Move torch.nn.utils.clip_grad_norm_

This commit is contained in:
Victor SANH 2020-01-08 15:47:53 -05:00 committed by Lysandre Debut
parent 164c794eb3
commit af1ee9e648

View File

@ -204,13 +204,16 @@ def train(args, train_dataset, model, tokenizer, teacher=None):
if args.fp16:
with amp.scale_loss(loss, optimizer) as scaled_loss:
scaled_loss.backward()
torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), args.max_grad_norm)
else:
loss.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)
tr_loss += loss.item()
if (step + 1) % args.gradient_accumulation_steps == 0:
if args.fp16:
torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), args.max_grad_norm)
else:
torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)
optimizer.step()
scheduler.step() # Update learning rate schedule
model.zero_grad()