mirror of
https://github.com/huggingface/transformers.git
synced 2025-08-02 19:21:31 +06:00
Add new pre-trained models BERTweet and PhoBERT (#6129)
* Add BERTweet and PhoBERT models * Update modeling_auto.py Re-add `bart` to LM_MAPPING * Update tokenization_auto.py Re-add `from .configuration_mobilebert import MobileBertConfig` not sure why it's replaced by `from transformers.configuration_mobilebert import MobileBertConfig` * Add BERTweet and PhoBERT to pretrained_models.rst * Update tokenization_auto.py Remove BertweetTokenizer and PhobertTokenizer out of tokenization_auto.py (they are currently not supported by AutoTokenizer. * Update BertweetTokenizer - without nltk * Update model card for BERTweet * PhoBERT - with Auto mode - without import fastBPE * PhoBERT - with Auto mode - without import fastBPE * BERTweet - with Auto mode - without import fastBPE * Add PhoBERT and BERTweet to TF modeling auto * Improve Docstrings for PhobertTokenizer and BertweetTokenizer * Update PhoBERT and BERTweet model cards * Fixed a merge conflict in tokenization_auto * Used black to reformat BERTweet- and PhoBERT-related files * Used isort to reformat BERTweet- and PhoBERT-related files * Reformatted BERTweet- and PhoBERT-related files based on flake8 * Updated test files * Updated test files * Updated tf test files * Updated tf test files * Updated tf test files * Updated tf test files * Update commits from huggingface * Delete unnecessary files * Add tokenizers to auto and init files * Add test files for tokenizers * Revised model cards * Update save_vocabulary function in BertweetTokenizer and PhobertTokenizer and test files * Revised test files * Update orders of Phobert and Bertweet tokenizers in auto tokenization file
This commit is contained in:
parent
9397436ea5
commit
af2322c7a0
71
model_cards/vinai/bertweet-base/README.md
Normal file
71
model_cards/vinai/bertweet-base/README.md
Normal file
@ -0,0 +1,71 @@
|
||||
# <a name="introduction"></a> BERTweet: A pre-trained language model for English Tweets
|
||||
|
||||
- BERTweet is the first public large-scale language model pre-trained for English Tweets. BERTweet is trained based on the [RoBERTa](https://github.com/pytorch/fairseq/blob/master/examples/roberta/README.md) pre-training procedure, using the same model configuration as [BERT-base](https://github.com/google-research/bert).
|
||||
- The corpus used to pre-train BERTweet consists of 850M English Tweets (16B word tokens ~ 80GB), containing 845M Tweets streamed from 01/2012 to 08/2019 and 5M Tweets related the **COVID-19** pandemic.
|
||||
- BERTweet does better than its competitors RoBERTa-base and [XLM-R-base](https://arxiv.org/abs/1911.02116) and outperforms previous state-of-the-art models on three downstream Tweet NLP tasks of Part-of-speech tagging, Named entity recognition and text classification.
|
||||
|
||||
The general architecture and experimental results of BERTweet can be found in our EMNLP-2020 demo [paper](https://arxiv.org/abs/2005.10200):
|
||||
|
||||
@inproceedings{bertweet,
|
||||
title = {{BERTweet: A pre-trained language model for English Tweets}},
|
||||
author = {Dat Quoc Nguyen and Thanh Vu and Anh Tuan Nguyen},
|
||||
booktitle = {Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations},
|
||||
year = {2020}
|
||||
}
|
||||
|
||||
**Please CITE** our paper when BERTweet is used to help produce published results or is incorporated into other software.
|
||||
|
||||
For further information or requests, please go to [BERTweet's homepage](https://github.com/VinAIResearch/BERTweet)!
|
||||
|
||||
## <a name="install2"></a> Installation
|
||||
|
||||
- Python version >= 3.6
|
||||
- [PyTorch](http://pytorch.org/) version >= 1.4.0
|
||||
- `pip3 install transformers emoji`
|
||||
|
||||
## <a name="models2"></a> Pre-trained model
|
||||
|
||||
Model | #params | Arch. | Pre-training data
|
||||
---|---|---|---
|
||||
`vinai/bertweet-base` | 135M | base | 845M English Tweets (80GB)
|
||||
|
||||
|
||||
## <a name="usage2"></a> Example usage
|
||||
|
||||
|
||||
```python
|
||||
import torch
|
||||
from transformers import AutoModel, AutoTokenizer #, BertweetTokenizer
|
||||
|
||||
bertweet = AutoModel.from_pretrained("vinai/bertweet-base")
|
||||
tokenizer = AutoTokenizer.from_pretrained("vinai/bertweet-base")
|
||||
#tokenizer = BertweetTokenizer.from_pretrained("vinai/bertweet-base")
|
||||
|
||||
# INPUT TWEET IS ALREADY NORMALIZED!
|
||||
line = "SC has first two presumptive cases of coronavirus , DHEC confirms HTTPURL via @USER :cry:"
|
||||
|
||||
input_ids = torch.tensor([tokenizer.encode(line)])
|
||||
|
||||
with torch.no_grad():
|
||||
features = bertweet(input_ids) # Models outputs are now tuples
|
||||
```
|
||||
|
||||
## <a name="preprocess"></a> Normalize raw input Tweets
|
||||
|
||||
Before applying `fastBPE` to the pre-training corpus of 850M English Tweets, we tokenized these Tweets using `TweetTokenizer` from the NLTK toolkit and used the `emoji` package to translate emotion icons into text strings (here, each icon is referred to as a word token). We also normalized the Tweets by converting user mentions and web/url links into special tokens `@USER` and `HTTPURL`, respectively. Thus it is recommended to also apply the same pre-processing step for BERTweet-based downstream applications w.r.t. the raw input Tweets.
|
||||
|
||||
```python
|
||||
import torch
|
||||
from transformers import BertweetTokenizer
|
||||
|
||||
# Load the BertweetTokenizer with a normalization mode if the input Tweet is raw
|
||||
tokenizer = BertweetTokenizer.from_pretrained("vinai/bertweet-base", normalization=True)
|
||||
|
||||
# BERTweet's tokenizer can be also loaded in the "Auto" mode
|
||||
# from transformers import AutoTokenizer
|
||||
# tokenizer = AutoTokenizer.from_pretrained("vinai/bertweet-base", normalization=True)
|
||||
|
||||
line = "SC has first two presumptive cases of coronavirus, DHEC confirms https://postandcourier.com/health/covid19/sc-has-first-two-presumptive-cases-of-coronavirus-dhec-confirms/article_bddfe4ae-5fd3-11ea-9ce4-5f495366cee6.html?utm_medium=social&utm_source=twitter&utm_campaign=user-share… via @postandcourier"
|
||||
|
||||
input_ids = torch.tensor([tokenizer.encode(line)])
|
||||
```
|
51
model_cards/vinai/phobert-base/README.md
Normal file
51
model_cards/vinai/phobert-base/README.md
Normal file
@ -0,0 +1,51 @@
|
||||
# <a name="introduction"></a> PhoBERT: Pre-trained language models for Vietnamese
|
||||
|
||||
Pre-trained PhoBERT models are the state-of-the-art language models for Vietnamese ([Pho](https://en.wikipedia.org/wiki/Pho), i.e. "Phở", is a popular food in Vietnam):
|
||||
|
||||
- Two PhoBERT versions of "base" and "large" are the first public large-scale monolingual language models pre-trained for Vietnamese. PhoBERT pre-training approach is based on [RoBERTa](https://github.com/pytorch/fairseq/blob/master/examples/roberta/README.md) which optimizes the [BERT](https://github.com/google-research/bert) pre-training procedure for more robust performance.
|
||||
- PhoBERT outperforms previous monolingual and multilingual approaches, obtaining new state-of-the-art performances on four downstream Vietnamese NLP tasks of Part-of-speech tagging, Dependency parsing, Named-entity recognition and Natural language inference.
|
||||
|
||||
The general architecture and experimental results of PhoBERT can be found in our EMNLP-2020 Findings [paper](https://arxiv.org/abs/2003.00744):
|
||||
|
||||
@article{phobert,
|
||||
title = {{PhoBERT: Pre-trained language models for Vietnamese}},
|
||||
author = {Dat Quoc Nguyen and Anh Tuan Nguyen},
|
||||
journal = {Findings of EMNLP},
|
||||
year = {2020}
|
||||
}
|
||||
|
||||
**Please CITE** our paper when PhoBERT is used to help produce published results or is incorporated into other software.
|
||||
|
||||
For further information or requests, please go to [PhoBERT's homepage](https://github.com/VinAIResearch/PhoBERT)!
