refactoring old run_swag. This script is mainly refatored from run_squad in pytorch_transformers

This commit is contained in:
erenup 2019-08-11 15:20:37 +08:00
parent 7060766490
commit b219029c45

View File

@ -13,17 +13,18 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
"""BERT finetuning runner.""" """BERT finetuning runner.
Finetuning the library models for multiple choice on SWAG (Bert).
from __future__ import absolute_import """
from __future__ import absolute_import, division, print_function
import argparse import argparse
import csv
import logging import logging
import csv
import os import os
import random import random
import sys import sys
from io import open import glob
import numpy as np import numpy as np
import torch import torch
@ -32,16 +33,21 @@ from torch.utils.data import (DataLoader, RandomSampler, SequentialSampler,
from torch.utils.data.distributed import DistributedSampler from torch.utils.data.distributed import DistributedSampler
from tqdm import tqdm, trange from tqdm import tqdm, trange
from pytorch_transformers.file_utils import PYTORCH_PRETRAINED_BERT_CACHE, WEIGHTS_NAME, CONFIG_NAME from tensorboardX import SummaryWriter
from pytorch_transformers.modeling_bert import BertForMultipleChoice, BertConfig
from pytorch_transformers.optimization import AdamW, WarmupLinearSchedule from pytorch_transformers import (WEIGHTS_NAME, BertConfig,
from pytorch_transformers.tokenization_bert import BertTokenizer BertForMultipleChoice, BertTokenizer)
from pytorch_transformers import AdamW, WarmupLinearSchedule
logging.basicConfig(format = '%(asctime)s - %(levelname)s - %(name)s - %(message)s',
datefmt = '%m/%d/%Y %H:%M:%S',
level = logging.INFO)
logger = logging.getLogger(__name__) logger = logging.getLogger(__name__)
ALL_MODELS = sum((tuple(conf.pretrained_config_archive_map.keys()) \
for conf in [BertConfig]), ())
MODEL_CLASSES = {
'bert': (BertConfig, BertForMultipleChoice, BertTokenizer),
}
class SwagExample(object): class SwagExample(object):
"""A single training/test example for the SWAG dataset.""" """A single training/test example for the SWAG dataset."""
@ -84,7 +90,6 @@ class SwagExample(object):
return ", ".join(l) return ", ".join(l)
class InputFeatures(object): class InputFeatures(object):
def __init__(self, def __init__(self,
example_id, example_id,
@ -103,8 +108,7 @@ class InputFeatures(object):
] ]
self.label = label self.label = label
def read_swag_examples(input_file, is_training=True):
def read_swag_examples(input_file, is_training):
with open(input_file, 'r', encoding='utf-8') as f: with open(input_file, 'r', encoding='utf-8') as f:
reader = csv.reader(f) reader = csv.reader(f)
lines = [] lines = []
@ -156,7 +160,7 @@ def convert_examples_to_features(examples, tokenizer, max_seq_length,
# final decision of the model, we will run a softmax over these 4 # final decision of the model, we will run a softmax over these 4
