Try to avoid/reduce some remaining CI job failures (#37202)

* try

* try

* Update tests/pipelines/test_pipelines_video_classification.py

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
This commit is contained in:
Yih-Dar 2025-04-02 14:39:57 +02:00 committed by GitHub
parent 6f5dc9c82e
commit adfc91cd46
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
3 changed files with 18 additions and 7 deletions

View File

@ -19,6 +19,7 @@ from huggingface_hub import VideoClassificationOutputElement, hf_hub_download
from transformers import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEFeatureExtractor from transformers import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEFeatureExtractor
from transformers.pipelines import VideoClassificationPipeline, pipeline from transformers.pipelines import VideoClassificationPipeline, pipeline
from transformers.testing_utils import ( from transformers.testing_utils import (
_run_pipeline_tests,
compare_pipeline_output_to_hub_spec, compare_pipeline_output_to_hub_spec,
is_pipeline_test, is_pipeline_test,
nested_simplify, nested_simplify,
@ -39,6 +40,11 @@ from .test_pipelines_common import ANY
class VideoClassificationPipelineTests(unittest.TestCase): class VideoClassificationPipelineTests(unittest.TestCase):
model_mapping = MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING model_mapping = MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING
if _run_pipeline_tests:
example_video_filepath = hf_hub_download(
repo_id="nateraw/video-demo", filename="archery.mp4", repo_type="dataset"
)
def get_test_pipeline( def get_test_pipeline(
self, self,
model, model,
@ -48,9 +54,6 @@ class VideoClassificationPipelineTests(unittest.TestCase):
processor=None, processor=None,
torch_dtype="float32", torch_dtype="float32",
): ):
example_video_filepath = hf_hub_download(
repo_id="nateraw/video-demo", filename="archery.mp4", repo_type="dataset"
)
video_classifier = VideoClassificationPipeline( video_classifier = VideoClassificationPipeline(
model=model, model=model,
tokenizer=tokenizer, tokenizer=tokenizer,
@ -61,8 +64,9 @@ class VideoClassificationPipelineTests(unittest.TestCase):
top_k=2, top_k=2,
) )
examples = [ examples = [
example_video_filepath, self.example_video_filepath,
"https://huggingface.co/datasets/nateraw/video-demo/resolve/main/archery.mp4", # TODO: re-enable this once we have a stable hub solution for CI
# "https://huggingface.co/datasets/nateraw/video-demo/resolve/main/archery.mp4",
] ]
return video_classifier, examples return video_classifier, examples

View File

@ -39,6 +39,9 @@ if is_librosa_available():
class AudioUtilsFunctionTester(unittest.TestCase): class AudioUtilsFunctionTester(unittest.TestCase):
# will be set in `def _load_datasamples`
_dataset = None
def test_hertz_to_mel(self): def test_hertz_to_mel(self):
self.assertEqual(hertz_to_mel(0.0), 0.0) self.assertEqual(hertz_to_mel(0.0), 0.0)
self.assertAlmostEqual(hertz_to_mel(100), 150.48910241) self.assertAlmostEqual(hertz_to_mel(100), 150.48910241)
@ -274,8 +277,9 @@ class AudioUtilsFunctionTester(unittest.TestCase):
def _load_datasamples(self, num_samples): def _load_datasamples(self, num_samples):
from datasets import load_dataset from datasets import load_dataset
ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") if self._dataset is None:
speech_samples = ds.sort("id").select(range(num_samples))[:num_samples]["audio"] self._dataset = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
speech_samples = self._dataset.sort("id").select(range(num_samples))[:num_samples]["audio"]
return [x["array"] for x in speech_samples] return [x["array"] for x in speech_samples]
def test_spectrogram_impulse(self): def test_spectrogram_impulse(self):

View File

@ -1,3 +1,5 @@
from huggingface_hub import hf_hub_download
from transformers.testing_utils import _run_pipeline_tests from transformers.testing_utils import _run_pipeline_tests
@ -7,3 +9,4 @@ if __name__ == "__main__":
_ = datasets.load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") _ = datasets.load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
_ = datasets.load_dataset("hf-internal-testing/fixtures_image_utils", split="test", revision="refs/pr/1") _ = datasets.load_dataset("hf-internal-testing/fixtures_image_utils", split="test", revision="refs/pr/1")
_ = hf_hub_download(repo_id="nateraw/video-demo", filename="archery.mp4", repo_type="dataset")