custom_intro="""
Base class for outputs of sentence classification models.
Args:
"""
)
class LongformerSequenceClassifierOutput(ModelOutput):
r"""
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
Classification (or regression if config.num_labels==1) loss.
logits (`torch.FloatTensor` of shape `(batch_size, config.num_labels)`):
Classification (or regression if config.num_labels==1) scores (before SoftMax).
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, x +
attention_window + 1)`, where `x` is the number of tokens with global attention mask.
@ -267,22 +244,19 @@ class LongformerSequenceClassifierOutput(ModelOutput):
@dataclass
class LongformerMultipleChoiceModelOutput(ModelOutput):
"""
@auto_docstring(
custom_intro="""
Base class for outputs of multiple choice Longformer models.
Args:
"""
)
class LongformerMultipleChoiceModelOutput(ModelOutput):
r"""
loss (`torch.FloatTensor` of shape *(1,)*, *optional*, returned when `labels` is provided):
Classification loss.
logits (`torch.FloatTensor` of shape `(batch_size, num_choices)`):
*num_choices* is the second dimension of the input tensors. (see *input_ids* above).
Classification scores (before SoftMax).
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, x +
attention_window + 1)`, where `x` is the number of tokens with global attention mask.
@ -315,20 +289,17 @@ class LongformerMultipleChoiceModelOutput(ModelOutput):
@dataclass
class LongformerTokenClassifierOutput(ModelOutput):
"""
@auto_docstring(
custom_intro="""
Base class for outputs of token classification models.
Args:
"""
)
class LongformerTokenClassifierOutput(ModelOutput):
r"""
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
Classification loss.
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.num_labels)`):
Classification scores (before SoftMax).
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, x +
attention_window + 1)`, where `x` is the number of tokens with global attention mask.

