mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-04 05:10:06 +06:00
fixing learning rate schedule when using gradient_accumulation_steps
This commit is contained in:
parent
ea85cca8ab
commit
a81a1ef8e9
@ -464,7 +464,7 @@ def main():
|
||||
if args.do_train:
|
||||
train_examples = processor.get_train_examples(args.data_dir)
|
||||
num_train_steps = int(
|
||||
len(train_examples) / args.train_batch_size * args.num_train_epochs)
|
||||
len(train_examples) / args.train_batch_size / args.gradient_accumulation_steps * args.num_train_epochs)
|
||||
|
||||
model = BertForSequenceClassification(bert_config, len(label_list))
|
||||
if args.init_checkpoint is not None:
|
||||
|
18
run_squad.py
18
run_squad.py
@ -742,6 +742,10 @@ def main():
|
||||
default=False,
|
||||
action='store_true',
|
||||
help="Whether to perform optimization and keep the optimizer averages on CPU")
|
||||
parser.add_argument('--fp16',
|
||||
default=False,
|
||||
action='store_true',
|
||||
help="Whether to use 16-bit float precision instead of 32-bit")
|
||||
|
||||
|
||||
args = parser.parse_args()
|
||||
@ -801,11 +805,13 @@ def main():
|
||||
train_examples = read_squad_examples(
|
||||
input_file=args.train_file, is_training=True)
|
||||
num_train_steps = int(
|
||||
len(train_examples) / args.train_batch_size * args.num_train_epochs)
|
||||
len(train_examples) / args.train_batch_size / args.gradient_accumulation_steps * args.num_train_epochs)
|
||||
|
||||
model = BertForQuestionAnswering(bert_config)
|
||||
if args.init_checkpoint is not None:
|
||||
model.bert.load_state_dict(torch.load(args.init_checkpoint, map_location='cpu'))
|
||||
if args.fp16:
|
||||
model.half()
|
||||
|
||||
if not args.optimize_on_cpu:
|
||||
model.to(device)
|
||||
@ -847,6 +853,12 @@ def main():
|
||||
all_start_positions = torch.tensor([f.start_position for f in train_features], dtype=torch.long)
|
||||
all_end_positions = torch.tensor([f.end_position for f in train_features], dtype=torch.long)
|
||||
|
||||
if args.fp16:
|
||||
(all_input_ids, all_input_mask,
|
||||
all_segment_ids, all_start_positions,
|
||||
all_end_positions) = tuple(t.half() for t in (all_input_ids, all_input_mask, all_segment_ids,
|
||||
all_start_positions, all_end_positions))
|
||||
|
||||
train_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids,
|
||||
all_start_positions, all_end_positions)
|
||||
if args.local_rank == -1:
|
||||
@ -895,6 +907,10 @@ def main():
|
||||
all_input_mask = torch.tensor([f.input_mask for f in eval_features], dtype=torch.long)
|
||||
all_segment_ids = torch.tensor([f.segment_ids for f in eval_features], dtype=torch.long)
|
||||
all_example_index = torch.arange(all_input_ids.size(0), dtype=torch.long)
|
||||
if args.fp16:
|
||||
(all_input_ids, all_input_mask,
|
||||
all_segment_ids, all_example_index) = tuple(t.half() for t in (all_input_ids, all_input_mask,
|
||||
all_segment_ids, all_example_index))
|
||||
|
||||
eval_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_example_index)
|
||||
if args.local_rank == -1:
|
||||
|
Loading…
Reference in New Issue
Block a user