mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-30 17:52:35 +06:00
Tests for ALBERT in TF2 + fixes
This commit is contained in:
parent
7bddbf5961
commit
b18509c208
@ -169,6 +169,7 @@ if is_tf_available():
|
||||
TF_CTRL_PRETRAINED_MODEL_ARCHIVE_MAP)
|
||||
|
||||
from .modeling_tf_albert import (TFAlbertPreTrainedModel, TFAlbertModel, TFAlbertForMaskedLM,
|
||||
TFAlbertForSequenceClassification,
|
||||
TF_ALBERT_PRETRAINED_MODEL_ARCHIVE_MAP)
|
||||
|
||||
# TF 2.0 <=> PyTorch conversion utilities
|
||||
|
@ -126,16 +126,8 @@ class TFAlbertEmbeddings(tf.keras.layers.Layer):
|
||||
"""
|
||||
batch_size = tf.shape(inputs)[0]
|
||||
length = tf.shape(inputs)[1]
|
||||
|
||||
print(inputs.shape)
|
||||
|
||||
x = tf.reshape(inputs, [-1, self.config.embedding_size])
|
||||
|
||||
print(x.shape, self.word_embeddings)
|
||||
|
||||
logits = tf.matmul(x, self.word_embeddings, transpose_b=True)
|
||||
|
||||
print([batch_size, length, self.config.vocab_size])
|
||||
return tf.reshape(logits, [batch_size, length, self.config.vocab_size])
|
||||
|
||||
|
||||
@ -460,20 +452,24 @@ class TFAlbertMLMHead(tf.keras.layers.Layer):
|
||||
|
||||
# The output weights are the same as the input embeddings, but there is
|
||||
# an output-only bias for each token.
|
||||
self.input_embeddings = input_embeddings
|
||||
self.decoder = input_embeddings
|
||||
|
||||
def build(self, input_shape):
|
||||
self.bias = self.add_weight(shape=(self.vocab_size,),
|
||||
initializer='zeros',
|
||||
trainable=True,
|
||||
name='bias')
|
||||
self.decoder_bias = self.add_weight(shape=(self.vocab_size,),
|
||||
initializer='zeros',
|
||||
trainable=True,
|
||||
name='decoder/bias')
|
||||
super(TFAlbertMLMHead, self).build(input_shape)
|
||||
|
||||
def call(self, hidden_states):
|
||||
hidden_states = self.dense(hidden_states)
|
||||
hidden_states = self.activation(hidden_states)
|
||||
hidden_states = self.LayerNorm(hidden_states)
|
||||
hidden_states = self.input_embeddings(hidden_states, mode="linear")
|
||||
hidden_states = self.decoder(hidden_states, mode="linear") + self.decoder_bias
|
||||
hidden_states = hidden_states + self.bias
|
||||
return hidden_states
|
||||
|
||||
@ -666,7 +662,7 @@ class TFAlbertModel(TFAlbertPreTrainedModel):
|
||||
[embedding_output, extended_attention_mask, head_mask], training=training)
|
||||
|
||||
sequence_output = encoder_outputs[0]
|
||||
pooled_output = self.pooler(sequence_output)
|
||||
pooled_output = self.pooler(sequence_output[:, 0])
|
||||
|
||||
# add hidden_states and attentions if they are here
|
||||
outputs = (sequence_output, pooled_output,) + encoder_outputs[1:]
|
||||
|
229
transformers/tests/modeling_tf_albert_test.py
Normal file
229
transformers/tests/modeling_tf_albert_test.py
Normal file
@ -0,0 +1,229 @@
|
||||
# coding=utf-8
|
||||
# Copyright 2018 The Google AI Language Team Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
|
||||
import unittest
|
||||
import shutil
|
||||
import pytest
|
||||
import sys
|
||||
|
||||
from .modeling_tf_common_test import (TFCommonTestCases, ids_tensor)
|
||||
from .configuration_common_test import ConfigTester
|
||||
|
||||
from transformers import AlbertConfig, is_tf_available
|
||||
|
||||
if is_tf_available():
|
||||
import tensorflow as tf
|
||||
from transformers.modeling_tf_albert import (TFAlbertModel, TFAlbertForMaskedLM,
|
||||
TFAlbertForSequenceClassification,
|
||||
TF_ALBERT_PRETRAINED_MODEL_ARCHIVE_MAP)
|
||||
else:
|
||||
pytestmark = pytest.mark.skip("Require TensorFlow")
|
||||
|
||||
|
||||
class TFAlbertModelTest(TFCommonTestCases.TFCommonModelTester):
|
||||
|
||||
all_model_classes = (