|
||||
|
||||
## Installation <a name="install2"></a>
|
||||
- Python version >= 3.6
|
||||
- [PyTorch](http://pytorch.org/) version >= 1.4.0
|
||||
- `pip3 install transformers`
|
||||
|
||||
## Pre-trained models <a name="models2"></a>
|
||||
|
||||
|
||||
Model | #params | Arch. | Pre-training data
|
||||
---|---|---|---
|
||||
`vinai/phobert-base` | 135M | base | 20GB of texts
|
||||
`vinai/phobert-large` | 370M | large | 20GB of texts
|
||||
|
||||
## Example usage <a name="usage2"></a>
|
||||
|
||||
```python
|
||||
import torch
|
||||
from transformers import AutoModel, AutoTokenizer #, PhobertTokenizer
|
||||
|
||||
phobert = AutoModel.from_pretrained("vinai/phobert-base")
|
||||
tokenizer = AutoTokenizer.from_pretrained("vinai/phobert-base")
|
||||
#tokenizer = PhobertTokenizer.from_pretrained("vinai/phobert-base")
|
||||
|
||||
# INPUT TEXT MUST BE ALREADY WORD-SEGMENTED!
|
||||
line = "Tôi là sinh_viên trường đại_học Công_nghệ ."
|
||||
|
||||
input_ids = torch.tensor([tokenizer.encode(line)])
|
||||
|
||||
with torch.no_grad():
|
||||
features = phobert(input_ids) # Models outputs are now tuples
|
||||
```
|
51
model_cards/vinai/phobert-large/README.md
Normal file
51
model_cards/vinai/phobert-large/README.md
Normal file
@ -0,0 +1,51 @@
|
||||
# <a name="introduction"></a> PhoBERT: Pre-trained language models for Vietnamese
|
||||
|
||||
Pre-trained PhoBERT models are the state-of-the-art language models for Vietnamese ([Pho](https://en.wikipedia.org/wiki/Pho), i.e. "Phở", is a popular food in Vietnam):
|
||||
|
||||
- Two PhoBERT versions of "base" and "large" are the first public large-scale monolingual language models pre-trained for Vietnamese. PhoBERT pre-training approach is based on [RoBERTa](https://github.com/pytorch/fairseq/blob/master/examples/roberta/README.md) which optimizes the [BERT](https://github.com/google-research/bert) pre-training procedure for more robust performance.
|
||||
- PhoBERT outperforms previous monolingual and multilingual approaches, obtaining new state-of-the-art performances on four downstream Vietnamese NLP tasks of Part-of-speech tagging, Dependency parsing, Named-entity recognition and Natural language inference.
|
||||
|
||||
The general architecture and experimental results of PhoBERT can be found in our EMNLP-2020 Findings [paper](https://arxiv.org/abs/2003.00744):
|
||||
|
||||
@article{phobert,
|
||||
title = {{PhoBERT: Pre-trained language models for Vietnamese}},
|
||||
author = {Dat Quoc Nguyen and Anh Tuan Nguyen},
|
||||
journal = {Findings of EMNLP},
|
||||
year = {2020}
|
||||
}
|
||||
|
||||
**Please CITE** our paper when PhoBERT is used to help produce published results or is incorporated into other software.
|
||||
|
||||
For further information or requests, please go to [PhoBERT's homepage](https://github.com/VinAIResearch/PhoBERT)!
|
||||
|
||||
## Installation <a name="install2"></a>
|
||||
- Python version >= 3.6
|
||||
- [PyTorch](http://pytorch.org/) version >= 1.4.0
|
||||
- `pip3 install transformers`
|
||||
|
||||
## Pre-trained models <a name="models2"></a>
|
||||
|
||||
|
||||
Model | #params | Arch. | Pre-training data
|
||||
---|---|---|---
|
||||
`vinai/phobert-base` | 135M | base | 20GB of texts
|
||||
`vinai/phobert-large` | 370M | large | 20GB of texts
|
||||
|
||||
## Example usage <a name="usage2"></a>
|
||||
|
||||
```python
|
||||
import torch
|
||||
from transformers import AutoModel, AutoTokenizer #, PhobertTokenizer
|
||||
|
||||
phobert = AutoModel.from_pretrained("vinai/phobert-large")
|
||||
tokenizer = AutoTokenizer.from_pretrained("vinai/phobert-large")
|
||||
#tokenizer = PhobertTokenizer.from_pretrained("vinai/phobert-base")
|
||||
|
||||
# INPUT TEXT MUST BE ALREADY WORD-SEGMENTED!
|
||||
line = "Tôi là sinh_viên trường đại_học Công_nghệ ."
|
||||
|
||||
input_ids = torch.tensor([tokenizer.encode(line)])
|
||||
|
||||
with torch.no_grad():
|
||||
features = phobert(input_ids) # Models outputs are now tuples
|
||||
```
|
@ -146,6 +146,7 @@ from .tokenization_bart import BartTokenizer, BartTokenizerFast
|
||||
from .tokenization_bert import BasicTokenizer, BertTokenizer, BertTokenizerFast, WordpieceTokenizer
|
||||
from .tokenization_bert_generation import BertGenerationTokenizer
|
||||
from .tokenization_bert_japanese import BertJapaneseTokenizer, CharacterTokenizer, MecabTokenizer
|
||||
from .tokenization_bertweet import BertweetTokenizer
|
||||
from .tokenization_camembert import CamembertTokenizer
|
||||
from .tokenization_ctrl import CTRLTokenizer
|
||||
from .tokenization_distilbert import DistilBertTokenizer, DistilBertTokenizerFast
|
||||
@ -168,6 +169,7 @@ from .tokenization_mbart import MBartTokenizer
|
||||
from .tokenization_mobilebert import MobileBertTokenizer, MobileBertTokenizerFast
|
||||
from .tokenization_openai import OpenAIGPTTokenizer, OpenAIGPTTokenizerFast
|
||||
from .tokenization_pegasus import PegasusTokenizer
|
||||
from .tokenization_phobert import PhobertTokenizer
|
||||
from .tokenization_reformer import ReformerTokenizer
|
||||
from .tokenization_retribert import RetriBertTokenizer, RetriBertTokenizerFast
|
||||
from .tokenization_roberta import RobertaTokenizer, RobertaTokenizerFast
|
||||
|
@ -55,6 +55,7 @@ from .tokenization_bart import BartTokenizer, BartTokenizerFast
|
||||
from .tokenization_bert import BertTokenizer, BertTokenizerFast
|
||||
from .tokenization_bert_generation import BertGenerationTokenizer
|
||||
from .tokenization_bert_japanese import BertJapaneseTokenizer
|
||||
from .tokenization_bertweet import BertweetTokenizer
|
||||
from .tokenization_camembert import CamembertTokenizer
|
||||
from .tokenization_ctrl import CTRLTokenizer
|
||||
from .tokenization_distilbert import DistilBertTokenizer, DistilBertTokenizerFast
|
||||
@ -70,6 +71,7 @@ from .tokenization_mbart import MBartTokenizer
|
||||
from .tokenization_mobilebert import MobileBertTokenizer, MobileBertTokenizerFast
|
||||
from .tokenization_openai import OpenAIGPTTokenizer, OpenAIGPTTokenizerFast
|
||||
from .tokenization_pegasus import PegasusTokenizer
|
||||
from .tokenization_phobert import PhobertTokenizer
|
||||
from .tokenization_reformer import ReformerTokenizer
|
||||
from .tokenization_retribert import RetriBertTokenizer, RetriBertTokenizerFast
|
||||
from .tokenization_roberta import RobertaTokenizer, RobertaTokenizerFast
|
||||
@ -98,6 +100,8 @@ TOKENIZER_MAPPING = OrderedDict(
|
||||
(MarianConfig, (MarianTokenizer, None)),
|
||||
(BartConfig, (BartTokenizer, BartTokenizerFast)),
|
||||
(LongformerConfig, (LongformerTokenizer, LongformerTokenizerFast)),
|
||||
(RobertaConfig, (BertweetTokenizer, None)),
|
||||
(RobertaConfig, (PhobertTokenizer, None)),
|
||||
(RobertaConfig, (RobertaTokenizer, RobertaTokenizerFast)),
|
||||
(ReformerConfig, (ReformerTokenizer, None)),
|
||||
(ElectraConfig, (ElectraTokenizer, ElectraTokenizerFast)),
|
||||
|
783
src/transformers/tokenization_bertweet.py
Normal file
783
src/transformers/tokenization_bertweet.py
Normal file
@ -0,0 +1,783 @@
|
||||
# coding=utf-8
|
||||
# Copyright (c) 2020, VinAI Research and the HuggingFace Inc. team.
|
||||
# Copyright 2018 The Open AI Team Authors and The HuggingFace Inc. team.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
""" Tokenization classes for BERTweet """
|
||||
|
||||
|
||||
import html
|
||||
import os
|
||||
import re
|
||||
from shutil import copyfile
|
||||
from typing import List, Optional
|
||||
|
||||
import regex
|
||||
|
||||
from .tokenization_utils import PreTrainedTokenizer
|
||||
from .utils import logging
|
||||
|
||||
|
||||
logger = logging.get_logger(__name__)
|
||||
|
||||
VOCAB_FILES_NAMES = {
|
||||
"vocab_file": "vocab.txt",
|
||||
"merges_file": "bpe.codes",
|
||||
}
|
||||
|
||||
PRETRAINED_VOCAB_FILES_MAP = {
|
||||
"vocab_file": {
|
||||
"vinai/bertweet-base": "https://s3.amazonaws.com/models.huggingface.co/bert/vinai/bertweet-base/vocab.txt",
|
||||
},
|
||||
"merges_file": {
|
||||
"vinai/bertweet-base": "https://s3.amazonaws.com/models.huggingface.co/bert/vinai/bertweet-base/bpe.codes",
|
||||
},
|
||||
}
|
||||
|
||||
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
|
||||
"vinai/bertweet-base": 128,
|
||||
}
|
||||
|
||||
|
||||
def get_pairs(word):
|
||||
"""Return set of symbol pairs in a word.
