fix train_new_from_iterator in the case of byte-level tokenizers (#17549)

This commit is contained in:
SaulLu 2022-06-08 15:30:41 +02:00 committed by GitHub
parent 264128cb9d
commit ae7bae8fe7
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
13 changed files with 56 additions and 0 deletions

View File

@ -21,6 +21,7 @@ import os
from collections import defaultdict
from typing import Any, Dict, List, Optional, Tuple, Union
import tokenizers.pre_tokenizers as pre_tokenizers_fast
from tokenizers import Encoding as EncodingFast
from tokenizers import Tokenizer as TokenizerFast
from tokenizers.decoders import Decoder as DecoderFast
@ -699,6 +700,8 @@ class PreTrainedTokenizerFast(PreTrainedTokenizerBase):
kwargs["end_of_word_suffix"] = tokenizer_json["model"]["end_of_word_suffix"]
if tokenizer_json["model"]["type"] == "Unigram" and unk_token is not None:
kwargs["unk_token"] = unk_token
if tokenizer_json["pre_tokenizer"]["type"] == "ByteLevel":
kwargs["initial_alphabet"] = pre_tokenizers_fast.ByteLevel.alphabet()
trainer_class = MODEL_TO_TRAINER_MAPPING[tokenizer_json["model"]["type"]]
trainer = trainer_class(vocab_size=vocab_size, special_tokens=special_tokens, **kwargs)

View File

@ -150,6 +150,7 @@ class BartModelTester:
def get_pipeline_config(self):
config = self.get_config()
config.max_position_embeddings = 100
config.vocab_size = 300
return config
def prepare_config_and_inputs_for_common(self):

View File

@ -140,6 +140,7 @@ class BlenderbotModelTester:
def get_pipeline_config(self):
config = self.get_config()
config.max_position_embeddings = 100
config.vocab_size = 300
return config
def prepare_config_and_inputs_for_common(self):

View File

@ -130,6 +130,11 @@ class DebertaModelTester(object):
pos_att_type=self.pos_att_type,
)
def get_pipeline_config(self):
config = self.get_config()
config.vocab_size = 300
return config
def check_loss_output(self, result):
self.parent.assertListEqual(list(result.loss.size()), [])

View File

@ -166,6 +166,11 @@ class GPT2ModelTester:
reorder_and_upcast_attn=reorder_and_upcast_attn,
)
def get_pipeline_config(self):
config = self.get_config()
config.vocab_size = 300
return config
def prepare_config_and_inputs_for_decoder(self):
(
config,

View File

@ -151,6 +151,11 @@ class GPTNeoModelTester:
attention_types=self.attention_types,
)
def get_pipeline_config(self):
config = self.get_config()
config.vocab_size = 300
return config
def prepare_config_and_inputs_for_decoder(self):
(
config,

View File

@ -155,6 +155,11 @@ class GPTJModelTester:
rotary_dim=self.rotary_dim,
)
def get_pipeline_config(self):
config = self.get_config()
config.vocab_size = 300
return config
def prepare_config_and_inputs_for_decoder(self):
(
config,

View File

@ -116,6 +116,11 @@ class IBertModelTester:
quant_mode=True,
)
def get_pipeline_config(self):
config = self.get_config()
config.vocab_size = 300
return config
def create_and_check_model(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):

View File

@ -163,6 +163,7 @@ class LEDModelTester:
def get_pipeline_config(self):
config = self.get_config()
config.max_position_embeddings = 100
config.vocab_size = 300
return config
def prepare_config_and_inputs_for_common(self):

View File

@ -113,6 +113,11 @@ class LongformerModelTester:
attention_window=self.attention_window,
)
def get_pipeline_config(self):
config = self.get_config()
config.vocab_size = 300
return config
def create_and_check_attention_mask_determinism(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):

View File

@ -112,6 +112,11 @@ class RobertaModelTester:
initializer_range=self.initializer_range,
)
def get_pipeline_config(self):
config = self.get_config()
config.vocab_size = 300
return config
def prepare_config_and_inputs_for_decoder(self):
(
config,

View File

@ -126,6 +126,11 @@ class YosoModelTester:
initializer_range=self.initializer_range,
)
def get_pipeline_config(self):
config = self.get_config()
config.vocab_size = 300
return config
def prepare_config_and_inputs_for_decoder(self):
(
config,

View File

@ -39,6 +39,7 @@ class PreTrainedTokenizationFastTest(TokenizerTesterMixin, unittest.TestCase):
self.test_rust_tokenizer = True
model_paths = ["robot-test/dummy-tokenizer-fast", "robot-test/dummy-tokenizer-wordlevel"]
self.bytelevel_bpe_model_name = "SaulLu/dummy-tokenizer-bytelevel-bpe"
# Inclusion of 2 tokenizers to test different types of models (Unigram and WordLevel for the moment)
self.tokenizers_list = [(PreTrainedTokenizerFast, model_path, {}) for model_path in model_paths]
@ -99,6 +100,15 @@ class PreTrainedTokenizationFastTest(TokenizerTesterMixin, unittest.TestCase):
shutil.rmtree(self.tmpdirname)
self.tmpdirname = tmpdirname_orig
def test_training_new_tokenizer_with_bytelevel(self):
tokenizer = self.rust_tokenizer_class.from_pretrained(self.bytelevel_bpe_model_name)
toy_text_iterator = ("a" for _ in range(1000))
new_tokenizer = tokenizer.train_new_from_iterator(text_iterator=toy_text_iterator, length=1000, vocab_size=50)
encoding_ids = new_tokenizer.encode("a🤗")
self.assertEqual(encoding_ids, [64, 172, 253, 97, 245])
@require_tokenizers
class TokenizerVersioningTest(unittest.TestCase):