|
||||
TFAlbertModel,
|
||||
TFAlbertForMaskedLM,
|
||||
TFAlbertForSequenceClassification
|
||||
) if is_tf_available() else ()
|
||||
|
||||
class TFAlbertModelTester(object):
|
||||
|
||||
def __init__(self,
|
||||
parent,
|
||||
batch_size=13,
|
||||
seq_length=7,
|
||||
is_training=True,
|
||||
use_input_mask=True,
|
||||
use_token_type_ids=True,
|
||||
use_labels=True,
|
||||
vocab_size=99,
|
||||
hidden_size=32,
|
||||
num_hidden_layers=5,
|
||||
num_attention_heads=4,
|
||||
intermediate_size=37,
|
||||
hidden_act="gelu",
|
||||
hidden_dropout_prob=0.1,
|
||||
attention_probs_dropout_prob=0.1,
|
||||
max_position_embeddings=512,
|
||||
type_vocab_size=16,
|
||||
type_sequence_label_size=2,
|
||||
initializer_range=0.02,
|
||||
num_labels=3,
|
||||
num_choices=4,
|
||||
scope=None,
|
||||
):
|
||||
self.parent = parent
|
||||
self.batch_size = batch_size
|
||||
self.seq_length = seq_length
|
||||
self.is_training = is_training
|
||||
self.use_input_mask = use_input_mask
|
||||
self.use_token_type_ids = use_token_type_ids
|
||||
self.use_labels = use_labels
|
||||
self.vocab_size = vocab_size
|
||||
self.hidden_size = hidden_size
|
||||
self.num_hidden_layers = num_hidden_layers
|
||||
self.num_attention_heads = num_attention_heads
|
||||
self.intermediate_size = intermediate_size
|
||||
self.hidden_act = hidden_act
|
||||
self.hidden_dropout_prob = hidden_dropout_prob
|
||||
self.attention_probs_dropout_prob = attention_probs_dropout_prob
|
||||
self.max_position_embeddings = max_position_embeddings
|
||||
self.type_vocab_size = type_vocab_size
|
||||
self.type_sequence_label_size = type_sequence_label_size
|
||||
self.initializer_range = initializer_range
|
||||
self.num_labels = num_labels
|
||||
self.num_choices = num_choices
|
||||
self.scope = scope
|
||||
|
||||
def prepare_config_and_inputs(self):
|
||||
input_ids = ids_tensor(
|
||||
[self.batch_size, self.seq_length], self.vocab_size)
|
||||
|
||||
input_mask = None
|
||||
if self.use_input_mask:
|
||||
input_mask = ids_tensor(
|
||||
[self.batch_size, self.seq_length], vocab_size=2)
|
||||
|
||||
token_type_ids = None
|
||||
if self.use_token_type_ids:
|
||||
token_type_ids = ids_tensor(
|
||||
[self.batch_size, self.seq_length], self.type_vocab_size)
|
||||
|
||||
sequence_labels = None
|
||||
token_labels = None
|
||||
choice_labels = None
|
||||
if self.use_labels:
|
||||
sequence_labels = ids_tensor(
|
||||
[self.batch_size], self.type_sequence_label_size)
|
||||
token_labels = ids_tensor(
|
||||
[self.batch_size, self.seq_length], self.num_labels)
|
||||
choice_labels = ids_tensor([self.batch_size], self.num_choices)
|
||||
|
||||
config = AlbertConfig(
|
||||
vocab_size_or_config_json_file=self.vocab_size,
|
||||
hidden_size=self.hidden_size,
|
||||
num_hidden_layers=self.num_hidden_layers,
|
||||
num_attention_heads=self.num_attention_heads,
|
||||
intermediate_size=self.intermediate_size,
|
||||
hidden_act=self.hidden_act,
|
||||
hidden_dropout_prob=self.hidden_dropout_prob,
|
||||
attention_probs_dropout_prob=self.attention_probs_dropout_prob,
|
||||
max_position_embeddings=self.max_position_embeddings,
|
||||
type_vocab_size=self.type_vocab_size,
|
||||
initializer_range=self.initializer_range)
|
||||
|
||||
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
|
||||
|
||||
def create_and_check_albert_model(self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels):
|
||||
model = TFAlbertModel(config=config)
|
||||
# inputs = {'input_ids': input_ids,
|
||||
# 'attention_mask': input_mask,
|
||||
# 'token_type_ids': token_type_ids}
|
||||
# sequence_output, pooled_output = model(**inputs)
|
||||