|
||||
|
||||
Word is represented as tuple of symbols (symbols being variable-length strings).
|
||||
"""
|
||||
pairs = set()
|
||||
prev_char = word[0]
|
||||
for char in word[1:]:
|
||||
pairs.add((prev_char, char))
|
||||
prev_char = char
|
||||
|
||||
pairs = set(pairs)
|
||||
return pairs
|
||||
|
||||
|
||||
class BertweetTokenizer(PreTrainedTokenizer):
|
||||
"""
|
||||
Constructs a BERTweet tokenizer. Peculiarities:
|
||||
|
||||
- Byte-Pair-Encoding
|
||||
|
||||
This tokenizer inherits from :class:`~transformers.PreTrainedTokenizer` which contains most of the methods. Users
|
||||
should refer to the superclass for more information regarding methods.
|
||||
|
||||
Args:
|
||||
vocab_file (:obj:`str`):
|
||||
Path to the vocabulary file.
|
||||
merges_file (:obj:`str`):
|
||||
Path to the merges file.
|
||||
normalization (:obj:`boolean`, defaults to False)
|
||||
Whether to apply a normalization pre-process.
|
||||
bos_token (:obj:`string`, `optional`, defaults to "<s>"):
|
||||
The beginning of sequence token that was used during pre-training. Can be used a sequence classifier token.
|
||||
|
||||
.. note::
|
||||
|
||||
When building a sequence using special tokens, this is not the token that is used for the beginning
|
||||
of sequence. The token used is the :obj:`cls_token`.
|
||||
eos_token (:obj:`string`, `optional`, defaults to "</s>"):
|
||||
The end of sequence token.
|
||||
|
||||
.. note::
|
||||
|
||||
When building a sequence using special tokens, this is not the token that is used for the end
|
||||
of sequence. The token used is the :obj:`sep_token`.
|
||||
sep_token (:obj:`string`, `optional`, defaults to "</s>"):
|
||||
The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences
|
||||
for sequence classification or for a text and a question for question answering.
|
||||
It is also used as the last token of a sequence built with special tokens.
|
||||
cls_token (:obj:`string`, `optional`, defaults to "<s>"):
|
||||
The classifier token which is used when doing sequence classification (classification of the whole
|
||||
sequence instead of per-token classification). It is the first token of the sequence when built with
|
||||
special tokens.
|
||||
unk_token (:obj:`string`, `optional`, defaults to "<unk>"):
|
||||
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
|
||||
token instead.
|
||||
pad_token (:obj:`string`, `optional`, defaults to "<pad>"):
|
||||
The token used for padding, for example when batching sequences of different lengths.
|
||||
mask_token (:obj:`string`, `optional`, defaults to "<mask>"):
|
||||
The token used for masking values. This is the token used when training this model with masked language
|
||||
modeling. This is the token which the model will try to predict.
|
||||
"""
|
||||
|
||||
vocab_files_names = VOCAB_FILES_NAMES
|
||||
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
|
||||
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
vocab_file,
|
||||
merges_file,
|
||||
normalization=False,
|
||||
bos_token="<s>",
|
||||
eos_token="</s>",
|
||||
sep_token="</s>",
|
||||
cls_token="<s>",
|
||||
unk_token="<unk>",
|
||||
pad_token="<pad>",
|
||||
mask_token="<mask>",
|
||||
**kwargs
|
||||
):
|
||||
super().__init__(
|
||||
max_len=128,
|
||||
bos_token=bos_token,
|
||||
eos_token=eos_token,
|
||||
unk_token=unk_token,
|
||||
sep_token=sep_token,
|
||||
cls_token=cls_token,
|
||||
pad_token=pad_token,
|
||||
mask_token=mask_token,
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
try:
|
||||
from emoji import demojize
|
||||
|
||||
self.demojizer = demojize
|
||||
except ImportError:
|
||||
logger.warning(
|
||||
"emoji is not installed, thus not converting emoticons or emojis into text. Please install emoji: pip3 install emoji"
|
||||
)
|
||||
self.demojizer = None
|
||||
|
||||
self.vocab_file = vocab_file
|
||||
self.merges_file = merges_file
|
||||
|
||||
self.encoder = {}
|
||||
self.encoder[self.bos_token] = 0
|
||||
self.encoder[self.pad_token] = 1
|
||||
self.encoder[self.eos_token] = 2
|
||||
self.encoder[self.unk_token] = 3
|
||||
|
||||
self.add_from_file(vocab_file)
|
||||
|
||||
self.decoder = {v: k for k, v in self.encoder.items()}
|
||||
|
||||
with open(merges_file, encoding="utf-8") as merges_handle:
|
||||
merges = merges_handle.read().split("\n")[:-1]
|
||||
merges = [tuple(merge.split()[:-1]) for merge in merges]
|
||||
self.bpe_ranks = dict(zip(merges, range(len(merges))))
|
||||
self.cache = {}
|
||||
|
||||
self.normalization = normalization
|
||||
self.tweetPreprocessor = TweetTokenizer()
|
||||
|
||||
self.special_puncts = {"’": "'", "…": "..."}
|
||||
|
||||
def build_inputs_with_special_tokens(
|
||||
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
||||
) -> List[int]:
|
||||
"""
|
||||
Build model inputs from a sequence or a pair of sequence for sequence classification tasks
|
||||
by concatenating and adding special tokens.
|
||||
A BERTweet sequence has the following format:
|
||||
|
||||
- single sequence: ``<s> X </s>``
|
||||
- pair of sequences: ``<s> A </s></s> B </s>``
|
||||
|
||||
Args:
|
||||
token_ids_0 (:obj:`List[int]`):
|
||||
List of IDs to which the special tokens will be added
|
||||
token_ids_1 (:obj:`List[int]`, `optional`, defaults to :obj:`None`):
|
||||
Optional second list of IDs for sequence pairs.
|
||||
|
||||
Returns:
|
||||
:obj:`List[int]`: list of `input IDs <../glossary.html#input-ids>`__ with the appropriate special tokens.
|
||||
"""
|
||||
|
||||
if token_ids_1 is None:
|
||||
return [self.cls_token_id] + token_ids_0 + [self.sep_token_id]
|
||||
cls = [self.cls_token_id]
|
||||
sep = [self.sep_token_id]
|
||||
return cls + token_ids_0 + sep + sep + token_ids_1 + sep
|
||||
|
||||
def get_special_tokens_mask(
|
||||
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
|
||||
) -> List[int]:
|
||||
"""
|
||||
Retrieves sequence ids from a token list that has no special tokens added. This method is called when adding
|
||||
special tokens using the tokenizer ``prepare_for_model`` methods.
|
||||
|
||||
Args:
|
||||
token_ids_0 (:obj:`List[int]`):
|
||||
List of ids.
|
||||
token_ids_1 (:obj:`List[int]`, `optional`, defaults to :obj:`None`):
|
||||
Optional second list of IDs for sequence pairs.
|
||||
already_has_special_tokens (:obj:`bool`, `optional`, defaults to :obj:`False`):
|
||||
Set to True if the token list is already formatted with special tokens for the model
|
||||
|
||||
Returns:
|
||||
:obj:`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
|
||||
"""
|
||||
|
||||
if already_has_special_tokens:
|
||||
if token_ids_1 is not None:
|
||||
raise ValueError(
|
||||
"You should not supply a second sequence if the provided sequence of "
|
||||
"ids is already formated with special tokens for the model."
|
||||
)
|
||||
return list(map(lambda x: 1 if x in [self.sep_token_id, self.cls_token_id] else 0, token_ids_0))
|
||||
|
||||
if token_ids_1 is None:
|
||||
return [1] + ([0] * len(token_ids_0)) + [1]
|
||||
return [1] + ([0] * len(token_ids_0)) + [1, 1] + ([0] * len(token_ids_1)) + [1]
|
||||
|
||||
def create_token_type_ids_from_sequences(
|
||||
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
||||
) -> List[int]:
|
||||
"""
|
||||
Creates a mask from the two sequences passed to be used in a sequence-pair classification task.
|
||||
BERTweet does not make use of token type ids, therefore a list of zeros is returned.