# outputs. # outputs.
features = [] features = []
for example_index, example in enumerate(examples): for example_index, example in tqdm(enumerate(examples)):
context_tokens = tokenizer.tokenize(example.context_sentence) context_tokens = tokenizer.tokenize(example.context_sentence)
start_ending_tokens = tokenizer.tokenize(example.start_ending) start_ending_tokens = tokenizer.tokenize(example.start_ending)
@ -242,314 +246,428 @@ def select_field(features, field):
for feature in features for feature in features
] ]
def set_seed(args):
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
if args.n_gpu > 0:
torch.cuda.manual_seed_all(args.seed)
def load_and_cache_examples(args, tokenizer, evaluate=False, output_examples=False):
if args.local_rank not in [-1, 0]:
torch.distributed.barrier() # Make sure only the first process in distributed training process the dataset, and the others will use the cache
# Load data features from cache or dataset file
input_file = args.predict_file if evaluate else args.train_file
cached_features_file = os.path.join(os.path.dirname(input_file), 'cached_{}_{}_{}'.format(
'dev' if evaluate else 'train',
list(filter(None, args.model_name_or_path.split('/'))).pop(),
str(args.max_seq_length)))
if os.path.exists(cached_features_file) and not args.overwrite_cache and not output_examples:
logger.info("Loading features from cached file %s", cached_features_file)
features = torch.load(cached_features_file)
else:
logger.info("Creating features from dataset file at %s", input_file)
examples = read_swag_examples(input_file)
features = convert_examples_to_features(
examples, tokenizer, args.max_seq_length, not evaluate)
if args.local_rank in [-1, 0]:
logger.info("Saving features into cached file %s", cached_features_file)
torch.save(features, cached_features_file)
if args.local_rank == 0:
torch.distributed.barrier() # Make sure only the first process in distributed training process the dataset, and the others will use the cache
# Convert to Tensors and build dataset
all_input_ids = torch.tensor(select_field(features, 'input_ids'), dtype=torch.long)
all_input_mask = torch.tensor(select_field(features, 'input_mask'), dtype=torch.long)
all_segment_ids = torch.tensor(select_field(features, 'segment_ids'), dtype=torch.long)
all_label = torch.tensor([f.label for f in features], dtype=torch.long)
if evaluate:
dataset = TensorDataset(all_input_ids, all_input_mask, all_segment_ids,
all_label)
else:
dataset = TensorDataset(all_input_ids, all_input_mask, all_segment_ids,
all_label)
if output_examples:
return dataset, examples, features
return dataset
def train(args, train_dataset, model, tokenizer):
""" Train the model """
if args.local_rank in [-1, 0]:
tb_writer = SummaryWriter()
args.train_batch_size = args.per_gpu_train_batch_size * max(1, args.n_gpu)
train_sampler = RandomSampler(train_dataset) if args.local_rank == -1 else DistributedSampler(train_dataset)
train_dataloader = DataLoader(train_dataset, sampler=train_sampler, batch_size=args.train_batch_size)
if args.max_steps > 0:
t_total = args.max_steps
args.num_train_epochs = args.max_steps // (len(train_dataloader) // args.gradient_accumulation_steps) + 1
else:
t_total = len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs
# Prepare optimizer and schedule (linear warmup and decay)
no_decay = ['bias', 'LayerNorm.weight']
optimizer_grouped_parameters = [
{'params': [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)], 'weight_decay': args.weight_decay},
{'params': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
]
optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon)
scheduler = WarmupLinearSchedule(optimizer, warmup_steps=args.warmup_steps, t_total=t_total)
if args.fp16:
try:
from apex import amp
except ImportError:
raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level)
# multi-gpu training (should be after apex fp16 initialization)
if args.n_gpu > 1:
model = torch.nn.DataParallel(model)
# Distributed training (should be after apex fp16 initialization)
if args.local_rank != -1:
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.local_rank],
