[video processor] fix tests (#38104)

* fix tests

* delete

* fix one more test

* fix qwen + some tests are failing irrespective of `VideoProcessor`

* delete file
This commit is contained in:
Raushan Turganbay 2025-05-14 12:24:07 +02:00 committed by GitHub
parent 9b5ce556aa
commit aaf224d570
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
6 changed files with 40 additions and 28 deletions

View File

@ -46,12 +46,15 @@ if TYPE_CHECKING:
else:
VIDEO_PROCESSOR_MAPPING_NAMES = OrderedDict(
[
("instructblip", "InstructBlipVideoVideoProcessor"),
("instructblipvideo", "InstructBlipVideoVideoProcessor"),
("internvl", "InternVLVideoProcessor"),
("llava_next_video", "LlavaNextVideoVideoProcessor"),
("llava_onevision", "LlavaOnevisionVideoProcessor"),
("qwen2_5_vl", "Qwen2_5_VLVideoProcessor"),
("qwen2_5_omni", "Qwen2VLVideoProcessor"),
("qwen2_5_vl", "Qwen2VLVideoProcessor"),
("qwen2_vl", "Qwen2VLVideoProcessor"),
("smolvlm", "SmolVLMVideoProcessor"),
("video_llava", "VideoLlavaVideoProcessor"),
]
)

View File

@ -156,21 +156,17 @@ class VideoLlavaProcessor(ProcessorMixin):
- **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`.
- **pixel_values_videos** -- Pixel values to be fed to a model. Returned when `videos` is not `None`.
"""
data = {}
if images is not None:
encoded_images = self.image_processor(images=images, return_tensors=return_tensors)
data.update(encoded_images)
if videos is not None:
encoded_videos = self.video_processor(videos=videos, return_tensors=return_tensors)
data.update(encoded_videos)
if isinstance(text, str):
text = [text]
elif not isinstance(text, list) and not isinstance(text[0], str):
raise ValueError("Invalid input text. Please provide a string, or a list of strings")
if encoded_images is not None:
data = {}
if images is not None:
encoded_images = self.image_processor(images=images, return_tensors=return_tensors)
data.update(encoded_images)
height, width = get_image_size(to_numpy_array(encoded_images.get("pixel_values_images")[0]))
num_image_tokens = (height // self.patch_size) * (width // self.patch_size)
num_image_tokens += self.num_additional_image_tokens
@ -178,7 +174,10 @@ class VideoLlavaProcessor(ProcessorMixin):
num_image_tokens -= 1
text = [sample.replace(self.image_token, self.image_token * num_image_tokens) for sample in text]
if encoded_videos is not None:
if videos is not None:
encoded_videos = self.video_processor(videos=videos, return_tensors=return_tensors)
data.update(encoded_videos)
one_video = encoded_videos.get("pixel_values_videos")[0]
if isinstance(encoded_videos.get("pixel_values_videos")[0], (list, tuple)):
one_video = np.array(one_video)

View File

@ -415,7 +415,7 @@ class LlavaNextVideoForConditionalGenerationIntegrationTest(unittest.TestCase):
"llava-hf/LLaVA-NeXT-Video-7B-hf", load_in_4bit=True, cache_dir="./"
)
inputs = self.processor(self.prompt_video, videos=self.video, return_tensors="pt")
inputs = self.processor(text=self.prompt_video, videos=self.video, return_tensors="pt")
# verify single forward pass
inputs = inputs.to(torch_device)
with torch.no_grad():
@ -438,7 +438,7 @@ class LlavaNextVideoForConditionalGenerationIntegrationTest(unittest.TestCase):
)
inputs = self.processor(
[self.prompt_video, self.prompt_video],
text=[self.prompt_video, self.prompt_video],
videos=[self.video, self.video],
return_tensors="pt",
padding=True,
@ -465,7 +465,7 @@ class LlavaNextVideoForConditionalGenerationIntegrationTest(unittest.TestCase):
)
inputs = self.processor(
[self.prompt_image, self.prompt_video],
text=[self.prompt_image, self.prompt_video],
images=self.image,
videos=self.video,
return_tensors="pt",
@ -491,7 +491,7 @@ class LlavaNextVideoForConditionalGenerationIntegrationTest(unittest.TestCase):
)
inputs_batched = self.processor(
[self.prompt_video, self.prompt_image],
text=[self.prompt_video, self.prompt_image],
images=[self.image],
videos=[self.video],
return_tensors="pt",