|
||||
|
||||
Args:
|
||||
token_ids_0 (:obj:`List[int]`):
|
||||
List of ids.
|
||||
token_ids_1 (:obj:`List[int]`, `optional`, defaults to :obj:`None`):
|
||||
Optional second list of IDs for sequence pairs.
|
||||
|
||||
Returns:
|
||||
:obj:`List[int]`: List of zeros.
|
||||
|
||||
"""
|
||||
|
||||
sep = [self.sep_token_id]
|
||||
cls = [self.cls_token_id]
|
||||
|
||||
if token_ids_1 is None:
|
||||
return len(cls + token_ids_0 + sep) * [0]
|
||||
return len(cls + token_ids_0 + sep + sep + token_ids_1 + sep) * [0]
|
||||
|
||||
@property
|
||||
def vocab_size(self):
|
||||
return len(self.encoder)
|
||||
|
||||
def get_vocab(self):
|
||||
return dict(self.encoder, **self.added_tokens_encoder)
|
||||
|
||||
def bpe(self, token):
|
||||
if token in self.cache:
|
||||
return self.cache[token]
|
||||
word = tuple(token)
|
||||
word = tuple(list(word[:-1]) + [word[-1] + "</w>"])
|
||||
pairs = get_pairs(word)
|
||||
|
||||
if not pairs:
|
||||
return token
|
||||
|
||||
while True:
|
||||
bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float("inf")))
|
||||
if bigram not in self.bpe_ranks:
|
||||
break
|
||||
first, second = bigram
|
||||
new_word = []
|
||||
i = 0
|
||||
while i < len(word):
|
||||
try:
|
||||
j = word.index(first, i)
|
||||
except ValueError:
|
||||
new_word.extend(word[i:])
|
||||
break
|
||||
else:
|
||||
new_word.extend(word[i:j])
|
||||
i = j
|
||||
|
||||
if word[i] == first and i < len(word) - 1 and word[i + 1] == second:
|
||||
new_word.append(first + second)
|
||||
i += 2
|
||||
else:
|
||||
new_word.append(word[i])
|
||||
i += 1
|
||||
new_word = tuple(new_word)
|
||||
word = new_word
|
||||
if len(word) == 1:
|
||||
break
|
||||
else:
|
||||
pairs = get_pairs(word)
|
||||
word = "@@ ".join(word)
|
||||
word = word[:-4]
|
||||
self.cache[token] = word
|
||||
return word
|
||||
|
||||
def _tokenize(self, text):
|
||||
"""Tokenize a string."""
|
||||
if self.normalization: # Perform Tweet normalization before performing BPE
|
||||
text = self.normalizeTweet(text)
|
||||
|
||||
split_tokens = []
|
||||
words = re.findall(r"\S+\n?", text)
|
||||
for token in words:
|
||||
split_tokens.extend([t for t in self.bpe(token).split(" ")])
|
||||
return split_tokens
|
||||
|
||||
def normalizeTweet(self, tweet):
|
||||
"""
|
||||
Normalize a raw Tweet
|
||||
"""
|
||||
for punct in self.special_puncts:
|
||||
tweet = tweet.replace(punct, self.special_puncts[punct])
|
||||
|
||||
tokens = self.tweetPreprocessor.tokenize(tweet)
|
||||
normTweet = " ".join([self.normalizeToken(token) for token in tokens])
|
||||
|
||||
normTweet = (
|
||||
normTweet.replace("cannot ", "can not ")
|
||||
.replace("n't ", " n't ")
|
||||
.replace("n 't ", " n't ")
|
||||
.replace("ca n't", "can't")
|
||||
.replace("ai n't", "ain't")
|
||||
)
|
||||
normTweet = (
|
||||
normTweet.replace("'m ", " 'm ")
|
||||
.replace("'re ", " 're ")
|
||||
.replace("'s ", " 's ")
|
||||
.replace("'ll ", " 'll ")
|
||||
.replace("'d ", " 'd ")
|
||||
.replace("'ve ", " 've ")
|
||||
)
|
||||
normTweet = (
|
||||
normTweet.replace(" p . m .", " p.m.")
|
||||
.replace(" p . m ", " p.m ")
|
||||
.replace(" a . m .", " a.m.")
|
||||
.replace(" a . m ", " a.m ")
|
||||
)
|
||||
|
||||
return " ".join(normTweet.split())
|
||||
|
||||
def normalizeToken(self, token):
|
||||
"""
|
||||
Normalize tokens in a Tweet
|
||||
"""
|
||||
lowercased_token = token.lower()
|
||||
if token.startswith("@"):
|
||||
return "@USER"
|
||||
elif lowercased_token.startswith("http") or lowercased_token.startswith("www"):
|
||||
return "HTTPURL"
|
||||
elif len(token) == 1:
|
||||
if token in self.special_puncts:
|
||||
return self.special_puncts[token]
|
||||
if self.demojizer is not None:
|
||||
return self.demojizer(token)
|
||||
else:
|
||||
return token
|
||||
else:
|
||||
return token
|
||||
|
||||
def _convert_token_to_id(self, token):
|
||||
""" Converts a token (str) in an id using the vocab. """
|
||||
return self.encoder.get(token, self.encoder.get(self.unk_token))
|
||||
|
||||
def _convert_id_to_token(self, index):
|
||||
"""Converts an index (integer) in a token (str) using the vocab."""
|
||||
return self.decoder.get(index, self.unk_token)
|
||||
|
||||
def convert_tokens_to_string(self, tokens):
|
||||
""" Converts a sequence of tokens (string) in a single string. """
|
||||
out_string = " ".join(tokens).replace("@@ ", "").strip()
|
||||
return out_string
|
||||
|
||||
def save_vocabulary(self, save_directory):
|
||||
"""
|
||||
Save the vocabulary and special tokens file to a directory.
|
||||
Args:
|
||||
save_directory (:obj:`str`):
|
||||
The directory in which to save the vocabulary.
|
||||
Returns:
|
||||
:obj:`Tuple(str)`: Paths to the files saved.
|
||||
"""
|
||||
if not os.path.isdir(save_directory):
|
||||
logger.error("Vocabulary path ({}) should be a directory".format(save_directory))
|
||||
return
|
||||
out_vocab_file = os.path.join(save_directory, VOCAB_FILES_NAMES["vocab_file"])
|
||||
out_merge_file = os.path.join(save_directory, VOCAB_FILES_NAMES["merges_file"])
|
||||
|
||||
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file):
|
||||
copyfile(self.vocab_file, out_vocab_file)
|
||||
|
||||
if os.path.abspath(self.merges_file) != os.path.abspath(out_merge_file):
|
||||
copyfile(self.merges_file, out_merge_file)
|
||||
|
||||
return out_vocab_file, out_merge_file
|
||||
|
||||
# def decode(self, token_ids, skip_special_tokens=False, clean_up_tokenization_spaces=True):
|
||||
# filtered_tokens = ' '.join(self.convert_ids_to_tokens(token_ids, skip_special_tokens=skip_special_tokens))
|
||||
# tokens_generated_so_far = re.sub('(@@ )', '', string=filtered_tokens)
|
||||
# tokens_generated_so_far = re.sub('(@@ ?$)', '', string=tokens_generated_so_far)
|
||||
# return ''.join(tokens_generated_so_far)
|
||||
|
||||
def add_from_file(self, f):
|
||||
"""
|
||||
Loads a pre-existing dictionary from a text file and adds its symbols
|
||||
to this instance.
|
||||
"""
|
||||
if isinstance(f, str):
|
||||
try:
|
||||
with open(f, "r", encoding="utf-8") as fd:
|
||||
self.add_from_file(fd)
|
||||
except FileNotFoundError as fnfe:
|
||||
raise fnfe
|
||||
except UnicodeError:
|
||||
raise Exception("Incorrect encoding detected in {}, please " "rebuild the dataset".format(f))
|
||||
return
|
||||
|
||||
lines = f.readlines()
|
||||
for lineTmp in lines:
|
||||
line = lineTmp.strip()
|
||||
idx = line.rfind(" ")
|
||||
if idx == -1:
|
||||
raise ValueError("Incorrect dictionary format, expected '<token> <cnt>'")
|
||||
word = line[:idx]
|
||||
self.encoder[word] = len(self.encoder)
|
||||
|
||||
|
||||
# Natural Language Toolkit: Twitter Tokenizer
|
||||
#
|
||||
# Copyright (C) 2001-2020 NLTK Project
|
||||
# Author: Christopher Potts <cgpotts@stanford.edu>
|
||||
# Ewan Klein <ewan@inf.ed.ac.uk> (modifications)
|
||||
# Pierpaolo Pantone <> (modifications)
|
||||
# URL: <http://nltk.org/>
|
||||
# For license information, see LICENSE.TXT
|
||||
#
|
||||
|
||||
|
||||
"""
|
||||
Twitter-aware tokenizer, designed to be flexible and easy to adapt to new
|
||||
domains and tasks. The basic logic is this:
|
||||
|
||||
1. The tuple regex_strings defines a list of regular expression
|
||||
strings.