View File

@ -36,61 +36,22 @@ logger = logging.get_logger(__name__)
@dataclass
class BaseLukeModelOutputWithPooling(BaseModelOutputWithPooling):
"""
@auto_docstring(
custom_intro="""
Base class for outputs of the LUKE model.
Args:
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the model.
entity_last_hidden_state (`torch.FloatTensor` of shape `(batch_size, entity_length, hidden_size)`):
Sequence of entity hidden-states at the output of the last layer of the model.
"""
)
class BaseLukeModelOutputWithPooling(BaseModelOutputWithPooling):
r"""
pooler_output (`torch.FloatTensor` of shape `(batch_size, hidden_size)`):
Last layer hidden-state of the first token of the sequence (classification token) further processed by a
Linear layer and a Tanh activation function.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer
plus the initial embedding outputs.
entity_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, entity_length, hidden_size)`. Entity hidden-states of the model at the output of each
layer plus the initial entity embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length +
entity_length, sequence_length + entity_length)`. Attentions weights after the attention softmax, used to
compute the weighted average in the self-attention heads.
"""
entity_last_hidden_state: Optional[torch.FloatTensor] = None
entity_hidden_states: Optional[tuple[torch.FloatTensor, ...]] = None
@dataclass
class BaseLukeModelOutput(BaseModelOutput):
"""
Base class for model's outputs, with potential hidden states and attentions.
Args:
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the model.
entity_last_hidden_state (`torch.FloatTensor` of shape `(batch_size, entity_length, hidden_size)`):
Sequence of entity hidden-states at the output of the last layer of the model.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
entity_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, entity_length, hidden_size)`. Entity hidden-states of the model at the output of each
layer plus the initial entity embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
entity_last_hidden_state: Optional[torch.FloatTensor] = None
@ -98,11 +59,33 @@ class BaseLukeModelOutput(BaseModelOutput):
@dataclass
class LukeMaskedLMOutput(ModelOutput):
"""
@auto_docstring(
custom_intro="""
Base class for model's outputs, with potential hidden states and attentions.
"""
)
class BaseLukeModelOutput(BaseModelOutput):
r"""
entity_last_hidden_state (`torch.FloatTensor` of shape `(batch_size, entity_length, hidden_size)`):
Sequence of entity hidden-states at the output of the last layer of the model.
entity_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, entity_length, hidden_size)`. Entity hidden-states of the model at the output of each
layer plus the initial entity embedding outputs.
"""
Args:
entity_last_hidden_state: Optional[torch.FloatTensor] = None
entity_hidden_states: Optional[tuple[torch.FloatTensor, ...]] = None
@dataclass
@auto_docstring(
custom_intro="""
Base class for model's outputs, with potential hidden states and attentions.
"""
)
class LukeMaskedLMOutput(ModelOutput):
r"""
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
The sum of masked language modeling (MLM) loss and entity prediction loss.
mlm_loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
@ -113,21 +96,10 @@ class LukeMaskedLMOutput(ModelOutput):
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
entity_logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
Prediction scores of the entity prediction head (scores for each entity vocabulary token before SoftMax).
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
entity_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, entity_length, hidden_size)`. Entity hidden-states of the model at the output of each
layer plus the initial entity embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
loss: Optional[torch.FloatTensor] = None
@ -141,27 +113,21 @@ class LukeMaskedLMOutput(ModelOutput):
@dataclass
class EntityClassificationOutput(ModelOutput):
"""
@auto_docstring(
custom_intro="""
Outputs of entity classification models.
Args:
"""
)
class EntityClassificationOutput(ModelOutput):
r"""
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
Classification loss.
logits (`torch.FloatTensor` of shape `(batch_size, config.num_labels)`):
Classification scores (before SoftMax).
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer
plus the initial embedding outputs.
entity_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, entity_length, hidden_size)`. Entity hidden-states of the model at the output of each
layer plus the initial entity embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in
the self-attention heads.
"""
loss: Optional[torch.FloatTensor] = None
@ -172,27 +138,21 @@ class EntityClassificationOutput(ModelOutput):
@dataclass
class EntityPairClassificationOutput(ModelOutput):
"""
@auto_docstring(
custom_intro="""
Outputs of entity pair classification models.
Args:
"""
)
class EntityPairClassificationOutput(ModelOutput):
r"""
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
Classification loss.
logits (`torch.FloatTensor` of shape `(batch_size, config.num_labels)`):
Classification scores (before SoftMax).
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer
plus the initial embedding outputs.
entity_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, entity_length, hidden_size)`. Entity hidden-states of the model at the output of each
layer plus the initial entity embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in
the self-attention heads.
"""
loss: Optional[torch.FloatTensor] = None
@ -203,27 +163,21 @@ class EntityPairClassificationOutput(ModelOutput):
@dataclass
class EntitySpanClassificationOutput(ModelOutput):
"""
@auto_docstring(
custom_intro="""
Outputs of entity span classification models.
Args:
"""
)
class EntitySpanClassificationOutput(ModelOutput):
r"""
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
Classification loss.
logits (`torch.FloatTensor` of shape `(batch_size, entity_length, config.num_labels)`):
Classification scores (before SoftMax).
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer
plus the initial embedding outputs.
entity_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, entity_length, hidden_size)`. Entity hidden-states of the model at the output of each
layer plus the initial entity embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in
the self-attention heads.
"""
loss: Optional[torch.FloatTensor] = None
@ -234,30 +188,21 @@ class EntitySpanClassificationOutput(ModelOutput):
@dataclass
class LukeSequenceClassifierOutput(ModelOutput):
"""
@auto_docstring(
custom_intro="""
Outputs of sentence classification models.
Args:
"""
)
class LukeSequenceClassifierOutput(ModelOutput):
r"""
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
Classification (or regression if config.num_labels==1) loss.
logits (`torch.FloatTensor` of shape `(batch_size, config.num_labels)`):
Classification (or regression if config.num_labels==1) scores (before SoftMax).
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
entity_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, entity_length, hidden_size)`. Entity hidden-states of the model at the output of each
layer plus the initial entity embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
loss: Optional[torch.FloatTensor] = None
@ -268,30 +213,21 @@ class LukeSequenceClassifierOutput(ModelOutput):
@dataclass
class LukeTokenClassifierOutput(ModelOutput):
"""
@auto_docstring(
custom_intro="""
Base class for outputs of token classification models.
Args:
"""
)
class LukeTokenClassifierOutput(ModelOutput):
r"""
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
Classification loss.
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.num_labels)`):
Classification scores (before SoftMax).
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
entity_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, entity_length, hidden_size)`. Entity hidden-states of the model at the output of each
layer plus the initial entity embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
loss: Optional[torch.FloatTensor] = None
@ -302,32 +238,19 @@ class LukeTokenClassifierOutput(ModelOutput):
@dataclass
class LukeQuestionAnsweringModelOutput(ModelOutput):
"""
@auto_docstring(
custom_intro="""
Outputs of question answering models.
Args:
"""
)
class LukeQuestionAnsweringModelOutput(ModelOutput):
r"""
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
Total span extraction loss is the sum of a Cross-Entropy for the start and end positions.
start_logits (`torch.FloatTensor` of shape `(batch_size, sequence_length)`):
Span-start scores (before SoftMax).
end_logits (`torch.FloatTensor` of shape `(batch_size, sequence_length)`):
Span-end scores (before SoftMax).
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
entity_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, entity_length, hidden_size)`. Entity hidden-states of the model at the output of each
layer plus the initial entity embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
loss: Optional[torch.FloatTensor] = None
@ -339,32 +262,23 @@ class LukeQuestionAnsweringModelOutput(ModelOutput):
@dataclass
class LukeMultipleChoiceModelOutput(ModelOutput):
"""
@auto_docstring(
custom_intro="""
Outputs of multiple choice models.
Args:
"""
)
class LukeMultipleChoiceModelOutput(ModelOutput):
r"""
loss (`torch.FloatTensor` of shape *(1,)*, *optional*, returned when `labels` is provided):
Classification loss.
logits (`torch.FloatTensor` of shape `(batch_size, num_choices)`):
*num_choices* is the second dimension of the input tensors. (see *input_ids* above).
Classification scores (before SoftMax).
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
entity_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, entity_length, hidden_size)`. Entity hidden-states of the model at the output of each
layer plus the initial entity embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
loss: Optional[torch.FloatTensor] = None

