mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-31 02:02:21 +06:00
Model card for spanish electra small (#4196)
This commit is contained in:
parent
242005d762
commit
a8b798e6c4
@ -0,0 +1,67 @@
|
||||
---
|
||||
language: spanish
|
||||
thumbnail: https://i.imgur.com/uxAvBfh.png
|
||||
|
||||
|
||||
---
|
||||
|
||||
## ELECTRICIDAD: The Spanish Electra [Imgur](https://imgur.com/uxAvBfh)
|
||||
|
||||
**ELECTRICIDAD** is a small Electra like model (discriminator in this case) trained on a + 20 GB of the [OSCAR](https://oscar-corpus.com/) Spanish corpus.
|
||||
|
||||
As mentioned in the original [paper](https://openreview.net/pdf?id=r1xMH1BtvB):
|
||||
**ELECTRA** is a new method for self-supervised language representation learning. It can be used to pre-train transformer networks using relatively little compute. ELECTRA models are trained to distinguish "real" input tokens vs "fake" input tokens generated by another neural network, similar to the discriminator of a [GAN](https://arxiv.org/pdf/1406.2661.pdf). At small scale, ELECTRA achieves strong results even when trained on a single GPU. At large scale, ELECTRA achieves state-of-the-art results on the [SQuAD 2.0](https://rajpurkar.github.io/SQuAD-explorer/) dataset.
|
||||
|
||||
For a detailed description and experimental results, please refer the paper [ELECTRA: Pre-training Text Encoders as Discriminators Rather Than Generators](https://openreview.net/pdf?id=r1xMH1BtvB).
|
||||
|
||||
## Model details ⚙
|
||||
|
||||
|Param| # Value|
|
||||
|-----|--------|
|
||||
|Layers| 12 |
|
||||
|Hidden |256 |
|
||||
|Params| 14M|
|
||||
|
||||
## Evaluation metrics (for discriminator) 🧾
|
||||
|
||||
|Metric | # Score |
|
||||
|-------|---------|
|
||||
|Accuracy| 0.94|
|
||||
|Precision| 0.76|
|
||||
|AUC | 0.92|
|
||||
|
||||
## Benchmarks 🔨
|
||||
|
||||
WIP 🚧
|
||||
|
||||
## How to use the discriminator in `transformers`
|
||||
|
||||
```python
|
||||
from transformers import ElectraForPreTraining, ElectraTokenizerFast
|
||||
import torch
|
||||
|
||||
discriminator = ElectraForPreTraining.from_pretrained("mrm8488/electricidad-small-discriminator")
|
||||
tokenizer = ElectraTokenizerFast.from_pretrained("mrm8488/electricidad-small-discriminator")
|
||||
|
||||
sentence = "El rápido zorro marrón salta sobre el perro perezoso"
|
||||
fake_sentence = "El rápido zorro marrón falsea sobre el perro perezoso"
|
||||
|
||||
fake_tokens = tokenizer.tokenize(sentence)
|
||||
fake_inputs = tokenizer.encode(sentence, return_tensors="pt")
|
||||
discriminator_outputs = discriminator(fake_inputs)
|
||||
predictions = torch.round((torch.sign(discriminator_outputs[0]) + 1) / 2)
|
||||
|
||||
[print("%7s" % token, end="") for token in fake_tokens]
|
||||
|
||||
[print("%7s" % prediction, end="") for prediction in predictions.tolist()]
|
||||
```
|
||||
|
||||
## Acknowledgments
|
||||
|
||||
I thank [🤗/transformers team](https://github.com/huggingface/transformers) for answering my doubts and Google for helping me with the [TensorFlow Research Cloud](https://www.tensorflow.org/tfrc) program.
|
||||
|
||||
|
||||
|
||||
> Created by [Manuel Romero/@mrm8488](https://twitter.com/mrm8488)
|
||||
|
||||
> Made with <span style="color: #e25555;">♥</span> in Spain
|
Loading…
Reference in New Issue
Block a user