|
||||
|
||||
2. The regex_strings strings are put, in order, into a compiled
|
||||
regular expression object called word_re.
|
||||
|
||||
3. The tokenization is done by word_re.findall(s), where s is the
|
||||
user-supplied string, inside the tokenize() method of the class
|
||||
Tokenizer.
|
||||
|
||||
4. When instantiating Tokenizer objects, there is a single option:
|
||||
preserve_case. By default, it is set to True. If it is set to
|
||||
False, then the tokenizer will downcase everything except for
|
||||
emoticons.
|
||||
|
||||
"""
|
||||
|
||||
|
||||
######################################################################
|
||||
#
|
||||
# import regex # https://github.com/nltk/nltk/issues/2409
|
||||
# import html
|
||||
#
|
||||
######################################################################
|
||||
# The following strings are components in the regular expression
|
||||
# that is used for tokenizing. It's important that phone_number
|
||||
# appears first in the final regex (since it can contain whitespace).
|
||||
# It also could matter that tags comes after emoticons, due to the
|
||||
# possibility of having text like
|
||||
#
|
||||
# <:| and some text >:)
|
||||
#
|
||||
# Most importantly, the final element should always be last, since it
|
||||
# does a last ditch whitespace-based tokenization of whatever is left.
|
||||
|
||||
# ToDo: Update with http://en.wikipedia.org/wiki/List_of_emoticons ?
|
||||
|
||||
# This particular element is used in a couple ways, so we define it
|
||||
# with a name:
|
||||
EMOTICONS = r"""
|
||||
(?:
|
||||
[<>]?
|
||||
[:;=8] # eyes
|
||||
[\-o\*\']? # optional nose
|
||||
[\)\]\(\[dDpP/\:\}\{@\|\\] # mouth
|
||||
|
|
||||
[\)\]\(\[dDpP/\:\}\{@\|\\] # mouth
|
||||
[\-o\*\']? # optional nose
|
||||
[:;=8] # eyes
|
||||
[<>]?
|
||||
|
|
||||
<3 # heart
|
||||
)"""
|
||||
|
||||
# URL pattern due to John Gruber, modified by Tom Winzig. See
|
||||
# https://gist.github.com/winzig/8894715
|
||||
|
||||
URLS = r""" # Capture 1: entire matched URL
|
||||
(?:
|
||||
https?: # URL protocol and colon
|
||||
(?:
|
||||
/{1,3} # 1-3 slashes
|
||||
| # or
|
||||
[a-z0-9%] # Single letter or digit or '%'
|
||||
# (Trying not to match e.g. "URI::Escape")
|
||||
)
|
||||
| # or
|
||||
# looks like domain name followed by a slash:
|
||||
[a-z0-9.\-]+[.]
|
||||
(?:[a-z]{2,13})
|
||||
/
|
||||
)
|
||||
(?: # One or more:
|
||||
[^\s()<>{}\[\]]+ # Run of non-space, non-()<>{}[]
|
||||
| # or
|
||||
\([^\s()]*?\([^\s()]+\)[^\s()]*?\) # balanced parens, one level deep: (...(...)...)
|
||||
|
|
||||
\([^\s]+?\) # balanced parens, non-recursive: (...)
|
||||
)+
|
||||
(?: # End with:
|
||||
\([^\s()]*?\([^\s()]+\)[^\s()]*?\) # balanced parens, one level deep: (...(...)...)
|
||||
|
|
||||
\([^\s]+?\) # balanced parens, non-recursive: (...)
|
||||
| # or
|
||||
[^\s`!()\[\]{};:'".,<>?«»“”‘’] # not a space or one of these punct chars
|
||||
)
|
||||
| # OR, the following to match naked domains:
|
||||
(?:
|
||||
(?<!@) # not preceded by a @, avoid matching foo@_gmail.com_
|
||||
[a-z0-9]+
|
||||
(?:[.\-][a-z0-9]+)*
|
||||
[.]
|
||||
(?:[a-z]{2,13})
|
||||
\b
|
||||
/?
|
||||
(?!@) # not succeeded by a @,
|
||||
# avoid matching "foo.na" in "foo.na@example.com"
|
||||
)
|
||||
"""
|
||||
|
||||
# The components of the tokenizer:
|
||||
REGEXPS = (
|
||||
URLS,
|
||||
# Phone numbers:
|
||||
r"""
|
||||
(?:
|
||||
(?: # (international)
|
||||
\+?[01]
|
||||
[ *\-.\)]*
|
||||
)?
|
||||
(?: # (area code)
|
||||
[\(]?
|
||||
\d{3}
|
||||
[ *\-.\)]*
|
||||
)?
|
||||
\d{3} # exchange
|
||||
[ *\-.\)]*
|
||||
\d{4} # base
|
||||
)""",
|
||||
# ASCII Emoticons
|
||||
EMOTICONS,
|
||||
# HTML tags:
|
||||
r"""<[^>\s]+>""",
|
||||
# ASCII Arrows
|
||||
r"""[\-]+>|<[\-]+""",
|
||||
# Twitter username:
|
||||
r"""(?:@[\w_]+)""",
|
||||
# Twitter hashtags:
|
||||
r"""(?:\#+[\w_]+[\w\'_\-]*[\w_]+)""",
|
||||
# email addresses
|
||||
r"""[\w.+-]+@[\w-]+\.(?:[\w-]\.?)+[\w-]""",
|
||||
# Remaining word types:
|
||||
r"""
|
||||
(?:[^\W\d_](?:[^\W\d_]|['\-_])+[^\W\d_]) # Words with apostrophes or dashes.
|
||||
|
|
||||
(?:[+\-]?\d+[,/.:-]\d+[+\-]?) # Numbers, including fractions, decimals.
|
||||
|
|
||||
(?:[\w_]+) # Words without apostrophes or dashes.
|
||||
|
|
||||
(?:\.(?:\s*\.){1,}) # Ellipsis dots.
|
||||
|
|
||||
(?:\S) # Everything else that isn't whitespace.
|
||||
""",
|
||||
)
|
||||
|
||||
######################################################################
|
||||
# This is the core tokenizing regex:
|
||||
|
||||
WORD_RE = regex.compile(r"""(%s)""" % "|".join(REGEXPS), regex.VERBOSE | regex.I | regex.UNICODE)
|
||||
|
||||
# WORD_RE performs poorly on these patterns:
|
||||
HANG_RE = regex.compile(r"([^a-zA-Z0-9])\1{3,}")
|
||||
|
||||
# The emoticon string gets its own regex so that we can preserve case for
|
||||
# them as needed:
|
||||
EMOTICON_RE = regex.compile(EMOTICONS, regex.VERBOSE | regex.I | regex.UNICODE)
|
||||
|
||||
# These are for regularizing HTML entities to Unicode:
|
||||
ENT_RE = regex.compile(r"&(#?(x?))([^&;\s]+);")
|
||||
|
||||
|
||||
######################################################################
|
||||
# Functions for converting html entities
|
||||
######################################################################
|
||||
|
||||
|
||||
def _str_to_unicode(text, encoding=None, errors="strict"):
|
||||
if encoding is None:
|
||||
encoding = "utf-8"
|
||||
if isinstance(text, bytes):
|
||||
return text.decode(encoding, errors)
|
||||
return text
|
||||
|
||||
|
||||
def _replace_html_entities(text, keep=(), remove_illegal=True, encoding="utf-8"):
|
||||
"""
|
||||
Remove entities from text by converting them to their
|
||||
corresponding unicode character.
|
||||
|
||||
:param text: a unicode string or a byte string encoded in the given
|
||||
`encoding` (which defaults to 'utf-8').
|
||||
|
||||
:param list keep: list of entity names which should not be replaced.\
|
||||
This supports both numeric entities (``&#nnnn;`` and ``&#hhhh;``)
|
||||
and named entities (such as `` `` or ``>``).
|
||||
|
||||
:param bool remove_illegal: If `True`, entities that can't be converted are\
|
||||
removed. Otherwise, entities that can't be converted are kept "as
|
||||
is".
|
||||
|
||||
:returns: A unicode string with the entities removed.