output_device=args.local_rank,
find_unused_parameters=True)
# Train!
logger.info("***** Running training *****")
logger.info(" Num examples = %d", len(train_dataset))
logger.info(" Num Epochs = %d", args.num_train_epochs)
logger.info(" Instantaneous batch size per GPU = %d", args.per_gpu_train_batch_size)
logger.info(" Total train batch size (w. parallel, distributed & accumulation) = %d",
args.train_batch_size * args.gradient_accumulation_steps * (torch.distributed.get_world_size() if args.local_rank != -1 else 1))
logger.info(" Gradient Accumulation steps = %d", args.gradient_accumulation_steps)
logger.info(" Total optimization steps = %d", t_total)
global_step = 0
tr_loss, logging_loss = 0.0, 0.0
model.zero_grad()
train_iterator = trange(int(args.num_train_epochs), desc="Epoch", disable=args.local_rank not in [-1, 0])
set_seed(args) # Added here for reproductibility (even between python 2 and 3)
for _ in train_iterator:
epoch_iterator = tqdm(train_dataloader, desc="Iteration", disable=args.local_rank not in [-1, 0])
for step, batch in enumerate(epoch_iterator):
model.train()
batch = tuple(t.to(args.device) for t in batch)
inputs = {'input_ids': batch[0],
'attention_mask': batch[1],
#'token_type_ids': None if args.model_type == 'xlm' else batch[2],
'token_type_ids': batch[2],
'labels': batch[3]}
# if args.model_type in ['xlnet', 'xlm']:
# inputs.update({'cls_index': batch[5],
# 'p_mask': batch[6]})
outputs = model(**inputs)
loss = outputs[0] # model outputs are always tuple in pytorch-transformers (see doc)
if args.n_gpu > 1:
loss = loss.mean() # mean() to average on multi-gpu parallel (not distributed) training
if args.gradient_accumulation_steps > 1:
loss = loss / args.gradient_accumulation_steps
if args.fp16:
with amp.scale_loss(loss, optimizer) as scaled_loss:
scaled_loss.backward()
torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), args.max_grad_norm)
else:
loss.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)
tr_loss += loss.item()
if (step + 1) % args.gradient_accumulation_steps == 0:
optimizer.step()
scheduler.step() # Update learning rate schedule
model.zero_grad()
global_step += 1
if args.local_rank in [-1, 0] and args.logging_steps > 0 and global_step % args.logging_steps == 0:
# Log metrics
if args.local_rank == -1 and args.evaluate_during_training: # Only evaluate when single GPU otherwise metrics may not average well
results = evaluate(args, model, tokenizer)
for key, value in results.items():
tb_writer.add_scalar('eval_{}'.format(key), value, global_step)
tb_writer.add_scalar('lr', scheduler.get_lr()[0], global_step)
tb_writer.add_scalar('loss', (tr_loss - logging_loss)/args.logging_steps, global_step)
logging_loss = tr_loss
if args.local_rank in [-1, 0] and args.save_steps > 0 and global_step % args.save_steps == 0:
# Save model checkpoint
output_dir = os.path.join(args.output_dir, 'checkpoint-{}'.format(global_step))
if not os.path.exists(output_dir):
os.makedirs(output_dir)
model_to_save = model.module if hasattr(model, 'module') else model # Take care of distributed/parallel training
model_to_save.save_pretrained(output_dir)
tokenizer.save_vocabulary(output_dir)
torch.save(args, os.path.join(output_dir, 'training_args.bin'))
logger.info("Saving model checkpoint to %s", output_dir)
if args.max_steps > 0 and global_step > args.max_steps:
epoch_iterator.close()
break
if args.max_steps > 0 and global_step > args.max_steps:
train_iterator.close()
break
if args.local_rank in [-1, 0]:
tb_writer.close()
return global_step, tr_loss / global_step
def evaluate(args, model, tokenizer, prefix=""):
dataset, examples, features = load_and_cache_examples(args, tokenizer, evaluate=True, output_examples=True)
if not os.path.exists(args.output_dir) and args.local_rank in [-1, 0]:
os.makedirs(args.output_dir)
args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu)
# Note that DistributedSampler samples randomly
eval_sampler = SequentialSampler(dataset) if args.local_rank == -1 else DistributedSampler(dataset)
eval_dataloader = DataLoader(dataset, sampler=eval_sampler, batch_size=args.eval_batch_size)
