mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-14 10:08:29 +06:00
fixing learning rate schedule when using gradient_accumulation_steps
This commit is contained in:
parent
ea85cca8ab
commit
a81a1ef8e9
@ -464,7 +464,7 @@ def main():
|
|||||||
if args.do_train:
|
if args.do_train:
|
||||||
train_examples = processor.get_train_examples(args.data_dir)
|
train_examples = processor.get_train_examples(args.data_dir)
|
||||||
num_train_steps = int(
|
num_train_steps = int(
|
||||||
len(train_examples) / args.train_batch_size * args.num_train_epochs)
|
len(train_examples) / args.train_batch_size / args.gradient_accumulation_steps * args.num_train_epochs)
|
||||||
|
|
||||||
model = BertForSequenceClassification(bert_config, len(label_list))
|
model = BertForSequenceClassification(bert_config, len(label_list))
|
||||||
if args.init_checkpoint is not None:
|
if args.init_checkpoint is not None:
|
||||||
|
18
run_squad.py
18
run_squad.py
@ -742,6 +742,10 @@ def main():
|
|||||||
default=False,
|
default=False,
|
||||||
action='store_true',
|
action='store_true',
|
||||||
help="Whether to perform optimization and keep the optimizer averages on CPU")
|
help="Whether to perform optimization and keep the optimizer averages on CPU")
|
||||||
|
parser.add_argument('--fp16',
|
||||||
|
default=False,
|
||||||
|
action='store_true',
|
||||||
|
help="Whether to use 16-bit float precision instead of 32-bit")
|
||||||
|
|
||||||
|
|
||||||
args = parser.parse_args()
|
args = parser.parse_args()
|
||||||
@ -801,11 +805,13 @@ def main():
|
|||||||
train_examples = read_squad_examples(
|
train_examples = read_squad_examples(
|
||||||
input_file=args.train_file, is_training=True)
|
input_file=args.train_file, is_training=True)
|
||||||
num_train_steps = int(
|
num_train_steps = int(
|
||||||
len(train_examples) / args.train_batch_size * args.num_train_epochs)
|
len(train_examples) / args.train_batch_size / args.gradient_accumulation_steps * args.num_train_epochs)
|
||||||
|
|
||||||
model = BertForQuestionAnswering(bert_config)
|
model = BertForQuestionAnswering(bert_config)
|
||||||
if args.init_checkpoint is not None:
|
if args.init_checkpoint is not None:
|
||||||
model.bert.load_state_dict(torch.load(args.init_checkpoint, map_location='cpu'))
|
model.bert.load_state_dict(torch.load(args.init_checkpoint, map_location='cpu'))
|
||||||
|
if args.fp16:
|
||||||
|
model.half()
|
||||||
|
|
||||||
if not args.optimize_on_cpu:
|
if not args.optimize_on_cpu:
|
||||||
model.to(device)
|
model.to(device)
|
||||||
@ -847,6 +853,12 @@ def main():
|
|||||||
all_start_positions = torch.tensor([f.start_position for f in train_features], dtype=torch.long)
|
all_start_positions = torch.tensor([f.start_position for f in train_features], dtype=torch.long)
|
||||||
all_end_positions = torch.tensor([f.end_position for f in train_features], dtype=torch.long)
|
all_end_positions = torch.tensor([f.end_position for f in train_features], dtype=torch.long)
|
||||||
|
|
||||||
|
if args.fp16:
|
||||||
|
(all_input_ids, all_input_mask,
|
||||||
|
all_segment_ids, all_start_positions,
|
||||||
|
all_end_positions) = tuple(t.half() for t in (all_input_ids, all_input_mask, all_segment_ids,
|
||||||
|
all_start_positions, all_end_positions))
|
||||||
|
|
||||||
train_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids,
|
train_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids,
|
||||||
all_start_positions, all_end_positions)
|
all_start_positions, all_end_positions)
|
||||||
if args.local_rank == -1:
|
if args.local_rank == -1:
|
||||||
@ -895,6 +907,10 @@ def main():
|
|||||||
all_input_mask = torch.tensor([f.input_mask for f in eval_features], dtype=torch.long)
|
all_input_mask = torch.tensor([f.input_mask for f in eval_features], dtype=torch.long)
|
||||||
all_segment_ids = torch.tensor([f.segment_ids for f in eval_features], dtype=torch.long)
|
all_segment_ids = torch.tensor([f.segment_ids for f in eval_features], dtype=torch.long)
|
||||||
all_example_index = torch.arange(all_input_ids.size(0), dtype=torch.long)
|
all_example_index = torch.arange(all_input_ids.size(0), dtype=torch.long)
|
||||||
|
if args.fp16:
|
||||||
|
(all_input_ids, all_input_mask,
|
||||||
|
all_segment_ids, all_example_index) = tuple(t.half() for t in (all_input_ids, all_input_mask,
|
||||||
|
all_segment_ids, all_example_index))
|
||||||
|
|
||||||
eval_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_example_index)
|
eval_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_example_index)
|
||||||
if args.local_rank == -1:
|
if args.local_rank == -1:
|
||||||
|
Loading…
Reference in New Issue
Block a user