|
||||
|
||||
See https://github.com/scrapy/w3lib/blob/master/w3lib/html.py
|
||||
|
||||
>>> from nltk.tokenize.casual import _replace_html_entities
|
||||
>>> _replace_html_entities(b'Price: £100')
|
||||
'Price: \\xa3100'
|
||||
>>> print(_replace_html_entities(b'Price: £100'))
|
||||
Price: £100
|
||||
>>>
|
||||
"""
|
||||
|
||||
def _convert_entity(match):
|
||||
entity_body = match.group(3)
|
||||
if match.group(1):
|
||||
try:
|
||||
if match.group(2):
|
||||
number = int(entity_body, 16)
|
||||
else:
|
||||
number = int(entity_body, 10)
|
||||
# Numeric character references in the 80-9F range are typically
|
||||
# interpreted by browsers as representing the characters mapped
|
||||
# to bytes 80-9F in the Windows-1252 encoding. For more info
|
||||
# see: https://en.wikipedia.org/wiki/ISO/IEC_8859-1#Similar_character_sets
|
||||
if 0x80 <= number <= 0x9F:
|
||||
return bytes((number,)).decode("cp1252")
|
||||
except ValueError:
|
||||
number = None
|
||||
else:
|
||||
if entity_body in keep:
|
||||
return match.group(0)
|
||||
else:
|
||||
number = html.entities.name2codepoint.get(entity_body)
|
||||
if number is not None:
|
||||
try:
|
||||
return chr(number)
|
||||
except (ValueError, OverflowError):
|
||||
pass
|
||||
|
||||
return "" if remove_illegal else match.group(0)
|
||||
|
||||
return ENT_RE.sub(_convert_entity, _str_to_unicode(text, encoding))
|
||||
|
||||
|
||||
######################################################################
|
||||
|
||||
|
||||
class TweetTokenizer:
|
||||
r"""
|
||||
Tokenizer for tweets.
|
||||
|
||||
>>> from nltk.tokenize import TweetTokenizer
|
||||
>>> tknzr = TweetTokenizer()
|
||||
>>> s0 = "This is a cooool #dummysmiley: :-) :-P <3 and some arrows < > -> <--"
|
||||
>>> tknzr.tokenize(s0)
|
||||
['This', 'is', 'a', 'cooool', '#dummysmiley', ':', ':-)', ':-P', '<3', 'and', 'some', 'arrows', '<', '>', '->', '<--']
|
||||
|
||||
Examples using `strip_handles` and `reduce_len parameters`:
|
||||
|
||||
>>> tknzr = TweetTokenizer(strip_handles=True, reduce_len=True)
|
||||
>>> s1 = '@remy: This is waaaaayyyy too much for you!!!!!!'
|
||||
>>> tknzr.tokenize(s1)
|
||||
[':', 'This', 'is', 'waaayyy', 'too', 'much', 'for', 'you', '!', '!', '!']
|
||||
"""
|
||||
|
||||
def __init__(self, preserve_case=True, reduce_len=False, strip_handles=False):
|
||||
self.preserve_case = preserve_case
|
||||
self.reduce_len = reduce_len
|
||||
self.strip_handles = strip_handles
|
||||
|
||||
def tokenize(self, text):
|
||||
"""
|
||||
:param text: str
|
||||
:rtype: list(str)
|
||||
:return: a tokenized list of strings; concatenating this list returns\
|
||||
the original string if `preserve_case=False`
|
||||
"""
|
||||
# Fix HTML character entities:
|
||||
text = _replace_html_entities(text)
|
||||
# Remove username handles
|
||||
if self.strip_handles:
|
||||
text = remove_handles(text)
|
||||
# Normalize word lengthening
|
||||
if self.reduce_len:
|
||||
text = reduce_lengthening(text)
|
||||
# Shorten problematic sequences of characters
|
||||
safe_text = HANG_RE.sub(r"\1\1\1", text)
|
||||
# Tokenize:
|
||||
words = WORD_RE.findall(safe_text)
|
||||
# Possibly alter the case, but avoid changing emoticons like :D into :d:
|
||||
if not self.preserve_case:
|
||||
words = list(map((lambda x: x if EMOTICON_RE.search(x) else x.lower()), words))
|
||||
return words
|
||||
|
||||
|
||||
######################################################################
|
||||
# Normalization Functions
|
||||
######################################################################
|
||||
|
||||
|
||||
def reduce_lengthening(text):
|
||||
"""
|
||||
Replace repeated character sequences of length 3 or greater with sequences
|
||||
of length 3.
|
||||
"""
|
||||
pattern = regex.compile(r"(.)\1{2,}")
|
||||
return pattern.sub(r"\1\1\1", text)
|
||||
|
||||
|
||||
def remove_handles(text):
|
||||
"""
|
||||
Remove Twitter username handles from text.
|
||||
"""
|
||||
pattern = regex.compile(
|
||||
r"(?<![A-Za-z0-9_!@#\$%&*])@(([A-Za-z0-9_]){20}(?!@))|(?<![A-Za-z0-9_!@#\$%&*])@(([A-Za-z0-9_]){1,19})(?![A-Za-z0-9_]*@)"
|
||||
)
|
||||
# Substitute handles with ' ' to ensure that text on either side of removed handles are tokenized correctly
|
||||
return pattern.sub(" ", text)
|
||||
|
||||
|
||||
######################################################################
|
||||
# Tokenization Function
|
||||
######################################################################
|
||||
|
||||
|
||||
def casual_tokenize(text, preserve_case=True, reduce_len=False, strip_handles=False):
|
||||
"""
|
||||
Convenience function for wrapping the tokenizer.
|
||||
"""
|
||||
return TweetTokenizer(preserve_case=preserve_case, reduce_len=reduce_len, strip_handles=strip_handles).tokenize(
|
||||
text
|
||||
)
|
||||
|
||||
|
||||
###############################################################################
|
369
src/transformers/tokenization_phobert.py
Normal file
369
src/transformers/tokenization_phobert.py
Normal file
@ -0,0 +1,369 @@
|
||||
# coding=utf-8
|
||||
# Copyright (c) 2020, VinAI Research and the HuggingFace Inc. team.
|
||||
# Copyright 2018 The Open AI Team Authors and The HuggingFace Inc. team.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
""" Tokenization classes for PhoBERT """
|
||||
|
||||
|
||||
import os
|
||||
import re
|
||||
from shutil import copyfile
|
||||
from typing import List, Optional
|
||||
|
||||
from .tokenization_utils import PreTrainedTokenizer
|
||||
from .utils import logging
|
||||
|
||||
|
||||
logger = logging.get_logger(__name__)
|
||||
|
||||
VOCAB_FILES_NAMES = {
|
||||
"vocab_file": "vocab.txt",
|
||||
"merges_file": "bpe.codes",
|
||||
}
|
||||
|
||||
PRETRAINED_VOCAB_FILES_MAP = {
|
||||
"vocab_file": {
|
||||
"vinai/phobert-base": "https://s3.amazonaws.com/models.huggingface.co/bert/vinai/phobert-base/vocab.txt",
|
||||
"vinai/phobert-large": "https://s3.amazonaws.com/models.huggingface.co/bert/vinai/phobert-large/vocab.txt",
|
||||
},
|
||||
"merges_file": {
|
||||
"vinai/phobert-base": "https://s3.amazonaws.com/models.huggingface.co/bert/vinai/phobert-base/bpe.codes",
|
||||
"vinai/phobert-large": "https://s3.amazonaws.com/models.huggingface.co/bert/vinai/phobert-large/bpe.codes",
|
||||
},
|
||||
}
|
||||
|
||||
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
|
||||
"vinai/phobert-base": 256,
|
||||
"vinai/phobert-large": 256,
|
||||
}
|
||||
|
||||
|
||||
def get_pairs(word):
|
||||
"""Return set of symbol pairs in a word.
|
||||
|
||||
Word is represented as tuple of symbols (symbols being variable-length strings).
|
||||
"""
|
||||
pairs = set()
|
||||
prev_char = word[0]
|
||||
for char in word[1:]:
|
||||
pairs.add((prev_char, char))
|
||||
prev_char = char
|
||||
|
||||
pairs = set(pairs)
|
||||
return pairs
|
||||
|
||||
|
||||
class PhobertTokenizer(PreTrainedTokenizer):
|
||||
"""
|
||||
Constructs a PhoBERT tokenizer. Peculiarities:
|
||||
|
||||
- Byte-Pair-Encoding
|
||||
|
||||
This tokenizer inherits from :class:`~transformers.PreTrainedTokenizer` which contains most of the methods. Users
|
||||
should refer to the superclass for more information regarding methods.
|
||||
|
||||
Args:
|
||||
vocab_file (:obj:`str`):
|
||||
Path to the vocabulary file.
|
||||
merges_file (:obj:`str`):
|
||||
Path to the merges file.
|
||||
bos_token (:obj:`string`, `optional`, defaults to "<s>"):
|
||||
The beginning of sequence token that was used during pre-training. Can be used a sequence classifier token.
|
||||
|
||||
.. note::
|
||||
|
||||
When building a sequence using special tokens, this is not the token that is used for the beginning
|
||||
of sequence. The token used is the :obj:`cls_token`.
|
||||
eos_token (:obj:`string`, `optional`, defaults to "</s>"):
|
||||
The end of sequence token.
|
||||
|
||||
.. note::
|
||||
|
||||
When building a sequence using special tokens, this is not the token that is used for the end
|
||||
of sequence. The token used is the :obj:`sep_token`.
