use is_composition for pixtral

Signed-off-by: Kyle Sayers <kylesayrs@gmail.com>
This commit is contained in:
Kyle Sayers 2025-02-11 10:34:52 -05:00
parent 1f0ae9692d
commit a53d5f9fc5
8 changed files with 4 additions and 126 deletions

View File

@ -78,10 +78,6 @@ output = processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up
[[autodoc]] PixtralVisionConfig
## PixtralTextConfig
[[autodoc]] PixtralTextConfig
## PixtralVisionModel
[[autodoc]] PixtralVisionModel

View File

@ -700,7 +700,7 @@ _import_structure = {
"Pix2StructTextConfig",
"Pix2StructVisionConfig",
],
"models.pixtral": ["PixtralProcessor", "PixtralVisionConfig", "PixtralTextConfig"],
"models.pixtral": ["PixtralProcessor", "PixtralVisionConfig"],
"models.plbart": ["PLBartConfig"],
"models.poolformer": ["PoolFormerConfig"],
"models.pop2piano": ["Pop2PianoConfig"],

View File

@ -232,7 +232,6 @@ CONFIG_MAPPING_NAMES = OrderedDict(
("phimoe", "PhimoeConfig"),
("pix2struct", "Pix2StructConfig"),
("pixtral", "PixtralVisionConfig"),
("pixtral_text", "PixtralTextConfig"),
("plbart", "PLBartConfig"),
("poolformer", "PoolFormerConfig"),
("pop2piano", "Pop2PianoConfig"),
@ -575,7 +574,6 @@ MODEL_NAMES_MAPPING = OrderedDict(
("phobert", "PhoBERT"),
("pix2struct", "Pix2Struct"),
("pixtral", "Pixtral"),
("pixtral_text", "PixtralMistral"),
("plbart", "PLBart"),
("poolformer", "PoolFormer"),
("pop2piano", "Pop2Piano"),
@ -742,7 +740,6 @@ SPECIAL_MODEL_TYPE_TO_MODULE_NAME = OrderedDict(
("chinese_clip_vision_model", "chinese_clip"),
("rt_detr_resnet", "rt_detr"),
("granitevision", "llava_next"),
("pixtral_text", "pixtral"),
]
)

View File

@ -555,7 +555,6 @@ MODEL_FOR_CAUSAL_LM_MAPPING_NAMES = OrderedDict(
("phi", "PhiForCausalLM"),
("phi3", "Phi3ForCausalLM"),
("phimoe", "PhimoeForCausalLM"),
("pixtral_text", "MistralForCausalLM"),
("plbart", "PLBartForCausalLM"),
("prophetnet", "ProphetNetForCausalLM"),
("qdqbert", "QDQBertLMHeadModel"),

View File

@ -78,6 +78,7 @@ class LlavaConfig(PretrainedConfig):
model_type = "llava"
sub_configs = {"text_config": AutoConfig, "vision_config": AutoConfig}
is_composition = True
def __init__(
self,

View File

@ -14,7 +14,6 @@
"""Pixtral model configuration"""
from ...configuration_utils import PretrainedConfig
from ...models.mistral.configuration_mistral import MistralConfig
from ...utils import logging
@ -104,116 +103,4 @@ class PixtralVisionConfig(PretrainedConfig):
self.initializer_range = initializer_range
class PixtralTextConfig(MistralConfig):
r"""
TODO
Args:
vocab_size (`int`, *optional*, defaults to 32000):
Vocabulary size of the Mistral model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`MistralModel`]
hidden_size (`int`, *optional*, defaults to 4096):
Dimension of the hidden representations.
intermediate_size (`int`, *optional*, defaults to 14336):
Dimension of the MLP representations.
num_hidden_layers (`int`, *optional*, defaults to 32):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 32):
Number of attention heads for each attention layer in the Transformer encoder.
num_key_value_heads (`int`, *optional*, defaults to 8):
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
`num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
by meanpooling all the original heads within that group. For more details checkout [this
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `8`.
head_dim (`int`, *optional*, defaults to `hidden_size // num_attention_heads`):
The attention head dimension.
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
The non-linear activation function (function or string) in the decoder.
max_position_embeddings (`int`, *optional*, defaults to `4096*32`):
The maximum sequence length that this model might ever be used with. Mistral's sliding window attention
allows sequence of up to 4096*32 tokens.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
rms_norm_eps (`float`, *optional*, defaults to 1e-06):
The epsilon used by the rms normalization layers.
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models). Only
relevant if `config.is_decoder=True`.
pad_token_id (`int`, *optional*):
The id of the padding token.
bos_token_id (`int`, *optional*, defaults to 1):
The id of the "beginning-of-sequence" token.
eos_token_id (`int`, *optional*, defaults to 2):
The id of the "end-of-sequence" token.
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
Whether the model's input and output word embeddings should be tied.
rope_theta (`float`, *optional*, defaults to 10000.0):
The base period of the RoPE embeddings.
sliding_window (`int`, *optional*, defaults to 4096):
Sliding window attention window size. If not specified, will default to `4096`.
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
```python
>>> TODO
```"""
model_type = "pixtral_text"
def __init__(
self,
vocab_size=32000,
hidden_size=4096,
intermediate_size=14336,
num_hidden_layers=32,
num_attention_heads=32,
num_key_value_heads=8,
head_dim=None,
hidden_act="silu",
max_position_embeddings=4096 * 32,
initializer_range=0.02,
rms_norm_eps=1e-6,
use_cache=True,
pad_token_id=None,
bos_token_id=1,
eos_token_id=2,
tie_word_embeddings=False,
rope_theta=10000.0,
sliding_window=4096,
attention_dropout=0.0,
**kwargs,
):
self.vocab_size = vocab_size
self.max_position_embeddings = max_position_embeddings
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.sliding_window = sliding_window
self.head_dim = head_dim # as opposed to MistralConfig, do not auto-populate
# for backward compatibility
if num_key_value_heads is None:
num_key_value_heads = num_attention_heads
self.num_key_value_heads = num_key_value_heads
self.hidden_act = hidden_act
self.initializer_range = initializer_range
self.rms_norm_eps = rms_norm_eps
self.use_cache = use_cache
self.rope_theta = rope_theta
self.attention_dropout = attention_dropout
PretrainedConfig.__init__(
self,
pad_token_id=pad_token_id,
bos_token_id=bos_token_id,
eos_token_id=eos_token_id,
tie_word_embeddings=tie_word_embeddings,
**kwargs,
)
__all__ = ["PixtralVisionConfig", "PixtralTextConfig"]
__all__ = ["PixtralVisionConfig"]

View File

@ -32,8 +32,7 @@ class LlavaConfigTest(unittest.TestCase):
}
text_config = {
# "model_type": "mistral",
"model_type": "pixtral_text",
"model_type": "mistral",
"hidden_size": 5120,
"head_dim": 128,
"num_attention_heads": 32,

View File

@ -180,7 +180,6 @@ MODEL_NAMES_TO_IGNORE = [
"CLIPVisionModel",
"Qwen2AudioEncoder",
"SiglipVisionModel",
"PixtralMistral", # not a real model
]