# Eval!
logger.info("***** Running evaluation {} *****".format(prefix))
logger.info(" Num examples = %d", len(dataset))
logger.info(" Batch size = %d", args.eval_batch_size)
eval_loss, eval_accuracy = 0, 0
nb_eval_steps, nb_eval_examples = 0, 0
for batch in tqdm(eval_dataloader, desc="Evaluating"):
model.eval()
batch = tuple(t.to(args.device) for t in batch)
with torch.no_grad():
inputs = {'input_ids': batch[0],
'attention_mask': batch[1],
# 'token_type_ids': None if args.model_type == 'xlm' else batch[2] # XLM don't use segment_ids
'token_type_ids': batch[2],
'labels': batch[3]}
# if args.model_type in ['xlnet', 'xlm']:
# inputs.update({'cls_index': batch[4],
# 'p_mask': batch[5]})
outputs = model(**inputs)
tmp_eval_loss, logits = outputs[:2]
eval_loss += tmp_eval_loss.mean().item()
logits = logits.detach().cpu().numpy()
label_ids = inputs['labels'].to('cpu').numpy()
tmp_eval_accuracy = accuracy(logits, label_ids)
eval_accuracy += tmp_eval_accuracy
nb_eval_steps += 1
nb_eval_examples += inputs['input_ids'].size(0)
eval_loss = eval_loss / nb_eval_steps
eval_accuracy = eval_accuracy / nb_eval_examples
result = {'eval_loss': eval_loss,
'eval_accuracy': eval_accuracy}
output_eval_file = os.path.join(args.output_dir, "eval_results.txt")
with open(output_eval_file, "w") as writer:
logger.info("***** Eval results *****")
for key in sorted(result.keys()):
logger.info("%s = %s", key, str(result[key]))
writer.write("%s = %s\n" % (key, str(result[key])))
return result
def main(): def main():
parser = argparse.ArgumentParser() parser = argparse.ArgumentParser()
## Required parameters ## Required parameters
parser.add_argument("--data_dir", parser.add_argument("--train_file", default=None, type=str, required=True,
default=None, help="SWAG csv for training. E.g., train.csv")
type=str, parser.add_argument("--predict_file", default=None, type=str, required=True,
required=True, help="SWAG csv for predictions. E.g., val.csv or test.csv")
help="The input data dir. Should contain the .csv files (or other data files) for the task.") parser.add_argument("--model_type", default=None, type=str, required=True,
parser.add_argument("--bert_model", default=None, type=str, required=True, help="Model type selected in the list: " + ", ".join(MODEL_CLASSES.keys()))
help="Bert pre-trained model selected in the list: bert-base-uncased, " parser.add_argument("--model_name_or_path", default=None, type=str, required=True,
"bert-large-uncased, bert-base-cased, bert-large-cased, bert-base-multilingual-uncased, " help="Path to pre-trained model or shortcut name selected in the list: " + ", ".join(ALL_MODELS))
"bert-base-multilingual-cased, bert-base-chinese.") parser.add_argument("--output_dir", default=None, type=str, required=True,
parser.add_argument("--output_dir", help="The output directory where the model checkpoints and predictions will be written.")
default=None,
type=str,
required=True,
help="The output directory where the model checkpoints will be written.")
## Other parameters ## Other parameters
parser.add_argument("--max_seq_length", parser.add_argument("--config_name", default="", type=str,
default=128, help="Pretrained config name or path if not the same as model_name")
type=int, parser.add_argument("--tokenizer_name", default="", type=str,
help="The maximum total input sequence length after WordPiece tokenization. \n" help="Pretrained tokenizer name or path if not the same as model_name")
"Sequences longer than this will be truncated, and sequences shorter \n" parser.add_argument("--max_seq_length", default=384, type=int,
"than this will be padded.") help="The maximum total input sequence length after tokenization. Sequences "
parser.add_argument("--do_train", "longer than this will be truncated, and sequences shorter than this will be padded.")
action='store_true', parser.add_argument("--do_train", action='store_true',
help="Whether to run training.") help="Whether to run training.")
parser.add_argument("--do_eval", parser.add_argument("--do_eval", action='store_true',
action='store_true',
help="Whether to run eval on the dev set.") help="Whether to run eval on the dev set.")
parser.add_argument("--do_lower_case", parser.add_argument("--evaluate_during_training", action='store_true',
action='store_true', help="Rul evaluation during training at each logging step.")
parser.add_argument("--do_lower_case", action='store_true',
help="Set this flag if you are using an uncased model.") help="Set this flag if you are using an uncased model.")
parser.add_argument("--train_batch_size",
default=32,
type=int,
help="Total batch size for training.")
parser.add_argument("--eval_batch_size",
default=8,
type=int,
help="Total batch size for eval.")
parser.add_argument("--learning_rate",
default=5e-5,
type=float,
help="The initial learning rate for Adam.")
parser.add_argument("--num_train_epochs",
default=3.0,
type=float,
help="Total number of training epochs to perform.")
parser.add_argument("--warmup_proportion",
default=0.1,
type=float,
help="Proportion of training to perform linear learning rate warmup for. "
"E.g., 0.1 = 10%% of training.")
parser.add_argument("--no_cuda",
action='store_true',
help="Whether not to use CUDA when available")
parser.add_argument("--local_rank",
type=int,
default=-1,
help="local_rank for distributed training on gpus")
parser.add_argument('--seed',
type=int,
default=42,
help="random seed for initialization")
parser.add_argument('--gradient_accumulation_steps',
type=int,
default=1,
help="Number of updates steps to accumulate before performing a backward/update pass.")