View File

@ -42,14 +42,15 @@ class GeLU(nn.Module):
@dataclass
class LxmertModelOutput(ModelOutput):
"""
@auto_docstring(
custom_intro="""
Lxmert's outputs that contain the last hidden states, pooled outputs, and attention probabilities for the language,
visual, and, cross-modality encoders. (note: the visual encoder in Lxmert is referred to as the "relation-ship"
encoder")
Args:
"""
)
class LxmertModelOutput(ModelOutput):
r"""
language_output (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the language encoder.
vision_output (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
@ -88,11 +89,13 @@ class LxmertModelOutput(ModelOutput):
@dataclass
class LxmertForQuestionAnsweringOutput(ModelOutput):
"""
@auto_docstring(
custom_intro="""
Output type of [`LxmertForQuestionAnswering`].
Args:
"""
)
class LxmertForQuestionAnsweringOutput(ModelOutput):
r"""
loss (*optional*, returned when `labels` is provided, `torch.FloatTensor` of shape `(1,)`):
Total loss as the sum of the masked language modeling loss and the next sequence prediction
(classification) loss.k.
@ -128,11 +131,13 @@ class LxmertForQuestionAnsweringOutput(ModelOutput):
@dataclass
class LxmertForPreTrainingOutput(ModelOutput):
"""
@auto_docstring(
custom_intro="""
Output type of [`LxmertForPreTraining`].
Args:
"""
)
class LxmertForPreTrainingOutput(ModelOutput):
r"""
loss (*optional*, returned when `labels` is provided, `torch.FloatTensor` of shape `(1,)`):
Total loss as the sum of the masked language modeling loss and the next sequence prediction
(classification) loss.
@ -161,7 +166,6 @@ class LxmertForPreTrainingOutput(ModelOutput):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in
the self-attention heads.
"""
loss: Optional[torch.FloatTensor] = None

View File

@ -429,23 +429,18 @@ class MambaPreTrainedModel(PreTrainedModel):
@dataclass
class MambaOutput(ModelOutput):
"""
@auto_docstring(
custom_intro="""
Class for the MAMBA model outputs.
Args:
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the model.
"""
)
class MambaOutput(ModelOutput):
r"""
cache_params (`MambaCache`):
The state of the model at the last time step. Can be used in a forward method with the next `input_ids` to
avoid providing the old `input_ids`.
Includes both the State space model state matrices after the selective scan, and the Convolutional states
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
"""
last_hidden_state: Optional[torch.FloatTensor] = None
@ -454,11 +449,13 @@ class MambaOutput(ModelOutput):
@dataclass
class MambaCausalLMOutput(ModelOutput):
"""
@auto_docstring(
custom_intro="""
Base class for causal language model (or autoregressive) outputs.
Args:
"""
)
class MambaCausalLMOutput(ModelOutput):
r"""
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
Language modeling loss (for next-token prediction).
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
@ -468,11 +465,6 @@ class MambaCausalLMOutput(ModelOutput):
avoid providing the old `input_ids`.
Includes both the State space model state matrices after the selective scan, and the Convolutional states
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
"""
loss: Optional[torch.FloatTensor] = None

View File

@ -763,24 +763,19 @@ class Mamba2PreTrainedModel(PreTrainedModel):
@dataclass
@auto_docstring(
custom_intro="""
Class for the MAMBA2 model outputs.
"""
)
# Copied from transformers.models.mamba.modeling_mamba.MambaOutput with MAMBA->MAMBA2,Mamba->Mamba2
class Mamba2Output(ModelOutput):
"""
Class for the MAMBA2 model outputs.
Args:
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the model.
r"""
cache_params (`Mamba2Cache`):
The state of the model at the last time step. Can be used in a forward method with the next `input_ids` to
avoid providing the old `input_ids`.
Includes both the State space model state matrices after the selective scan, and the Convolutional states
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
"""
last_hidden_state: Optional[torch.FloatTensor] = None
@ -789,12 +784,14 @@ class Mamba2Output(ModelOutput):
@dataclass
@auto_docstring(
custom_intro="""
Base class for causal language model (or autoregressive) outputs.
"""
)
# Copied from transformers.models.mamba.modeling_mamba.MambaCausalLMOutput with Mamba->Mamba2
class Mamba2CausalLMOutput(ModelOutput):
"""
Base class for causal language model (or autoregressive) outputs.
Args:
r"""
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
Language modeling loss (for next-token prediction).
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
@ -804,11 +801,6 @@ class Mamba2CausalLMOutput(ModelOutput):
avoid providing the old `input_ids`.
Includes both the State space model state matrices after the selective scan, and the Convolutional states
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
"""
loss: Optional[torch.FloatTensor] = None

