mirror of
https://github.com/huggingface/transformers.git
synced 2025-08-02 19:21:31 +06:00
Trainer / Core : Do not change init signature order (#30126)
* Update trainer.py * fix copies
This commit is contained in:
parent
1897874edc
commit
a71def025c
@ -304,9 +304,6 @@ class Trainer:
|
||||
The tokenizer used to preprocess the data. If provided, will be used to automatically pad the inputs to the
|
||||
maximum length when batching inputs, and it will be saved along the model to make it easier to rerun an
|
||||
interrupted training or reuse the fine-tuned model.
|
||||
image_processor ([`BaseImageProcessor`], *optional*):
|
||||
The image processor used to preprocess the data. If provided, it will be saved along the model to make it easier
|
||||
to rerun an interrupted training or reuse the fine-tuned model.
|
||||
model_init (`Callable[[], PreTrainedModel]`, *optional*):
|
||||
A function that instantiates the model to be used. If provided, each call to [`~Trainer.train`] will start
|
||||
from a new instance of the model as given by this function.
|
||||
@ -331,6 +328,9 @@ class Trainer:
|
||||
by this function will be reflected in the predictions received by `compute_metrics`.
|
||||
|
||||
Note that the labels (second parameter) will be `None` if the dataset does not have them.
|
||||
image_processor ([`BaseImageProcessor`], *optional*):
|
||||
The image processor used to preprocess the data. If provided, it will be saved along the model to make it easier
|
||||
to rerun an interrupted training or reuse the fine-tuned model.
|
||||
|
||||
Important attributes:
|
||||
|
||||
@ -361,12 +361,12 @@ class Trainer:
|
||||
train_dataset: Optional[Union[Dataset, IterableDataset]] = None,
|
||||
eval_dataset: Optional[Union[Dataset, Dict[str, Dataset]]] = None,
|
||||
tokenizer: Optional[PreTrainedTokenizerBase] = None,
|
||||
image_processor: Optional["BaseImageProcessor"] = None,
|
||||
model_init: Optional[Callable[[], PreTrainedModel]] = None,
|
||||
compute_metrics: Optional[Callable[[EvalPrediction], Dict]] = None,
|
||||
callbacks: Optional[List[TrainerCallback]] = None,
|
||||
optimizers: Tuple[torch.optim.Optimizer, torch.optim.lr_scheduler.LambdaLR] = (None, None),
|
||||
preprocess_logits_for_metrics: Optional[Callable[[torch.Tensor, torch.Tensor], torch.Tensor]] = None,
|
||||
image_processor: Optional["BaseImageProcessor"] = None,
|
||||
):
|
||||
if args is None:
|
||||
output_dir = "tmp_trainer"
|
||||
|
Loading…
Reference in New Issue
Block a user