parser.add_argument('--fp16',
action='store_true',
help="Whether to use 16-bit float precision instead of 32-bit")
parser.add_argument('--loss_scale',
type=float, default=0,
help="Loss scaling to improve fp16 numeric stability. Only used when fp16 set to True.\n"
"0 (default value): dynamic loss scaling.\n"
"Positive power of 2: static loss scaling value.\n")
parser.add_argument("--per_gpu_train_batch_size", default=8, type=int,
help="Batch size per GPU/CPU for training.")
parser.add_argument("--per_gpu_eval_batch_size", default=8, type=int,
help="Batch size per GPU/CPU for evaluation.")
parser.add_argument("--learning_rate", default=5e-5, type=float,
help="The initial learning rate for Adam.")
parser.add_argument('--gradient_accumulation_steps', type=int, default=1,
help="Number of updates steps to accumulate before performing a backward/update pass.")
parser.add_argument("--weight_decay", default=0.0, type=float,
help="Weight deay if we apply some.")
parser.add_argument("--adam_epsilon", default=1e-8, type=float,
help="Epsilon for Adam optimizer.")
parser.add_argument("--max_grad_norm", default=1.0, type=float,
help="Max gradient norm.")
parser.add_argument("--num_train_epochs", default=3.0, type=float,
help="Total number of training epochs to perform.")
parser.add_argument("--max_steps", default=-1, type=int,
help="If > 0: set total number of training steps to perform. Override num_train_epochs.")
parser.add_argument("--warmup_steps", default=0, type=int,
help="Linear warmup over warmup_steps.")
parser.add_argument('--logging_steps', type=int, default=50,
help="Log every X updates steps.")
parser.add_argument('--save_steps', type=int, default=50,
help="Save checkpoint every X updates steps.")
parser.add_argument("--eval_all_checkpoints", action='store_true',
help="Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number")
parser.add_argument("--no_cuda", action='store_true',
help="Whether not to use CUDA when available")
parser.add_argument('--overwrite_output_dir', action='store_true',
help="Overwrite the content of the output directory")
parser.add_argument('--overwrite_cache', action='store_true',
help="Overwrite the cached training and evaluation sets")
parser.add_argument('--seed', type=int, default=42,
help="random seed for initialization")
parser.add_argument("--local_rank", type=int, default=-1,
help="local_rank for distributed training on gpus")
parser.add_argument('--fp16', action='store_true',
help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit")
parser.add_argument('--fp16_opt_level', type=str, default='O1',
help="For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']."
"See details at https://nvidia.github.io/apex/amp.html")
parser.add_argument('--server_ip', type=str, default='', help="Can be used for distant debugging.")
parser.add_argument('--server_port', type=str, default='', help="Can be used for distant debugging.")
args = parser.parse_args() args = parser.parse_args()
if os.path.exists(args.output_dir) and os.listdir(args.output_dir) and args.do_train and not args.overwrite_output_dir:
raise ValueError("Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome.".format(args.output_dir))
# Setup distant debugging if needed
if args.server_ip and args.server_port:
# Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
import ptvsd
print("Waiting for debugger attach")
ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True)
ptvsd.wait_for_attach()
# Setup CUDA, GPU & distributed training
if args.local_rank == -1 or args.no_cuda: if args.local_rank == -1 or args.no_cuda:
device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu") device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
n_gpu = torch.cuda.device_count() args.n_gpu = torch.cuda.device_count()
else: else: # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
torch.cuda.set_device(args.local_rank) torch.cuda.set_device(args.local_rank)
device = torch.device("cuda", args.local_rank) device = torch.device("cuda", args.local_rank)
n_gpu = 1
# Initializes the distributed backend which will take care of sychronizing nodes/GPUs
torch.distributed.init_process_group(backend='nccl') torch.distributed.init_process_group(backend='nccl')
logger.info("device: {} n_gpu: {}, distributed training: {}, 16-bits training: {}".format( args.n_gpu = 1
device, n_gpu, bool(args.local_rank != -1), args.fp16)) args.device = device
if args.gradient_accumulation_steps < 1: # Setup logging