View File

@ -44,12 +44,14 @@ logger = logging.get_logger(__name__)
@dataclass
class Mask2FormerPixelDecoderOutput(ModelOutput):
"""
@auto_docstring(
custom_intro="""
Mask2Former's pixel decoder module output, practically a Multi-Scale Deformable Attention based decoder. It returns
the mask features and the multiscale features.
Args:
"""
)
class Mask2FormerPixelDecoderOutput(ModelOutput):
r"""
multi_scale_features (`tuple(torch.FloatTensor)`):
Tuple of multi-scale features of scales [1/8, 1/16, 1/32] and shape `(batch_size, num_channels, height,
width)`from the Multi-Scale Deformable Attenntion based Pixel Decoder.
@ -68,15 +70,15 @@ class Mask2FormerPixelDecoderOutput(ModelOutput):
@dataclass
class Mask2FormerMaskedAttentionDecoderOutput(BaseModelOutputWithCrossAttentions):
"""
@auto_docstring(
custom_intro="""
Base class for outputs of the Transformer decoder. This class adds two attributes to
BaseModelOutputWithCrossAttentions for mask predictions logits and a tuple of intermediate decoder activations,
i.e. the output of each decoder layer, each of them gone through a layernorm.
Args:
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the model.
"""
)
class Mask2FormerMaskedAttentionDecoderOutput(BaseModelOutputWithCrossAttentions):
r"""
hidden_states (`tuple(torch.FloatTensor)`, *optional*):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer
@ -100,16 +102,18 @@ class Mask2FormerMaskedAttentionDecoderOutput(BaseModelOutputWithCrossAttentions
@dataclass
class Mask2FormerPixelLevelModuleOutput(ModelOutput):
"""
@auto_docstring(
custom_intro="""
Mask2Former's pixel level module output. It returns the output of the encoder (optional) and all hidden states
(multi-scale features) from the `decoder`. By default, the `encoder` is a Swin Backbone and the `decoder` is a
Multi-Scale Deformable Attention based decoder.
The `decoder_last_hidden_state` are the **per-pixel embeddings** while `decoder_hidden_states` refer to multi-scale
feature maps produced using **multi-scaling strategy** defined in the paper.
Args:
"""
)
class Mask2FormerPixelLevelModuleOutput(ModelOutput):
r"""
encoder_last_hidden_state (`torch.FloatTensor`):
Last hidden states (final feature map of shape `(batch_size, num_channels, height, width)`) of the last
stage of the encoder.
@ -131,26 +135,28 @@ class Mask2FormerPixelLevelModuleOutput(ModelOutput):
@dataclass
class Mask2FormerModelOutput(ModelOutput):
"""
@auto_docstring(
custom_intro="""
Class for outputs of [`Mask2FormerModel`]. This class returns all the needed hidden states to compute the logits.
Args:
"""
)
class Mask2FormerModelOutput(ModelOutput):
r"""
encoder_last_hidden_state (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`, *optional*):
Last hidden states (final feature map) of the last stage of the encoder model (backbone). Returned when
`output_hidden_states=True` is passed.
pixel_decoder_last_hidden_state (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`, *optional*):
Last hidden states (final feature map) of the last stage of the pixel decoder model.
transformer_decoder_last_hidden_state (`tuple(torch.FloatTensor)`):
Final output of the transformer decoder `(batch_size, sequence_length, hidden_size)`.
encoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of
shape `(batch_size, num_channels, height, width)`. Hidden-states (also called feature maps) of the encoder
model at the output of each stage. Returned when `output_hidden_states=True` is passed.
pixel_decoder_last_hidden_state (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`, *optional*):
Last hidden states (final feature map) of the last stage of the pixel decoder model.
pixel_decoder_hidden_states (`tuple(torch.FloatTensor)`, , *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of
shape `(batch_size, num_channels, height, width)`. Hidden-states (also called feature maps) of the pixel
decoder model at the output of each stage. Returned when `output_hidden_states=True` is passed.
transformer_decoder_last_hidden_state (`tuple(torch.FloatTensor)`):
Final output of the transformer decoder `(batch_size, sequence_length, hidden_size)`.
transformer_decoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of
shape `(batch_size, sequence_length, hidden_size)`. Hidden-states (also called feature maps) of the
@ -177,16 +183,18 @@ class Mask2FormerModelOutput(ModelOutput):
@dataclass
class Mask2FormerForUniversalSegmentationOutput(ModelOutput):
"""
@auto_docstring(
custom_intro="""
Class for outputs of [`Mask2FormerForUniversalSegmentationOutput`].
This output can be directly passed to [`~Mask2FormerImageProcessor.post_process_semantic_segmentation`] or
[`~Mask2FormerImageProcessor.post_process_instance_segmentation`] or
[`~Mask2FormerImageProcessor.post_process_panoptic_segmentation`] to compute final segmentation maps. Please, see
[`~Mask2FormerImageProcessor] for details regarding usage.
Args:
"""
)
class Mask2FormerForUniversalSegmentationOutput(ModelOutput):
r"""
loss (`torch.Tensor`, *optional*):
The computed loss, returned when labels are present.
class_queries_logits (`torch.FloatTensor`):
@ -199,18 +207,18 @@ class Mask2FormerForUniversalSegmentationOutput(ModelOutput):
List of class and mask predictions from each layer of the transformer decoder.
encoder_last_hidden_state (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
Last hidden states (final feature map) of the last stage of the encoder model (backbone).
pixel_decoder_last_hidden_state (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
Last hidden states (final feature map) of the last stage of the pixel decoder model.
transformer_decoder_last_hidden_state (`tuple(torch.FloatTensor)`):
Final output of the transformer decoder `(batch_size, sequence_length, hidden_size)`.
encoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of
shape `(batch_size, num_channels, height, width)`. Hidden-states (also called feature maps) of the encoder
model at the output of each stage.
pixel_decoder_last_hidden_state (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
Last hidden states (final feature map) of the last stage of the pixel decoder model.
pixel_decoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of
shape `(batch_size, num_channels, height, width)`. Hidden-states (also called feature maps) of the pixel
decoder model at the output of each stage.
transformer_decoder_last_hidden_state (`tuple(torch.FloatTensor)`):
Final output of the transformer decoder `(batch_size, sequence_length, hidden_size)`.
transformer_decoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of
shape `(batch_size, sequence_length, hidden_size)`. Hidden-states (also called feature maps) of the

