mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-04 13:20:12 +06:00
Add Fast Mobilenet-V2 Processor (#37113)
Co-authored-by: Yoni Gozlan <74535834+yonigozlan@users.noreply.github.com>
This commit is contained in:
parent
4774a39d05
commit
a53a63c9c2
@ -84,6 +84,11 @@ If you're interested in submitting a resource to be included here, please feel f
|
||||
|
||||
[[autodoc]] MobileNetV2ImageProcessor
|
||||
- preprocess
|
||||
|
||||
## MobileNetV2ImageProcessorFast
|
||||
|
||||
[[autodoc]] MobileNetV2ImageProcessorFast
|
||||
- preprocess
|
||||
- post_process_semantic_segmentation
|
||||
|
||||
## MobileNetV2Model
|
||||
|
@ -116,7 +116,7 @@ else:
|
||||
("mistral3", ("PixtralImageProcessor", "PixtralImageProcessorFast")),
|
||||
("mllama", ("MllamaImageProcessor",)),
|
||||
("mobilenet_v1", ("MobileNetV1ImageProcessor",)),
|
||||
("mobilenet_v2", ("MobileNetV2ImageProcessor",)),
|
||||
("mobilenet_v2", ("MobileNetV2ImageProcessor", "MobileNetV2ImageProcessorFast")),
|
||||
("mobilevit", ("MobileViTImageProcessor",)),
|
||||
("mobilevitv2", ("MobileViTImageProcessor",)),
|
||||
("nat", ("ViTImageProcessor", "ViTImageProcessorFast")),
|
||||
|
@ -21,6 +21,7 @@ if TYPE_CHECKING:
|
||||
from .configuration_mobilenet_v2 import *
|
||||
from .feature_extraction_mobilenet_v2 import *
|
||||
from .image_processing_mobilenet_v2 import *
|
||||
from .image_processing_mobilenet_v2_fast import *
|
||||
from .modeling_mobilenet_v2 import *
|
||||
else:
|
||||
import sys
|
||||
|
@ -0,0 +1,89 @@
|
||||
# coding=utf-8
|
||||
# Copyright 2025 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""Fast Image processor class for MobileNetV2."""
|
||||
|
||||
from typing import List, Tuple
|
||||
|
||||
from ...image_processing_utils_fast import BASE_IMAGE_PROCESSOR_FAST_DOCSTRING, BaseImageProcessorFast
|
||||
from ...image_utils import IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, PILImageResampling
|
||||
from ...utils import add_start_docstrings, is_torch_available, is_torch_tensor
|
||||
|
||||
|
||||
if is_torch_available():
|
||||
import torch
|
||||
|
||||
|
||||
@add_start_docstrings(
|
||||
"Constructs a fast MobileNetV2 image processor.",
|
||||
BASE_IMAGE_PROCESSOR_FAST_DOCSTRING,
|
||||
)
|
||||
class MobileNetV2ImageProcessorFast(BaseImageProcessorFast):
|
||||
resample = PILImageResampling.BILINEAR
|
||||
image_mean = IMAGENET_STANDARD_MEAN
|
||||
image_std = IMAGENET_STANDARD_STD
|
||||
size = {"shortest_edge": 256}
|
||||
default_to_square = False
|
||||
crop_size = {"height": 224, "width": 224}
|
||||
do_resize = True
|
||||
do_center_crop = True
|
||||
do_rescale = True
|
||||
do_normalize = True
|
||||
do_convert_rgb = None
|
||||
|
||||
def post_process_semantic_segmentation(self, outputs, target_sizes: List[Tuple] = None):
|
||||
"""
|
||||
Converts the output of [`MobileNetV2ForSemanticSegmentation`] into semantic segmentation maps. Only supports PyTorch.
|
||||
|
||||
Args:
|
||||
outputs ([`MobileNetV2ForSemanticSegmentation`]):
|
||||
Raw outputs of the model.
|
||||
target_sizes (`List[Tuple]` of length `batch_size`, *optional*):
|
||||
List of tuples corresponding to the requested final size (height, width) of each prediction. If unset,
|
||||
predictions will not be resized.