raise ValueError("Invalid gradient_accumulation_steps parameter: {}, should be >= 1".format( logging.basicConfig(format = '%(asctime)s - %(levelname)s - %(name)s - %(message)s',
args.gradient_accumulation_steps)) datefmt = '%m/%d/%Y %H:%M:%S',
level = logging.INFO if args.local_rank in [-1, 0] else logging.WARN)
logger.warning("Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
args.local_rank, device, args.n_gpu, bool(args.local_rank != -1), args.fp16)
args.train_batch_size = args.train_batch_size // args.gradient_accumulation_steps # Set seed
set_seed(args)
random.seed(args.seed) # Load pretrained model and tokenizer
np.random.seed(args.seed) if args.local_rank not in [-1, 0]:
torch.manual_seed(args.seed) torch.distributed.barrier() # Make sure only the first process in distributed training will download model & vocab
if n_gpu > 0:
torch.cuda.manual_seed_all(args.seed)
if not args.do_train and not args.do_eval: args.model_type = args.model_type.lower()
raise ValueError("At least one of `do_train` or `do_eval` must be True.") config_class, model_class, tokenizer_class = MODEL_CLASSES[args.model_type]
config = config_class.from_pretrained(args.config_name if args.config_name else args.model_name_or_path)
tokenizer = tokenizer_class.from_pretrained(args.tokenizer_name if args.tokenizer_name else args.model_name_or_path, do_lower_case=args.do_lower_case)
model = model_class.from_pretrained(args.model_name_or_path, from_tf=bool('.ckpt' in args.model_name_or_path), config=config)
if os.path.exists(args.output_dir) and os.listdir(args.output_dir): if args.local_rank == 0:
raise ValueError("Output directory ({}) already exists and is not empty.".format(args.output_dir)) torch.distributed.barrier() # Make sure only the first process in distributed training will download model & vocab
if not os.path.exists(args.output_dir):
os.makedirs(args.output_dir)
tokenizer = BertTokenizer.from_pretrained(args.bert_model, do_lower_case=args.do_lower_case) model.to(args.device)
# Prepare model logger.info("Training/evaluation parameters %s", args)
model = BertForMultipleChoice.from_pretrained(args.bert_model,
cache_dir=os.path.join(str(PYTORCH_PRETRAINED_BERT_CACHE), 'distributed_{}'.format(args.local_rank)),
num_choices=4)
if args.fp16:
model.half()
model.to(device)
if args.local_rank != -1:
try:
from apex.parallel import DistributedDataParallel as DDP
except ImportError:
raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training.")
model = DDP(model)
elif n_gpu > 1:
model = torch.nn.DataParallel(model)
# Training
if args.do_train: if args.do_train:
train_dataset = load_and_cache_examples(args, tokenizer, evaluate=False, output_examples=False)
# Prepare data loader global_step, tr_loss = train(args, train_dataset, model, tokenizer)
logger.info(" global_step = %s, average loss = %s", global_step, tr_loss)
train_examples = read_swag_examples(os.path.join(args.data_dir, 'train.csv'), is_training = True)
train_features = convert_examples_to_features(
train_examples, tokenizer, args.max_seq_length, True)
all_input_ids = torch.tensor(select_field(train_features, 'input_ids'), dtype=torch.long)
all_input_mask = torch.tensor(select_field(train_features, 'input_mask'), dtype=torch.long)
all_segment_ids = torch.tensor(select_field(train_features, 'segment_ids'), dtype=torch.long)
all_label = torch.tensor([f.label for f in train_features], dtype=torch.long)
train_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_label)
if args.local_rank == -1:
train_sampler = RandomSampler(train_data)
else:
train_sampler = DistributedSampler(train_data)
train_dataloader = DataLoader(train_data, sampler=train_sampler, batch_size=args.train_batch_size)
num_train_optimization_steps = len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs
if args.local_rank != -1:
num_train_optimization_steps = num_train_optimization_steps // torch.distributed.get_world_size()
# Prepare optimizer
param_optimizer = list(model.named_parameters())
# hack to remove pooler, which is not used
# thus it produce None grad that break apex
param_optimizer = [n for n in param_optimizer]
no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
optimizer_grouped_parameters = [
{'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], 'weight_decay': 0.01},
{'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
]
if args.fp16:
try:
from apex.optimizers import FP16_Optimizer
from apex.optimizers import FusedAdam
except ImportError:
raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training.")