|
||||
sep_token (:obj:`string`, `optional`, defaults to "</s>"):
|
||||
The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences
|
||||
for sequence classification or for a text and a question for question answering.
|
||||
It is also used as the last token of a sequence built with special tokens.
|
||||
cls_token (:obj:`string`, `optional`, defaults to "<s>"):
|
||||
The classifier token which is used when doing sequence classification (classification of the whole
|
||||
sequence instead of per-token classification). It is the first token of the sequence when built with
|
||||
special tokens.
|
||||
unk_token (:obj:`string`, `optional`, defaults to "<unk>"):
|
||||
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
|
||||
token instead.
|
||||
pad_token (:obj:`string`, `optional`, defaults to "<pad>"):
|
||||
The token used for padding, for example when batching sequences of different lengths.
|
||||
mask_token (:obj:`string`, `optional`, defaults to "<mask>"):
|
||||
The token used for masking values. This is the token used when training this model with masked language
|
||||
modeling. This is the token which the model will try to predict.
|
||||
"""
|
||||
|
||||
vocab_files_names = VOCAB_FILES_NAMES
|
||||
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
|
||||
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
vocab_file,
|
||||
merges_file,
|
||||
bos_token="<s>",
|
||||
eos_token="</s>",
|
||||
sep_token="</s>",
|
||||
cls_token="<s>",
|
||||
unk_token="<unk>",
|
||||
pad_token="<pad>",
|
||||
mask_token="<mask>",
|
||||
**kwargs
|
||||
):
|
||||
super().__init__(
|
||||
max_len=256,
|
||||
bos_token=bos_token,
|
||||
eos_token=eos_token,
|
||||
unk_token=unk_token,
|
||||
sep_token=sep_token,
|
||||
cls_token=cls_token,
|
||||
pad_token=pad_token,
|
||||
mask_token=mask_token,
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
self.vocab_file = vocab_file
|
||||
self.merges_file = merges_file
|
||||
|
||||
self.encoder = {}
|
||||
self.encoder[self.bos_token] = 0
|
||||
self.encoder[self.pad_token] = 1
|
||||
self.encoder[self.eos_token] = 2
|
||||
self.encoder[self.unk_token] = 3
|
||||
|
||||
self.add_from_file(vocab_file)
|
||||
|
||||
self.decoder = {v: k for k, v in self.encoder.items()}
|
||||
|
||||
with open(merges_file, encoding="utf-8") as merges_handle:
|
||||
merges = merges_handle.read().split("\n")[:-1]
|
||||
merges = [tuple(merge.split()[:-1]) for merge in merges]
|
||||
self.bpe_ranks = dict(zip(merges, range(len(merges))))
|
||||
self.cache = {}
|
||||
|
||||
def build_inputs_with_special_tokens(
|
||||
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
||||
) -> List[int]:
|
||||
"""
|
||||
Build model inputs from a sequence or a pair of sequence for sequence classification tasks
|
||||
by concatenating and adding special tokens.
|
||||
A PhoBERT sequence has the following format:
|
||||
|
||||
- single sequence: ``<s> X </s>``
|
||||
- pair of sequences: ``<s> A </s></s> B </s>``
|
||||
|
||||
Args:
|
||||
token_ids_0 (:obj:`List[int]`):
|
||||
List of IDs to which the special tokens will be added
|
||||
token_ids_1 (:obj:`List[int]`, `optional`, defaults to :obj:`None`):
|
||||
Optional second list of IDs for sequence pairs.
|
||||
|
||||
Returns:
|
||||
:obj:`List[int]`: list of `input IDs <../glossary.html#input-ids>`__ with the appropriate special tokens.
|
||||
"""
|
||||
|
||||
if token_ids_1 is None:
|
||||
return [self.cls_token_id] + token_ids_0 + [self.sep_token_id]
|
||||
cls = [self.cls_token_id]
|
||||
sep = [self.sep_token_id]
|
||||
return cls + token_ids_0 + sep + sep + token_ids_1 + sep
|
||||
|
||||
def get_special_tokens_mask(
|
||||
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
|
||||
) -> List[int]:
|
||||
"""
|
||||
Retrieves sequence ids from a token list that has no special tokens added. This method is called when adding
|
||||
special tokens using the tokenizer ``prepare_for_model`` methods.
|
||||
|
||||
Args:
|
||||
token_ids_0 (:obj:`List[int]`):
|
||||
List of ids.
|
||||
token_ids_1 (:obj:`List[int]`, `optional`, defaults to :obj:`None`):
|
||||
Optional second list of IDs for sequence pairs.
|
||||
already_has_special_tokens (:obj:`bool`, `optional`, defaults to :obj:`False`):
|
||||
Set to True if the token list is already formatted with special tokens for the model
|
||||
|
||||
Returns:
|
||||
:obj:`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
|
||||
"""
|
||||
|
||||
if already_has_special_tokens:
|
||||
if token_ids_1 is not None:
|
||||
raise ValueError(
|
||||
"You should not supply a second sequence if the provided sequence of "
|
||||
"ids is already formated with special tokens for the model."
|
||||
)
|
||||
return list(map(lambda x: 1 if x in [self.sep_token_id, self.cls_token_id] else 0, token_ids_0))
|
||||
|
||||
if token_ids_1 is None:
|
||||
return [1] + ([0] * len(token_ids_0)) + [1]
|
||||
return [1] + ([0] * len(token_ids_0)) + [1, 1] + ([0] * len(token_ids_1)) + [1]
|
||||
|
||||
def create_token_type_ids_from_sequences(
|
||||
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
||||
) -> List[int]:
|
||||
"""
|
||||
Creates a mask from the two sequences passed to be used in a sequence-pair classification task.
|
||||
PhoBERT does not make use of token type ids, therefore a list of zeros is returned.
|
||||
|
||||
Args:
|
||||
token_ids_0 (:obj:`List[int]`):
|
||||
List of ids.
|
||||
token_ids_1 (:obj:`List[int]`, `optional`, defaults to :obj:`None`):
|
||||
Optional second list of IDs for sequence pairs.
|
||||
|
||||
Returns:
|
||||
:obj:`List[int]`: List of zeros.
|
||||
|
||||
"""
|
||||
|
||||
sep = [self.sep_token_id]
|
||||
cls = [self.cls_token_id]
|
||||
|
||||
if token_ids_1 is None:
|
||||
return len(cls + token_ids_0 + sep) * [0]
|
||||
return len(cls + token_ids_0 + sep + sep + token_ids_1 + sep) * [0]
|
||||
|
||||
@property
|
||||
def vocab_size(self):
|
||||
return len(self.encoder)
|
||||
|
||||
def get_vocab(self):
|
||||
return dict(self.encoder, **self.added_tokens_encoder)
|
||||
|
||||
def bpe(self, token):
|
||||
if token in self.cache:
|
||||
return self.cache[token]
|
||||
word = tuple(token)
|
||||
word = tuple(list(word[:-1]) + [word[-1] + "</w>"])
|
||||
pairs = get_pairs(word)
|
||||
|
||||
if not pairs:
|
||||
return token
|
||||
|
||||
while True:
|
||||
bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float("inf")))
|
||||
if bigram not in self.bpe_ranks:
|
||||
break
|
||||
first, second = bigram
|
||||
new_word = []
|
||||
i = 0
|
||||
while i < len(word):
|
||||
try:
|
||||
j = word.index(first, i)
|
||||
except ValueError:
|
||||
new_word.extend(word[i:])
|
||||
break
|
||||
else:
|
||||
new_word.extend(word[i:j])
|
||||
i = j
|
||||
|
||||
if word[i] == first and i < len(word) - 1 and word[i + 1] == second:
|
||||
new_word.append(first + second)
|
||||
i += 2
|
||||
else:
|
||||
new_word.append(word[i])
|
||||
i += 1
|
||||
new_word = tuple(new_word)
|
||||
word = new_word
|
||||
if len(word) == 1:
|
||||
break
|
||||
else:
|
||||
pairs = get_pairs(word)
|
||||
word = "@@ ".join(word)
|
||||
word = word[:-4]
|
||||
self.cache[token] = word
|
||||
return word
|
||||
|
||||
def _tokenize(self, text):
|
||||
"""Tokenize a string."""
|
||||
split_tokens = []
|
||||
|
||||
words = re.findall(r"\S+\n?", text)
|
||||
|
||||
for token in words:
|
||||
split_tokens.extend([t for t in self.bpe(token).split(" ")])
|
||||
return split_tokens
|
||||
|
||||
def _convert_token_to_id(self, token):
|
||||
""" Converts a token (str) in an id using the vocab. """
|
||||
return self.encoder.get(token, self.encoder.get(self.unk_token))
|
||||
|
||||
def _convert_id_to_token(self, index):
|
||||
"""Converts an index (integer) in a token (str) using the vocab."""