View File

@ -53,24 +53,16 @@ logger = logging.get_logger(__name__)
@dataclass
# Copied from transformers.models.detr.modeling_detr.DetrDecoderOutput
class DetrDecoderOutput(BaseModelOutputWithCrossAttentions):
"""
@auto_docstring(
custom_intro="""
Base class for outputs of the DETR decoder. This class adds one attribute to BaseModelOutputWithCrossAttentions,
namely an optional stack of intermediate decoder activations, i.e. the output of each decoder layer, each of them
gone through a layernorm. This is useful when training the model with auxiliary decoding losses.
Args:
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the model.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer
plus the initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in
the self-attention heads.
"""
)
# Copied from transformers.models.detr.modeling_detr.DetrDecoderOutput
class DetrDecoderOutput(BaseModelOutputWithCrossAttentions):
r"""
cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` and `config.add_cross_attention=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`. Attentions weights of the decoder's cross-attention layer, after the attention softmax,
@ -84,24 +76,26 @@ class DetrDecoderOutput(BaseModelOutputWithCrossAttentions):
@dataclass
class MaskFormerPixelLevelModuleOutput(ModelOutput):
"""
@auto_docstring(
custom_intro="""
MaskFormer's pixel level module output. It returns both the last and (optionally) the hidden states from the
`encoder` and `decoder`. By default, the `encoder` is a MaskFormerSwin Transformer and the `decoder` is a Feature
Pyramid Network (FPN).
The `encoder_last_hidden_state` are referred on the paper as **images features**, while `decoder_last_hidden_state`
as **pixel embeddings**
Args:
"""
)
class MaskFormerPixelLevelModuleOutput(ModelOutput):
r"""
encoder_last_hidden_state (`torch.FloatTensor` of shape`(batch_size, num_channels, height, width)`):
Last hidden states (final feature map) of the last stage of the encoder.
decoder_last_hidden_state (`torch.FloatTensor` of shape`(batch_size, num_channels, height, width)`):
Last hidden states (final feature map) of the last stage of the decoder.
encoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of
shape `(batch_size, num_channels, height, width)`. Hidden-states (also called feature maps) of the model at
the output of each stage.
decoder_last_hidden_state (`torch.FloatTensor` of shape`(batch_size, num_channels, height, width)`):
Last hidden states (final feature map) of the last stage of the decoder.
decoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of
shape `(batch_size, num_channels, height, width)`. Hidden-states (also called feature maps) of the model at
@ -115,22 +109,16 @@ class MaskFormerPixelLevelModuleOutput(ModelOutput):
@dataclass
class MaskFormerPixelDecoderOutput(ModelOutput):
"""
@auto_docstring(
custom_intro="""
MaskFormer's pixel decoder module output, practically a Feature Pyramid Network. It returns the last hidden state
and (optionally) the hidden states.
Args:
"""
)
class MaskFormerPixelDecoderOutput(ModelOutput):
r"""
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
Last hidden states (final feature map) of the last stage of the model.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, num_channels, height, width)`. Hidden-states of the model at the output of each layer
plus the initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`. Attentions weights from Detr's decoder after the attention softmax, used to compute the
weighted average in the self-attention heads.
"""
last_hidden_state: Optional[torch.FloatTensor] = None
@ -139,11 +127,13 @@ class MaskFormerPixelDecoderOutput(ModelOutput):
@dataclass
class MaskFormerModelOutput(ModelOutput):
"""
@auto_docstring(
custom_intro="""
Class for outputs of [`MaskFormerModel`]. This class returns all the needed hidden states to compute the logits.
Args:
"""
)
class MaskFormerModelOutput(ModelOutput):
r"""
encoder_last_hidden_state (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
Last hidden states (final feature map) of the last stage of the encoder model (backbone).
pixel_decoder_last_hidden_state (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
@ -165,10 +155,6 @@ class MaskFormerModelOutput(ModelOutput):
hidden_states `tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` containing `encoder_hidden_states`, `pixel_decoder_hidden_states` and
`decoder_hidden_states`
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`. Attentions weights from Detr's decoder after the attention softmax, used to compute the
weighted average in the self-attention heads.
"""
encoder_last_hidden_state: Optional[torch.FloatTensor] = None
@ -182,16 +168,18 @@ class MaskFormerModelOutput(ModelOutput):
@dataclass
class MaskFormerForInstanceSegmentationOutput(ModelOutput):
"""
@auto_docstring(
custom_intro="""
Class for outputs of [`MaskFormerForInstanceSegmentation`].
This output can be directly passed to [`~MaskFormerImageProcessor.post_process_semantic_segmentation`] or or
[`~MaskFormerImageProcessor.post_process_instance_segmentation`] or
[`~MaskFormerImageProcessor.post_process_panoptic_segmentation`] depending on the task. Please, see
[`~MaskFormerImageProcessor] for details regarding usage.
Args:
"""
)
class MaskFormerForInstanceSegmentationOutput(ModelOutput):
r"""
loss (`torch.Tensor`, *optional*):
The computed loss, returned when labels are present.
class_queries_logits (`torch.FloatTensor`):
@ -200,6 +188,8 @@ class MaskFormerForInstanceSegmentationOutput(ModelOutput):
masks_queries_logits (`torch.FloatTensor`):
A tensor of shape `(batch_size, num_queries, height, width)` representing the proposed masks for each
query.
auxiliary_logits (`Dict[str, torch.FloatTensor]`, *optional*, returned when `output_auxiliary_logits=True`):
Dictionary containing auxiliary predictions for each decoder layer when auxiliary losses are enabled.
encoder_last_hidden_state (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
Last hidden states (final feature map) of the last stage of the encoder model (backbone).
pixel_decoder_last_hidden_state (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
@ -221,10 +211,6 @@ class MaskFormerForInstanceSegmentationOutput(ModelOutput):
hidden_states `tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` containing `encoder_hidden_states`, `pixel_decoder_hidden_states` and
`decoder_hidden_states`.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`. Attentions weights from Detr's decoder after the attention softmax, used to compute the
weighted average in the self-attention heads.
"""
loss: Optional[torch.FloatTensor] = None

