mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-31 10:12:23 +06:00
added bangla-bert-sentiment model card (#8687)
This commit is contained in:
parent
b6d864e2f0
commit
b5187e317f
61
model_cards/sagorsarker/bangla-bert-sentiment/README.md
Normal file
61
model_cards/sagorsarker/bangla-bert-sentiment/README.md
Normal file
@ -0,0 +1,61 @@
|
||||
---
|
||||
language:
|
||||
- bn
|
||||
datasets:
|
||||
- socian
|
||||
- bangla-sentiment-benchmark
|
||||
license: mit
|
||||
tags:
|
||||
- bengali
|
||||
- bengali-sentiment
|
||||
- sentiment-analysis
|
||||
---
|
||||
|
||||
# bangla-bert-sentiment
|
||||
`bangla-bert-sentiment` is a pretrained model for bengali **Sentiment Analysis** using [bangla-bert-base](https://huggingface.co/sagorsarker/bangla-bert-base) model.
|
||||
|
||||
## Datasets Details
|
||||
This model was trained with two combined datasets
|
||||
* [socian sentiment data](https://github.com/socian-ai/socian-bangla-sentiment-dataset-labeled)
|
||||
* [bangla classification dataset](https://github.com/rezacsedu/Classification_Benchmarks_Benglai_NLP)
|
||||
|
||||
|||
|
||||
|--|--|
|
||||
|Data Size| 10889 |
|
||||
|Positive| 4999 |
|
||||
|Negative| 5890 |
|
||||
|Train | 8711 |
|
||||
| Test | 2178 |
|
||||
|
||||
## Training Details
|
||||
Model trained with [simpletransformers](https://github.com/ThilinaRajapakse/simpletransformers) binary classification script with total of **3 epochs** in `google colab gpu`.
|
||||
|
||||
|
||||
## Evaluation Details
|
||||
Model evaluate with 2178 sentences
|
||||
|
||||
Here is the evaluation result details in table
|
||||
|
||||
|
||||
|Eval Loss | TP | TN | FP | FN | F1 Score |
|
||||
| -------- | -- | -- | -- | -- | -------- |
|
||||
| 0.3289 | 880 | 1158 | 59 | 81 | 92.63 |
|
||||
|
||||
## Usage
|
||||
|
||||
Calculate sentiment from given sentence
|
||||
|
||||
```py
|
||||
|
||||
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained("sagorsarker/bangla-bert-sentiment")
|
||||
|
||||
model = AutoModelForSequenceClassification.from_pretrained("sagorsarker/bangla-bert-sentiment")
|
||||
|
||||
nlp = pipeline('sentiment-analysis', model=model, tokenizer=tokenizer)
|
||||
sentence = "বাংলার ঘরে ঘরে আজ নবান্নের উৎসব"
|
||||
nlp(sentence)
|
||||
|
||||
```
|
||||
|
Loading…
Reference in New Issue
Block a user