optimizer = FusedAdam(optimizer_grouped_parameters,
lr=args.learning_rate,
bias_correction=False,
max_grad_norm=1.0)
if args.loss_scale == 0:
optimizer = FP16_Optimizer(optimizer, dynamic_loss_scale=True)
else:
optimizer = FP16_Optimizer(optimizer, static_loss_scale=args.loss_scale)
warmup_linear = WarmupLinearSchedule(warmup=args.warmup_proportion,
t_total=num_train_optimization_steps)
else:
optimizer = BertAdam(optimizer_grouped_parameters,
lr=args.learning_rate,
warmup=args.warmup_proportion,
t_total=num_train_optimization_steps)
global_step = 0
logger.info("***** Running training *****")
logger.info(" Num examples = %d", len(train_examples))
logger.info(" Batch size = %d", args.train_batch_size)
logger.info(" Num steps = %d", num_train_optimization_steps)
model.train()
for _ in trange(int(args.num_train_epochs), desc="Epoch"):
tr_loss = 0
nb_tr_examples, nb_tr_steps = 0, 0
for step, batch in enumerate(tqdm(train_dataloader, desc="Iteration")):
batch = tuple(t.to(device) for t in batch)
input_ids, input_mask, segment_ids, label_ids = batch
loss = model(input_ids, segment_ids, input_mask, label_ids)
if n_gpu > 1:
loss = loss.mean() # mean() to average on multi-gpu.
if args.fp16 and args.loss_scale != 1.0:
# rescale loss for fp16 training
# see https://docs.nvidia.com/deeplearning/sdk/mixed-precision-training/index.html
loss = loss * args.loss_scale
if args.gradient_accumulation_steps > 1:
loss = loss / args.gradient_accumulation_steps
tr_loss += loss.item()
nb_tr_examples += input_ids.size(0)
nb_tr_steps += 1
if args.fp16:
optimizer.backward(loss)
else:
loss.backward()
if (step + 1) % args.gradient_accumulation_steps == 0:
if args.fp16:
# modify learning rate with special warm up BERT uses
# if args.fp16 is False, BertAdam is used that handles this automatically
lr_this_step = args.learning_rate * warmup_linear.get_lr(global_step, args.warmup_proportion)
for param_group in optimizer.param_groups:
param_group['lr'] = lr_this_step
optimizer.step()
optimizer.zero_grad()
global_step += 1
if args.do_train: # Save the trained model and the tokenizer
# Save a trained model, configuration and tokenizer if args.local_rank == -1 or torch.distributed.get_rank() == 0:
model_to_save = model.module if hasattr(model, 'module') else model # Only save the model it-self # Create output directory if needed
if not os.path.exists(args.output_dir) and args.local_rank in [-1, 0]:
os.makedirs(args.output_dir)
# If we save using the predefined names, we can load using `from_pretrained` logger.info("Saving model checkpoint to %s", args.output_dir)
output_model_file = os.path.join(args.output_dir, WEIGHTS_NAME) # Save a trained model, configuration and tokenizer using `save_pretrained()`.