View File

@ -648,7 +648,12 @@ class Qwen2_5OmniModelIntegrationTest(unittest.TestCase):
self.messages[0],
{
"role": "assistant",
"content": "The sound is glass shattering, and the dog appears to be a Labrador Retriever.",
"content": [
{
"type": "text",
"text": "The sound is glass shattering, and the dog appears to be a Labrador Retriever.",
}
],
},
{
"role": "user",
@ -687,7 +692,12 @@ class Qwen2_5OmniModelIntegrationTest(unittest.TestCase):
messages = [
{
"role": "system",
"content": "You are Qwen, a virtual human developed by the Qwen Team, Alibaba Group, capable of perceiving auditory and visual inputs, as well as generating text and speech.",
"content": [
{
"type": "text",
"text": "You are Qwen, a virtual human developed by the Qwen Team, Alibaba Group, capable of perceiving auditory and visual inputs, as well as generating text and speech.",
}
],
},
{
"role": "user",
@ -697,7 +707,7 @@ class Qwen2_5OmniModelIntegrationTest(unittest.TestCase):
audio, _ = librosa.load(BytesIO(urlopen(audio_url).read()), sr=self.processor.feature_extractor.sampling_rate)
text = self.processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
inputs = self.processor(text=[text], audio=[audio], return_tensors="pt", padding=True).to(torch_device)
inputs = self.processor(text=text, audio=[audio], return_tensors="pt", padding=True).to(torch_device)
output = model.generate(**inputs, thinker_temperature=0, thinker_do_sample=False)

View File

@ -466,7 +466,7 @@ class VideoLlavaForConditionalGenerationIntegrationTest(unittest.TestCase):
repo_id="raushan-testing-hf/videos-test", filename="video_demo.npy", repo_type="dataset"
)
video_file = np.load(video_file)
inputs = self.processor(prompt, videos=video_file, return_tensors="pt").to(torch_device)
inputs = self.processor(text=prompt, videos=video_file, return_tensors="pt").to(torch_device)
EXPECTED_INPUT_IDS = torch.tensor([1, 3148, 1001, 29901, 29871, 13, 11008, 338, 445, 4863, 2090, 1460, 29973, 319, 1799, 9047, 13566, 29901], device=torch_device) # fmt: skip
non_video_inputs = inputs["input_ids"][inputs["input_ids"] != 32001]
@ -496,9 +496,9 @@ class VideoLlavaForConditionalGenerationIntegrationTest(unittest.TestCase):
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
image = Image.open(requests.get(url, stream=True).raw)
inputs = self.processor(prompts, images=[image], videos=[video_file], padding=True, return_tensors="pt").to(
torch_device
)
inputs = self.processor(
text=prompts, images=[image], videos=[video_file], padding=True, return_tensors="pt"
).to(torch_device)
output = model.generate(**inputs, do_sample=False, max_new_tokens=20)
EXPECTED_DECODED_TEXT = [
@ -522,7 +522,7 @@ class VideoLlavaForConditionalGenerationIntegrationTest(unittest.TestCase):
repo_id="raushan-testing-hf/videos-test", filename="video_demo.npy", repo_type="dataset"
)
video_file = np.load(video_file)
inputs = self.processor(prompt, videos=video_file, return_tensors="pt").to(torch_device, torch.float16)
inputs = self.processor(text=prompt, videos=video_file, return_tensors="pt").to(torch_device, torch.float16)
output = model.generate(**inputs, max_new_tokens=900, do_sample=False)
EXPECTED_DECODED_TEXT = "USER: \nDescribe the video in details. ASSISTANT: The video features a young child sitting on a bed, holding a book and reading it. " \
@ -554,7 +554,7 @@ class VideoLlavaForConditionalGenerationIntegrationTest(unittest.TestCase):
hf_hub_download(repo_id="raushan-testing-hf/videos-test", filename="video_demo_2.npy", repo_type="dataset")
)
inputs = processor(prompts, videos=[video_1, video_2], return_tensors="pt", padding=True).to(torch_device)
inputs = processor(text=prompts, videos=[video_1, video_2], return_tensors="pt", padding=True).to(torch_device)
output = model.generate(**inputs, max_new_tokens=20)

View File

@ -71,8 +71,8 @@ class BaseVideoProcessorTester(unittest.TestCase):
# Test a list of videos is converted to a list of 1 video
video = get_random_video(16, 32)
video = [PIL.Image.fromarray(frame) for frame in video]
videos_list = make_batched_videos(video)
pil_video = [PIL.Image.fromarray(frame) for frame in video]
videos_list = make_batched_videos(pil_video)
self.assertIsInstance(videos_list, list)
self.assertIsInstance(videos_list[0], np.ndarray)
self.assertEqual(videos_list[0].shape, (8, 16, 32, 3))
@ -80,8 +80,8 @@ class BaseVideoProcessorTester(unittest.TestCase):
# Test a nested list of videos is not modified
video = get_random_video(16, 32)
video = [PIL.Image.fromarray(frame) for frame in video]
videos = [video, video]
pil_video = [PIL.Image.fromarray(frame) for frame in video]
videos = [pil_video, pil_video]
videos_list = make_batched_videos(videos)
self.assertIsInstance(videos_list, list)
self.assertIsInstance(videos_list[0], np.ndarray)