mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-31 02:02:21 +06:00
Moving text-generation
pipeline to new testing framework. (#13285)
* Moving `text-generation` pipeline to new testing framework. * Keep check_model_type but log instead of raise Exception. * warning -> error.
This commit is contained in:
parent
0759f2510c
commit
a6e36558ef
@ -735,10 +735,8 @@ class Pipeline(_ScikitCompat):
|
||||
supported_models_names.append(model.__name__)
|
||||
supported_models = supported_models_names
|
||||
if self.model.__class__.__name__ not in supported_models:
|
||||
raise PipelineException(
|
||||
self.task,
|
||||
self.model.base_model_prefix,
|
||||
f"The model '{self.model.__class__.__name__}' is not supported for {self.task}. Supported models are {supported_models}",
|
||||
logger.error(
|
||||
f"The model '{self.model.__class__.__name__}' is not supported for {self.task}. Supported models are {supported_models}."
|
||||
)
|
||||
|
||||
def _parse_and_tokenize(
|
||||
|
@ -1,3 +1,5 @@
|
||||
from transformers import MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING
|
||||
|
||||
from ..file_utils import add_end_docstrings
|
||||
from .base import PIPELINE_INIT_ARGS, Pipeline
|
||||
|
||||
@ -30,25 +32,12 @@ class TextGenerationPipeline(Pipeline):
|
||||
begging for his blessing. <eod> </s> <eos>
|
||||
"""
|
||||
|
||||
ALLOWED_MODELS = [
|
||||
"XLNetLMHeadModel",
|
||||
"TransfoXLLMHeadModel",
|
||||
"ReformerModelWithLMHead",
|
||||
"GPT2LMHeadModel",
|
||||
"GPTNeoForCausalLM",
|
||||
"OpenAIGPTLMHeadModel",
|
||||
"CTRLLMHeadModel",
|
||||
"TFXLNetLMHeadModel",
|
||||
"TFTransfoXLLMHeadModel",
|
||||
"TFGPT2LMHeadModel",
|
||||
"TFOpenAIGPTLMHeadModel",
|
||||
"TFCTRLLMHeadModel",
|
||||
]
|
||||
|
||||
def __init__(self, *args, return_full_text=True, **kwargs):
|
||||
super().__init__(*args, **kwargs)
|
||||
self.check_model_type(
|
||||
TF_MODEL_FOR_CAUSAL_LM_MAPPING if self.framework == "tf" else MODEL_FOR_CAUSAL_LM_MAPPING
|
||||
)
|
||||
|
||||
self.check_model_type(self.ALLOWED_MODELS)
|
||||
self.return_full_text = return_full_text
|
||||
|
||||
# overriding _parse_and_tokenize to allow for unusual language-modeling tokenizer arguments
|
||||
@ -124,6 +113,9 @@ class TextGenerationPipeline(Pipeline):
|
||||
prefix_length = prefix_inputs["input_ids"].shape[-1]
|
||||
if generate_kwargs.get("max_length", None) is not None:
|
||||
generate_kwargs["max_length"] += prefix_length
|
||||
else:
|
||||
generate_kwargs["max_length"] = self.model.config.max_length + prefix_length
|
||||
|
||||
if generate_kwargs.get("min_length", None) is not None:
|
||||
generate_kwargs["min_length"] += prefix_length
|
||||
|
||||
|
@ -14,49 +14,95 @@
|
||||
|
||||
import unittest
|
||||
|
||||
from transformers import pipeline
|
||||
from transformers.testing_utils import require_torch
|
||||
from transformers import MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TextGenerationPipeline, pipeline
|
||||
from transformers.testing_utils import is_pipeline_test, require_tf, require_torch
|
||||
|
||||
from .test_pipelines_common import MonoInputPipelineCommonMixin
|
||||
from .test_pipelines_common import ANY, PipelineTestCaseMeta
|
||||
|
||||
|
||||
class TextGenerationPipelineTests(MonoInputPipelineCommonMixin, unittest.TestCase):
|
||||
pipeline_task = "text-generation"
|
||||
pipeline_running_kwargs = {"prefix": "This is "}
|
||||
small_models = ["sshleifer/tiny-ctrl"] # Models tested without the @slow decorator
|
||||
large_models = [] # Models tested with the @slow decorator
|
||||
|
||||
def test_simple_generation(self):
|
||||
text_generator = pipeline(task="text-generation", model=self.small_models[0])
|
||||
# text-generation is non-deterministic by nature, we can't fully test the output
|
||||
|
||||
outputs = text_generator("This is a test")
|
||||
|
||||
self.assertEqual(len(outputs), 1)
|
||||
self.assertEqual(list(outputs[0].keys()), ["generated_text"])
|
||||
self.assertEqual(type(outputs[0]["generated_text"]), str)
|
||||
|
||||
outputs = text_generator(["This is a test", "This is a second test"])
|
||||