View File

@ -30,36 +30,25 @@ from ...modeling_layers import GradientCheckpointingLayer
from ...modeling_outputs import BackboneOutput
from ...modeling_utils import PreTrainedModel
from ...pytorch_utils import find_pruneable_heads_and_indices, meshgrid, prune_linear_layer
from ...utils import torch_int
from ...utils import auto_docstring, torch_int
from ...utils.backbone_utils import BackboneMixin
from .configuration_maskformer_swin import MaskFormerSwinConfig
@dataclass
class MaskFormerSwinModelOutputWithPooling(ModelOutput):
"""
@auto_docstring(
custom_intro="""
Class for MaskFormerSwinModel's outputs that also contains the spatial dimensions of the hidden states.
Args:
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the model.
"""
)
class MaskFormerSwinModelOutputWithPooling(ModelOutput):
r"""
pooler_output (`torch.FloatTensor` of shape `(batch_size, hidden_size)`):
Last layer hidden-state after a mean pooling operation.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
hidden_states_spatial_dimensions (`tuple(tuple(int, int))`, *optional*):
A tuple containing the spatial dimension of each `hidden_state` needed to reshape the `hidden_states` to
`batch, channels, height, width`. Due to padding, their spatial size cannot be inferred before the
`forward` method.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
last_hidden_state: Optional[torch.FloatTensor] = None
@ -70,28 +59,17 @@ class MaskFormerSwinModelOutputWithPooling(ModelOutput):
@dataclass
class MaskFormerSwinBaseModelOutput(ModelOutput):
"""
@auto_docstring(
custom_intro="""
Class for SwinEncoder's outputs.
Args:
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the model.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
"""
)
class MaskFormerSwinBaseModelOutput(ModelOutput):
r"""
hidden_states_spatial_dimensions (`tuple(tuple(int, int))`, *optional*):
A tuple containing the spatial dimension of each `hidden_state` needed to reshape the `hidden_states` to
`batch, channels, height, width`. Due to padding, their spatial size cannot inferred before the `forward`
method.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
last_hidden_state: Optional[torch.FloatTensor] = None
@ -759,12 +737,8 @@ class MaskFormerSwinEncoder(nn.Module):
)
@auto_docstring
class MaskFormerSwinPreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = MaskFormerSwinConfig
base_model_prefix = "model"
main_input_name = "pixel_values"

View File

@ -700,12 +700,14 @@ class MegatronBertPreTrainedModel(PreTrainedModel):
@dataclass
@auto_docstring(
custom_intro="""
Output type of [`MegatronBertForPreTraining`].
"""
)
# Copied from transformers.models.bert.modeling_bert.BertForPreTrainingOutput with Bert->MegatronBert
class MegatronBertForPreTrainingOutput(ModelOutput):
"""
Output type of [`MegatronBertForPreTraining`].
Args:
r"""
loss (*optional*, returned when `labels` is provided, `torch.FloatTensor` of shape `(1,)`):
Total loss as the sum of the masked language modeling loss and the next sequence prediction
(classification) loss.
@ -714,17 +716,6 @@ class MegatronBertForPreTrainingOutput(ModelOutput):
seq_relationship_logits (`torch.FloatTensor` of shape `(batch_size, 2)`):
Prediction scores of the next sequence prediction (classification) head (scores of True/False continuation
before SoftMax).
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
loss: Optional[torch.FloatTensor] = None

View File

@ -69,11 +69,13 @@ class MgpstrDropPath(nn.Module):
@dataclass
class MgpstrModelOutput(ModelOutput):
"""
@auto_docstring(
custom_intro="""
Base class for vision model's outputs that also contains image embeddings of the pooling of the last hidden states.
Args:
"""
)
class MgpstrModelOutput(ModelOutput):
r"""
logits (`tuple(torch.FloatTensor)` of shape `(batch_size, config.num_character_labels)`):
Tuple of `torch.FloatTensor` (one for the output of character of shape `(batch_size,
config.max_token_length, config.num_character_labels)`, + one for the output of bpe of shape `(batch_size,
@ -81,17 +83,6 @@ class MgpstrModelOutput(ModelOutput):
config.max_token_length, config.num_wordpiece_labels)`) .
Classification scores (before SoftMax) of character, bpe and wordpiece.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, config.max_token_length,
sequence_length, sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
a3_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_a3_attentions=True` is passed or when `config.output_a3_attentions=True`):
Tuple of `torch.FloatTensor` (one for the attention of character, + one for the attention of bpe`, + one
for the attention of wordpiece) of shape `(batch_size, config.max_token_length, sequence_length)`.

