mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-03 12:50:06 +06:00
Remove missplaced test file (#23275)
This commit is contained in:
parent
6d6b7c923c
commit
b2846afda8
@ -1,99 +0,0 @@
|
||||
# Copyright 2020 The HuggingFace Team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import random
|
||||
import unittest
|
||||
|
||||
import timeout_decorator
|
||||
|
||||
from ..testing_utils import require_torch
|
||||
from ..utils import cached_property, is_torch_available
|
||||
|
||||
|
||||
if is_torch_available():
|
||||
import torch
|
||||
|
||||
from ..models.marian import MarianConfig, MarianMTModel
|
||||
|
||||
|
||||
@require_torch
|
||||
class GenerationUtilsTest(unittest.TestCase):
|
||||
@cached_property
|
||||
def config(self):
|
||||
config = MarianConfig.from_pretrained("sshleifer/tiny-marian-en-de")
|
||||
return config
|
||||
|
||||
@cached_property
|
||||
def model(self):
|
||||
return MarianMTModel(self.config)
|
||||
|
||||
def test_postprocess_next_token_scores(self):
|
||||
config = self.config
|
||||
model = self.model
|
||||
# Initialize an input id tensor with batch size 8 and sequence length 12
|
||||
input_ids = torch.arange(0, 96, 1).view((8, 12))
|
||||
eos = config.eos_token_id
|
||||
bad_words_ids_test_cases = [[[299]], [[23, 24], [54]], [[config.eos_token_id]], []]
|
||||
masked_scores = [
|
||||
[(0, 299), (1, 299), (2, 299), (3, 299), (4, 299), (5, 299), (6, 299), (7, 299)],
|
||||
[(1, 24), (0, 54), (1, 54), (2, 54), (3, 54), (4, 54), (5, 54), (6, 54), (7, 54)],
|
||||
[(0, eos), (1, eos), (2, eos), (3, eos), (4, eos), (5, eos), (6, eos), (7, eos)],
|
||||
[],
|
||||
]
|
||||
|
||||
for test_case_index, bad_words_ids in enumerate(bad_words_ids_test_cases):
|
||||
# Initialize a scores tensor with batch size 8 and vocabulary size 300
|
||||
scores = torch.rand((8, 300))
|
||||
output = model.postprocess_next_token_scores(
|
||||
scores,
|
||||
input_ids,
|
||||
0,
|
||||
bad_words_ids,
|
||||
13,
|
||||
15,
|
||||
config.max_length,
|
||||
config.eos_token_id,
|
||||
config.repetition_penalty,
|
||||
32,
|
||||
5,
|
||||
)
|
||||
for masked_score in masked_scores[test_case_index]:
|
||||
self.assertTrue(output[masked_score[0], masked_score[1]] == -float("inf"))
|
||||
|
||||
@timeout_decorator.timeout(10)
|
||||
def test_postprocess_next_token_scores_large_bad_words_list(self):
|
||||
config = self.config
|
||||
model = self.model
|
||||
# Initialize an input id tensor with batch size 8 and sequence length 12
|
||||
input_ids = torch.arange(0, 96, 1).view((8, 12))
|
||||
|
||||
bad_words_ids = []
|
||||
for _ in range(100):
|
||||
length_bad_word = random.randint(1, 4)
|
||||
bad_words_ids.append(random.sample(range(1, 300), length_bad_word))
|
||||
|
||||
scores = torch.rand((8, 300))
|
||||
_ = model.postprocess_next_token_scores(
|
||||
scores,
|
||||
input_ids,
|
||||
0,
|
||||
bad_words_ids,
|
||||
13,
|
||||
15,
|
||||
config.max_length,
|
||||
config.eos_token_id,
|
||||
config.repetition_penalty,
|
||||
32,
|
||||
5,
|
||||
)
|
Loading…
Reference in New Issue
Block a user