output_config_file = os.path.join(args.output_dir, CONFIG_NAME) # They can then be reloaded using `from_pretrained()`
model_to_save = model.module if hasattr(model, 'module') else model # Take care of distributed/parallel training
model_to_save.save_pretrained(args.output_dir)
tokenizer.save_pretrained(args.output_dir)
torch.save(model_to_save.state_dict(), output_model_file) # Good practice: save your training arguments together with the trained model
model_to_save.config.to_json_file(output_config_file) torch.save(args, os.path.join(args.output_dir, 'training_args.bin'))
tokenizer.save_vocabulary(args.output_dir)
# Load a trained model and vocabulary that you have fine-tuned # Load a trained model and vocabulary that you have fine-tuned
model = BertForMultipleChoice.from_pretrained(args.output_dir, num_choices=4) model = model_class.from_pretrained(args.output_dir)
tokenizer = BertTokenizer.from_pretrained(args.output_dir, do_lower_case=args.do_lower_case) tokenizer = tokenizer_class.from_pretrained(args.output_dir)
else: model.to(args.device)
model = BertForMultipleChoice.from_pretrained(args.bert_model, num_choices=4)
model.to(device)
if args.do_eval and (args.local_rank == -1 or torch.distributed.get_rank() == 0): # Evaluation - we can ask to evaluate all the checkpoints (sub-directories) in a directory
eval_examples = read_swag_examples(os.path.join(args.data_dir, 'val.csv'), is_training = True) results = {}
eval_features = convert_examples_to_features( if args.do_eval and args.local_rank in [-1, 0]:
eval_examples, tokenizer, args.max_seq_length, True) if args.do_train:
logger.info("***** Running evaluation *****") checkpoints = [args.output_dir]
logger.info(" Num examples = %d", len(eval_examples)) else:
logger.info(" Batch size = %d", args.eval_batch_size) # if do_train is False and do_eval is true, load model directly from pretrained.
all_input_ids = torch.tensor(select_field(eval_features, 'input_ids'), dtype=torch.long) checkpoints = [args.model_name_or_path]
all_input_mask = torch.tensor(select_field(eval_features, 'input_mask'), dtype=torch.long)
all_segment_ids = torch.tensor(select_field(eval_features, 'segment_ids'), dtype=torch.long)
all_label = torch.tensor([f.label for f in eval_features], dtype=torch.long)
eval_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_label)
# Run prediction for full data
eval_sampler = SequentialSampler(eval_data)
eval_dataloader = DataLoader(eval_data, sampler=eval_sampler, batch_size=args.eval_batch_size)
model.eval() if args.eval_all_checkpoints:
eval_loss, eval_accuracy = 0, 0 checkpoints = list(os.path.dirname(c) for c in sorted(glob.glob(args.output_dir + '/**/' + WEIGHTS_NAME, recursive=True)))
nb_eval_steps, nb_eval_examples = 0, 0 logging.getLogger("pytorch_transformers.modeling_utils").setLevel(logging.WARN) # Reduce model loading logs
for input_ids, input_mask, segment_ids, label_ids in tqdm(eval_dataloader, desc="Evaluating"):
input_ids = input_ids.to(device)
input_mask = input_mask.to(device)
segment_ids = segment_ids.to(device)
label_ids = label_ids.to(device)
with torch.no_grad(): logger.info("Evaluate the following checkpoints: %s", checkpoints)
tmp_eval_loss = model(input_ids, segment_ids, input_mask, label_ids)
logits = model(input_ids, segment_ids, input_mask)
logits = logits.detach().cpu().numpy() for checkpoint in checkpoints:
label_ids = label_ids.to('cpu').numpy() # Reload the model
tmp_eval_accuracy = accuracy(logits, label_ids) global_step = checkpoint.split('-')[-1] if len(checkpoints) > 1 else ""
model = model_class.from_pretrained(checkpoint)
tokenizer = tokenizer_class.from_pretrained(checkpoint)
model.to(args.device)
eval_loss += tmp_eval_loss.mean().item() # Evaluate
eval_accuracy += tmp_eval_accuracy result = evaluate(args, model, tokenizer, prefix=global_step)
nb_eval_examples += input_ids.size(0) result = dict((k + ('_{}'.format(global_step) if global_step else ''), v) for k, v in result.items())
nb_eval_steps += 1 results.update(result)
eval_loss = eval_loss / nb_eval_steps logger.info("Results: {}".format(results))
eval_accuracy = eval_accuracy / nb_eval_examples
result = {'eval_loss': eval_loss, return results
'eval_accuracy': eval_accuracy,
'global_step': global_step,
'loss': tr_loss/global_step}
output_eval_file = os.path.join(args.output_dir, "eval_results.txt")
with open(output_eval_file, "w") as writer:
logger.info("***** Eval results *****")
for key in sorted(result.keys()):
logger.info(" %s = %s", key, str(result[key]))
writer.write("%s = %s\n" % (key, str(result[key])))
if __name__ == "__main__": if __name__ == "__main__":
main() main()