|
||||
return self.decoder.get(index, self.unk_token)
|
||||
|
||||
def convert_tokens_to_string(self, tokens):
|
||||
""" Converts a sequence of tokens (string) in a single string. """
|
||||
out_string = " ".join(tokens).replace("@@ ", "").strip()
|
||||
return out_string
|
||||
|
||||
def save_vocabulary(self, save_directory):
|
||||
"""
|
||||
Save the vocabulary and special tokens file to a directory.
|
||||
Args:
|
||||
save_directory (:obj:`str`):
|
||||
The directory in which to save the vocabulary.
|
||||
Returns:
|
||||
:obj:`Tuple(str)`: Paths to the files saved.
|
||||
"""
|
||||
if not os.path.isdir(save_directory):
|
||||
logger.error("Vocabulary path ({}) should be a directory".format(save_directory))
|
||||
return
|
||||
out_vocab_file = os.path.join(save_directory, VOCAB_FILES_NAMES["vocab_file"])
|
||||
out_merge_file = os.path.join(save_directory, VOCAB_FILES_NAMES["merges_file"])
|
||||
|
||||
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file):
|
||||
copyfile(self.vocab_file, out_vocab_file)
|
||||
|
||||
if os.path.abspath(self.merges_file) != os.path.abspath(out_merge_file):
|
||||
copyfile(self.merges_file, out_merge_file)
|
||||
|
||||
return out_vocab_file, out_merge_file
|
||||
|
||||
# def decode(self, token_ids, skip_special_tokens=False, clean_up_tokenization_spaces=True):
|
||||
# filtered_tokens = ' '.join(self.convert_ids_to_tokens(token_ids, skip_special_tokens=skip_special_tokens))
|
||||
# tokens_generated_so_far = re.sub('(@@ )', '', string=filtered_tokens)
|
||||
# tokens_generated_so_far = re.sub('(@@ ?$)', '', string=tokens_generated_so_far)
|
||||
# return ''.join(tokens_generated_so_far)
|
||||
|
||||
def add_from_file(self, f):
|
||||
"""
|
||||
Loads a pre-existing dictionary from a text file and adds its symbols
|
||||
to this instance.
|
||||
"""
|
||||
if isinstance(f, str):
|
||||
try:
|
||||
with open(f, "r", encoding="utf-8") as fd:
|
||||
self.add_from_file(fd)
|
||||
except FileNotFoundError as fnfe:
|
||||
raise fnfe
|
||||
except UnicodeError:
|
||||
raise Exception("Incorrect encoding detected in {}, please " "rebuild the dataset".format(f))
|
||||
return
|
||||
|
||||
lines = f.readlines()
|
||||
for lineTmp in lines:
|
||||
line = lineTmp.strip()
|
||||
idx = line.rfind(" ")
|
||||
if idx == -1:
|
||||
raise ValueError("Incorrect dictionary format, expected '<token> <cnt>'")
|
||||
word = line[:idx]
|
||||
self.encoder[word] = len(self.encoder)
|
64
tests/test_tokenization_bertweet.py
Normal file
64
tests/test_tokenization_bertweet.py
Normal file
@ -0,0 +1,64 @@
|
||||
# coding=utf-8
|
||||
# Copyright 2018 Salesforce and HuggingFace Inc. team.
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
|
||||
import os
|
||||
import unittest
|
||||
|
||||
from transformers.tokenization_bertweet import VOCAB_FILES_NAMES, BertweetTokenizer
|
||||
|
||||
from .test_tokenization_common import TokenizerTesterMixin
|
||||
|
||||
|
||||
class BertweetTokenizationTest(TokenizerTesterMixin, unittest.TestCase):
|
||||
|
||||
tokenizer_class = BertweetTokenizer
|
||||
|
||||
def setUp(self):
|
||||
super().setUp()
|
||||
|
||||
# Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt
|
||||
vocab = ["I", "m", "V@@", "R@@", "r", "e@@"]
|
||||
vocab_tokens = dict(zip(vocab, range(len(vocab))))
|
||||
merges = ["#version: 0.2", "a m</w>"]
|
||||
self.special_tokens_map = {"unk_token": "<unk>"}
|
||||
|
||||
self.vocab_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"])
|
||||
self.merges_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["merges_file"])
|
||||
with open(self.vocab_file, "w", encoding="utf-8") as fp:
|
||||
for token in vocab_tokens:
|
||||
fp.write("{} {}".format(token, vocab_tokens[token]) + "\n")
|
||||
with open(self.merges_file, "w", encoding="utf-8") as fp:
|
||||
fp.write("\n".join(merges))
|
||||
|
||||
def get_tokenizer(self, **kwargs):
|
||||
kwargs.update(self.special_tokens_map)
|
||||
return BertweetTokenizer.from_pretrained(self.tmpdirname, **kwargs)
|
||||
|
||||
def get_input_output_texts(self, tokenizer):
|
||||
input_text = "I am VinAI Research"
|
||||
output_text = "I <unk> m V<unk> <unk> <unk> I Re<unk> e<unk> <unk> <unk> <unk>"
|
||||
return input_text, output_text
|
||||
|
||||
def test_full_tokenizer(self):
|
||||
tokenizer = BertweetTokenizer(self.vocab_file, self.merges_file, **self.special_tokens_map)
|
||||
text = "I am VinAI Research"
|
||||
bpe_tokens = "I a@@ m V@@ i@@ n@@ A@@ I R@@ e@@ s@@ e@@ a@@ r@@ c@@ h".split()
|
||||
tokens = tokenizer.tokenize(text)
|
||||
self.assertListEqual(tokens, bpe_tokens)
|
||||
|
||||
input_tokens = tokens + [tokenizer.unk_token]
|
||||
|
||||
input_bpe_tokens = [4, 3, 5, 6, 3, 3, 3, 4, 7, 9, 3, 9, 3, 3, 3, 3, 3]
|
||||
self.assertListEqual(tokenizer.convert_tokens_to_ids(input_tokens), input_bpe_tokens)
|
66
tests/test_tokenization_phobert.py
Normal file
66
tests/test_tokenization_phobert.py
Normal file
@ -0,0 +1,66 @@
|
||||
# coding=utf-8
|
||||
# Copyright 2018 Salesforce and HuggingFace Inc. team.
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
|
||||
import os
|
||||
import unittest
|
||||
|
||||
from transformers.tokenization_phobert import VOCAB_FILES_NAMES, PhobertTokenizer
|
||||
|
||||
from .test_tokenization_common import TokenizerTesterMixin
|
||||
|
||||
|
||||
class PhobertTokenizationTest(TokenizerTesterMixin, unittest.TestCase):
|
||||
|
||||
tokenizer_class = PhobertTokenizer
|
||||
|
||||
def setUp(self):
|
||||
super().setUp()
|
||||
|
||||
# Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt
|
||||
vocab = ["T@@", "i", "I", "R@@", "r", "e@@"]
|
||||
vocab_tokens = dict(zip(vocab, range(len(vocab))))
|
||||
merges = ["#version: 0.2", "l à</w>"]
|
||||
self.special_tokens_map = {"unk_token": "<unk>"}
|
||||
|
||||
self.vocab_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"])
|
||||
self.merges_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["merges_file"])
|
||||
|
||||
with open(self.vocab_file, "w", encoding="utf-8") as fp:
|
||||
for token in vocab_tokens:
|
||||
fp.write("{} {}".format(token, vocab_tokens[token]) + "\n")
|
||||
with open(self.merges_file, "w", encoding="utf-8") as fp:
|
||||
fp.write("\n".join(merges))
|
||||
|
||||
def get_tokenizer(self, **kwargs):
|
||||
kwargs.update(self.special_tokens_map)
|
||||
return PhobertTokenizer.from_pretrained(self.tmpdirname, **kwargs)
|
||||
|
||||
def get_input_output_texts(self, tokenizer):
|
||||
input_text = "Tôi là VinAI Research"
|
||||
output_text = "T<unk> i <unk> <unk> <unk> <unk> <unk> <unk> I Re<unk> e<unk> <unk> <unk> <unk>"
|
||||
return input_text, output_text
|
||||
|
||||
def test_full_tokenizer(self):
|
||||
tokenizer = PhobertTokenizer(self.vocab_file, self.merges_file, **self.special_tokens_map)
|
||||
text = "Tôi là VinAI Research"
|
||||
bpe_tokens = "T@@ ô@@ i l@@ à V@@ i@@ n@@ A@@ I R@@ e@@ s@@ e@@ a@@ r@@ c@@ h".split()
|
||||
tokens = tokenizer.tokenize(text)
|
||||
print(tokens)
|
||||
self.assertListEqual(tokens, bpe_tokens)
|
||||
|
||||
input_tokens = tokens + [tokenizer.unk_token]
|
||||
|
||||
input_bpe_tokens = [4, 3, 5, 3, 3, 3, 3, 3, 3, 6, 7, 9, 3, 9, 3, 3, 3, 3, 3]
|
||||
self.assertListEqual(tokenizer.convert_tokens_to_ids(input_tokens), input_bpe_tokens)
|
Loading…
Reference in New Issue
Block a user