self.assertEqual(len(outputs[0]), 1)
|
||||
self.assertEqual(list(outputs[0][0].keys()), ["generated_text"])
|
||||
self.assertEqual(type(outputs[0][0]["generated_text"]), str)
|
||||
self.assertEqual(list(outputs[1][0].keys()), ["generated_text"])
|
||||
self.assertEqual(type(outputs[1][0]["generated_text"]), str)
|
||||
@is_pipeline_test
|
||||
class TextGenerationPipelineTests(unittest.TestCase, metaclass=PipelineTestCaseMeta):
|
||||
model_mapping = MODEL_FOR_CAUSAL_LM_MAPPING
|
||||
tf_model_mapping = TF_MODEL_FOR_CAUSAL_LM_MAPPING
|
||||
|
||||
@require_torch
|
||||
def test_generation_output_style(self):
|
||||
text_generator = pipeline(task="text-generation", model=self.small_models[0])
|
||||
# text-generation is non-deterministic by nature, we can't fully test the output
|
||||
def test_small_model_pt(self):
|
||||
text_generator = pipeline(task="text-generation", model="sshleifer/tiny-ctrl", framework="pt")
|
||||
# Using `do_sample=False` to force deterministic output
|
||||
outputs = text_generator("This is a test", do_sample=False)
|
||||
self.assertEqual(
|
||||
outputs,
|
||||
[
|
||||
{
|
||||
"generated_text": "This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope. oscope. FiliFili@@"
|
||||
}
|
||||
],
|
||||
)
|
||||
|
||||
outputs = text_generator(["This is a test", "This is a second test"])
|
||||
self.assertEqual(
|
||||
outputs,
|
||||
[
|
||||
[
|
||||
{
|
||||
"generated_text": "This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope. oscope. FiliFili@@"
|
||||
}
|
||||
],
|
||||
[
|
||||
{
|
||||
"generated_text": "This is a second test ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope. oscope. FiliFili@@"
|
||||
}
|
||||
],
|
||||
],
|
||||
)
|
||||
|
||||
@require_tf
|
||||
def test_small_model_tf(self):
|
||||
text_generator = pipeline(task="text-generation", model="sshleifer/tiny-ctrl", framework="tf")
|
||||
|
||||
# Using `do_sample=False` to force deterministic output
|
||||
outputs = text_generator("This is a test", do_sample=False)
|
||||
self.assertEqual(
|
||||
outputs,
|
||||
[
|
||||
{
|
||||
"generated_text": "This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵 please,"
|
||||
}
|
||||
],
|
||||
)
|
||||
|
||||
outputs = text_generator(["This is a test", "This is a second test"], do_sample=False)
|
||||
self.assertEqual(
|
||||
outputs,
|
||||
[
|
||||
[
|
||||
{
|
||||
"generated_text": "This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵 please,"
|
||||
}
|
||||
],
|
||||
[
|
||||
{
|
||||
"generated_text": "This is a second test Chieftain Chieftain prefecture prefecture prefecture Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵 please,"
|
||||
}
|
||||
],
|
||||
],
|
||||
)
|
||||
|
||||
def run_pipeline_test(self, model, tokenizer, feature_extractor):
|
||||
text_generator = TextGenerationPipeline(model=model, tokenizer=tokenizer)
|
||||
outputs = text_generator("This is a test")
|
||||
self.assertIn("This is a test", outputs[0]["generated_text"])
|
||||
self.assertEqual(outputs, [{"generated_text": ANY(str)}])
|
||||
self.assertTrue(outputs[0]["generated_text"].startswith("This is a test"))
|
||||
|
||||
outputs = text_generator("This is a test", return_full_text=False)
|
||||
self.assertEqual(outputs, [{"generated_text": ANY(str)}])
|
||||
self.assertNotIn("This is a test", outputs[0]["generated_text"])
|
||||
|
||||
text_generator = pipeline(task="text-generation", model=self.small_models[0], return_full_text=False)
|
||||
text_generator = pipeline(task="text-generation", model=model, tokenizer=tokenizer, return_full_text=False)
|
||||
outputs = text_generator("This is a test")
|
||||
self.assertEqual(outputs, [{"generated_text": ANY(str)}])
|
||||
self.assertNotIn("This is a test", outputs[0]["generated_text"])
|
||||
|
||||
outputs = text_generator("This is a test", return_full_text=True)
|
||||
self.assertIn("This is a test", outputs[0]["generated_text"])
|
||||
self.assertEqual(outputs, [{"generated_text": ANY(str)}])
|
||||
self.assertTrue(outputs[0]["generated_text"].startswith("This is a test"))
|
||||
|
Loading…
Reference in New Issue
Block a user