View File

@ -47,12 +47,12 @@ logger = logging.get_logger(__name__)
@dataclass
@auto_docstring
class MimiOutput(ModelOutput):
"""
Args:
r"""
audio_codes (`torch.LongTensor` of shape `(batch_size, num_quantizers, codes_length)`, *optional*):
Discret code embeddings computed using `model.encode`.
audio_values (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*)
audio_values (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
Decoded audio values, obtained using the decoder part of Mimi.
encoder_past_key_values (`Cache`, *optional*):
Pre-computed hidden-states (key and values in the self-attention blocks) that can be used to speed up sequential decoding of the encoder transformer.
@ -79,9 +79,9 @@ class MimiOutput(ModelOutput):
@dataclass
@auto_docstring
class MimiEncoderOutput(ModelOutput):
"""
Args:
r"""
audio_codes (`torch.LongTensor` of shape `(batch_size, num_quantizers, codes_length)`, *optional*):
Discret code embeddings computed using `model.encode`.
encoder_past_key_values (`Cache`, *optional*):
@ -99,9 +99,9 @@ class MimiEncoderOutput(ModelOutput):
@dataclass
@auto_docstring
class MimiDecoderOutput(ModelOutput):
"""
Args:
r"""
audio_values (`torch.FloatTensor` of shape `(batch_size, segment_length)`, *optional*):
Decoded audio values, obtained using the decoder part of Mimi.
decoder_past_key_values (`Cache`, *optional*):

View File

@ -1209,17 +1209,6 @@ class MiniMaxForQuestionAnswering(MiniMaxPreTrainedModel):
output_hidden_states: Optional[bool] = None,
**kwargs,
) -> QuestionAnsweringModelOutput:
r"""
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the start of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
are not taken into account for computing the loss.
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the end of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
are not taken into account for computing the loss.
"""
outputs: BaseModelOutputWithPast = self.model(
input_ids,
attention_mask=attention_mask,

View File

@ -760,17 +760,6 @@ class MistralForQuestionAnswering(MistralPreTrainedModel):
output_hidden_states: Optional[bool] = None,
**kwargs,
) -> QuestionAnsweringModelOutput:
r"""
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the start of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
are not taken into account for computing the loss.
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the end of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
are not taken into account for computing the loss.
"""
outputs: BaseModelOutputWithPast = self.model(
input_ids,
attention_mask=attention_mask,

View File

@ -29,8 +29,6 @@ from .configuration_mistral import MistralConfig
logger = logging.get_logger(__name__)
_CHECKPOINT_FOR_DOC = "mistralai/Mistral-7B-v0.1"
class MistralMLP(LlamaMLP):
def __init__(self, config):
@ -247,17 +245,6 @@ class MistralForQuestionAnswering(LlamaForQuestionAnswering):
output_hidden_states: Optional[bool] = None,
**kwargs,
) -> QuestionAnsweringModelOutput:
r"""
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the start of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
are not taken into account for computing the loss.
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the end of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
are not taken into account for computing the loss.
"""
outputs: BaseModelOutputWithPast = self.model(
input_ids,
attention_mask=attention_mask,

View File

@ -123,11 +123,13 @@ class Mistral3MultiModalProjector(nn.Module):
@dataclass
class Mistral3CausalLMOutputWithPast(ModelOutput):
"""
@auto_docstring(
custom_intro="""
Base class for Mistral3 causal language model (or autoregressive) outputs.
Args:
"""
)
class Mistral3CausalLMOutputWithPast(ModelOutput):
r"""
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
Language modeling loss (for next-token prediction).
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
@ -138,17 +140,6 @@ class Mistral3CausalLMOutputWithPast(ModelOutput):
Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see
`past_key_values` input) to speed up sequential decoding.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
image_hidden_states (`torch.FloatTensor`, *optional*):
A `torch.FloatTensor` of size `(batch_size, num_images, sequence_length, hidden_size)`.
image_hidden_states of the model produced by the vision encoder and after projecting the last hidden state.
@ -163,30 +154,19 @@ class Mistral3CausalLMOutputWithPast(ModelOutput):
@dataclass
class Mistral3ModelOutputWithPast(BaseModelOutputWithPast):
"""
@auto_docstring(
custom_intro="""
Base class for Mistral3 outputs, with hidden states and attentions.
Args:
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the model.
"""
)
class Mistral3ModelOutputWithPast(BaseModelOutputWithPast):
r"""
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
`(batch_size, num_heads, sequence_length, embed_size_per_head)`)
Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see
`past_key_values` input) to speed up sequential decoding.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
image_hidden_states (`torch.FloatTensor`, *optional*):
A `torch.FloatTensor` of size `(batch_size, num_images, sequence_length, hidden_size)`.
image_hidden_states of the model produced by the vision encoder and after projecting the last hidden state.