inputs = {'input_ids': input_ids,
|
||||
'attention_mask': input_mask,
|
||||
'token_type_ids': token_type_ids}
|
||||
sequence_output, pooled_output = model(inputs)
|
||||
|
||||
inputs = [input_ids, input_mask]
|
||||
sequence_output, pooled_output = model(inputs)
|
||||
|
||||
sequence_output, pooled_output = model(input_ids)
|
||||
|
||||
result = {
|
||||
"sequence_output": sequence_output.numpy(),
|
||||
"pooled_output": pooled_output.numpy(),
|
||||
}
|
||||
self.parent.assertListEqual(
|
||||
list(result["sequence_output"].shape),
|
||||
[self.batch_size, self.seq_length, self.hidden_size])
|
||||
self.parent.assertListEqual(list(result["pooled_output"].shape), [
|
||||
self.batch_size, self.hidden_size])
|
||||
|
||||
def create_and_check_albert_for_masked_lm(self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels):
|
||||
model = TFAlbertForMaskedLM(config=config)
|
||||
inputs = {'input_ids': input_ids,
|
||||
'attention_mask': input_mask,
|
||||
'token_type_ids': token_type_ids}
|
||||
prediction_scores, = model(inputs)
|
||||
result = {
|
||||
"prediction_scores": prediction_scores.numpy(),
|
||||
}
|
||||
self.parent.assertListEqual(
|
||||
list(result["prediction_scores"].shape),
|
||||
[self.batch_size, self.seq_length, self.vocab_size])
|
||||
|
||||
def create_and_check_albert_for_sequence_classification(self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels):
|
||||
config.num_labels = self.num_labels
|
||||
model = TFAlbertForSequenceClassification(config=config)
|
||||
inputs = {'input_ids': input_ids,
|
||||
'attention_mask': input_mask,
|
||||
'token_type_ids': token_type_ids}
|
||||
logits, = model(inputs)
|
||||
result = {
|
||||
"logits": logits.numpy(),
|
||||
}
|
||||
self.parent.assertListEqual(
|
||||
list(result["logits"].shape),
|
||||
[self.batch_size, self.num_labels])
|
||||
|
||||
def prepare_config_and_inputs_for_common(self):
|
||||
config_and_inputs = self.prepare_config_and_inputs()
|
||||
(config, input_ids, token_type_ids, input_mask,
|
||||
sequence_labels, token_labels, choice_labels) = config_and_inputs
|
||||
inputs_dict = {'input_ids': input_ids,
|
||||
'token_type_ids': token_type_ids, 'attention_mask': input_mask}
|
||||
return config, inputs_dict
|
||||
|
||||
def setUp(self):
|
||||
self.model_tester = TFAlbertModelTest.TFAlbertModelTester(self)
|
||||
self.config_tester = ConfigTester(
|
||||
self, config_class=AlbertConfig, hidden_size=37)
|
||||
|
||||
def test_config(self):
|
||||
self.config_tester.run_common_tests()
|
||||
|
||||
def test_albert_model(self):
|
||||
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
||||
self.model_tester.create_and_check_albert_model(*config_and_inputs)
|
||||
|
||||
def test_for_masked_lm(self):
|
||||
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
||||
self.model_tester.create_and_check_albert_for_masked_lm(
|
||||
*config_and_inputs)
|
||||
|
||||
def test_for_sequence_classification(self):
|
||||
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
||||
self.model_tester.create_and_check_albert_for_sequence_classification(
|
||||
*config_and_inputs)
|
||||
|
||||
@pytest.mark.slow
|
||||
def test_model_from_pretrained(self):
|
||||
cache_dir = "/tmp/transformers_test/"
|
||||
# for model_name in list(TF_ALBERT_PRETRAINED_MODEL_ARCHIVE_MAP.keys())[:1]:
|
||||
for model_name in ['albert-base-uncased']:
|
||||
model = TFAlbertModel.from_pretrained(
|
||||
model_name, cache_dir=cache_dir)
|
||||
shutil.rmtree(cache_dir)
|
||||
self.assertIsNotNone(model)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
unittest.main()
|
Loading…
Reference in New Issue
Block a user