View File

@ -992,17 +992,6 @@ class MixtralForQuestionAnswering(MixtralPreTrainedModel):
output_hidden_states: Optional[bool] = None,
**kwargs,
) -> QuestionAnsweringModelOutput:
r"""
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the start of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
are not taken into account for computing the loss.
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the end of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
are not taken into account for computing the loss.
"""
outputs: BaseModelOutputWithPast = self.model(
input_ids,
attention_mask=attention_mask,

View File

@ -1531,10 +1531,6 @@ class MllamaForCausalLM(MllamaPreTrainedModel, GenerationMixin):
For each text token (in seq_length):
- 1 indicates the token **should attend** to the corresponding image tile
- 0 indicates the token **should not attend** to the corresponding image tile
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
full_text_row_masked_out_mask (`tuple[torch.Tensor, torch.Tensor]`, *optional*):
A tuple containing two tensors that mask out rows in the cross-attention mechanism:
- The first tensor has shape `(batch_size, 1, seq_length, 1)` and contains values of 0 or 1.
@ -1544,6 +1540,10 @@ class MllamaForCausalLM(MllamaPreTrainedModel, GenerationMixin):
the forward pass of cross-attention layers.
This mask is derived from the cross_attention_mask and is used to handle cases where a text token
should not attend to any image token.
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
Example:

View File

@ -678,11 +678,13 @@ class MobileBertPreTrainedModel(PreTrainedModel):
@dataclass
class MobileBertForPreTrainingOutput(ModelOutput):
"""
@auto_docstring(
custom_intro="""
Output type of [`MobileBertForPreTraining`].
Args:
"""
)
class MobileBertForPreTrainingOutput(ModelOutput):
r"""
loss (*optional*, returned when `labels` is provided, `torch.FloatTensor` of shape `(1,)`):
Total loss as the sum of the masked language modeling loss and the next sequence prediction
(classification) loss.
@ -691,17 +693,6 @@ class MobileBertForPreTrainingOutput(ModelOutput):
seq_relationship_logits (`torch.FloatTensor` of shape `(batch_size, 2)`):
Prediction scores of the next sequence prediction (classification) head (scores of True/False continuation
before SoftMax).
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
loss: Optional[torch.FloatTensor] = None

View File

@ -50,11 +50,13 @@ logger = logging.get_logger(__name__)
@dataclass
class MoshiConditionalGenerationGenerateOutput(ModelOutput):
"""
@auto_docstring(
custom_intro="""
Outputs of [`MoshiForConditionalConditionalGeneration.generate`].
Args:
"""
)
class MoshiConditionalGenerationGenerateOutput(ModelOutput):
r"""
audio_sequences (`torch.LongTensor` of shape `(batch_size*num_return_sequences, 1, sequence_length)`, *optional*):
The generated audio waveforms.
sequences (`torch.LongTensor` of shape `(batch_size*num_return_sequences, sequence_length)`):
@ -81,7 +83,7 @@ class MoshiConditionalGenerationGenerateOutput(ModelOutput):
Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of
`torch.FloatTensor` of shape `(batch_size*num_beams*num_return_sequences, generated_length, hidden_size)`.
past_key_values (`tuple(tuple(torch.FloatTensor)))`, *optional*, returned when `use_cache=True`):
Returns the model cache, used to speed up decoding. Different models have a different cache format, check
Contains the model cache, used to speed up decoding. Different models have a different cache format, check
the model's documentation. Usually, a [`~cache_utils.Cache`] instance.
audio_codes (`torch.LongTensor` of shape `(batch_size*num_return_sequences, num_codeooks, sequence_length)`, *optional*):
The generated audio codes. Returned if `return_audio_codes=True`. Intermediate audio "tokens" which transforms to `audio_sequences` once passed through the audio decoder.
@ -100,34 +102,23 @@ class MoshiConditionalGenerationGenerateOutput(ModelOutput):
@dataclass
class MoshiCausalLMOutputWithPast(ModelOutput):
"""
@auto_docstring(
custom_intro="""
`MoshiForCausalLM` outputs.
Args:
"""
)
class MoshiCausalLMOutputWithPast(ModelOutput):
r"""
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
Language modeling loss (for next-token prediction).
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the model.
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
`(batch_size, num_heads, sequence_length, embed_size_per_head)`)
Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see
`past_key_values` input) to speed up sequential decoding.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
loss: Optional[torch.FloatTensor] = None
@ -139,34 +130,23 @@ class MoshiCausalLMOutputWithPast(ModelOutput):
@dataclass
class MoshiConditionalGenerationOutputWithPast(ModelOutput):
"""
@auto_docstring(
custom_intro="""
`MoshiForConditionalGeneration` outputs.
Args:
"""
)
class MoshiConditionalGenerationOutputWithPast(ModelOutput):
r"""
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `text_labels` is provided):
Text language modeling loss (for next-token prediction).
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
Prediction scores of the text language modeling head (scores for each vocabulary token before SoftMax).
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the model.
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
`(batch_size, num_heads, sequence_length, embed_size_per_head)`)
Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see
`past_key_values` input) to speed up sequential decoding.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
depth_loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `audio_labels` is provided):
Audio language modeling loss (for next-token prediction).
audio_logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
@ -194,9 +174,9 @@ class MoshiConditionalGenerationOutputWithPast(ModelOutput):
@dataclass
@auto_docstring
class MoshiUnconditionalInput(ModelOutput):
"""
Args:
r"""
input_ids (`torch.Tensor `of shape `(batch_size, sequence_length), *optional*):
The sequence used as a text prompt for the generation.
user_audio_codes (`torch.Tensor `of shape `(batch_size, num_codebooks, sequence_length), *optional*):

Some files were not shown because too many files have changed in this diff Show More