|
||||
|
||||
Returns:
|
||||
semantic_segmentation: `List[torch.Tensor]` of length `batch_size`, where each item is a semantic
|
||||
segmentation map of shape (height, width) corresponding to the target_sizes entry (if `target_sizes` is
|
||||
specified). Each entry of each `torch.Tensor` correspond to a semantic class id.
|
||||
"""
|
||||
# TODO: add support for other frameworks
|
||||
logits = outputs.logits
|
||||
|
||||
# Resize logits and compute semantic segmentation maps
|
||||
if target_sizes is not None:
|
||||
if len(logits) != len(target_sizes):
|
||||
raise ValueError(
|
||||
"Make sure that you pass in as many target sizes as the batch dimension of the logits"
|
||||
)
|
||||
|
||||
if is_torch_tensor(target_sizes):
|
||||
target_sizes = target_sizes.numpy()
|
||||
|
||||
semantic_segmentation = []
|
||||
|
||||
for idx in range(len(logits)):
|
||||
resized_logits = torch.nn.functional.interpolate(
|
||||
logits[idx].unsqueeze(dim=0), size=target_sizes[idx], mode="bilinear", align_corners=False
|
||||
)
|
||||
semantic_map = resized_logits[0].argmax(dim=0)
|
||||
semantic_segmentation.append(semantic_map)
|
||||
else:
|
||||
semantic_segmentation = logits.argmax(dim=1)
|
||||
semantic_segmentation = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0])]
|
||||
|
||||
return semantic_segmentation
|
||||
|
||||
|
||||
__all__ = ["MobileNetV2ImageProcessorFast"]
|
@ -16,7 +16,7 @@
|
||||
import unittest
|
||||
|
||||
from transformers.testing_utils import require_torch, require_vision
|
||||
from transformers.utils import is_vision_available
|
||||
from transformers.utils import is_torchvision_available, is_vision_available
|
||||
|
||||
from ...test_image_processing_common import ImageProcessingTestMixin, prepare_image_inputs
|
||||
|
||||
@ -24,6 +24,9 @@ from ...test_image_processing_common import ImageProcessingTestMixin, prepare_im
|
||||
if is_vision_available():
|
||||
from transformers import MobileNetV2ImageProcessor
|
||||
|
||||
if is_torchvision_available():
|
||||
from transformers import MobileNetV2ImageProcessorFast
|
||||
|
||||
|
||||
class MobileNetV2ImageProcessingTester:
|
||||
def __init__(
|
||||
@ -79,6 +82,7 @@ class MobileNetV2ImageProcessingTester:
|
||||
@require_vision
|
||||
class MobileNetV2ImageProcessingTest(ImageProcessingTestMixin, unittest.TestCase):
|
||||
image_processing_class = MobileNetV2ImageProcessor if is_vision_available() else None
|
||||
fast_image_processing_class = MobileNetV2ImageProcessorFast if is_torchvision_available() else None
|
||||
|
||||
def setUp(self):
|
||||
super().setUp()
|
||||
@ -89,17 +93,19 @@ class MobileNetV2ImageProcessingTest(ImageProcessingTestMixin, unittest.TestCase
|
||||
return self.image_processor_tester.prepare_image_processor_dict()
|
||||
|
||||
def test_image_processor_properties(self):
|
||||
image_processor = self.image_processing_class(**self.image_processor_dict)
|
||||
for image_processing_class in self.image_processor_list:
|
||||
image_processor = image_processing_class(**self.image_processor_dict)
|
||||
self.assertTrue(hasattr(image_processor, "do_resize"))
|
||||
self.assertTrue(hasattr(image_processor, "size"))
|
||||
self.assertTrue(hasattr(image_processor, "do_center_crop"))
|
||||
self.assertTrue(hasattr(image_processor, "crop_size"))
|
||||
|
||||
def test_image_processor_from_dict_with_kwargs(self):
|
||||
image_processor = self.image_processing_class.from_dict(self.image_processor_dict)
|
||||
for image_processing_class in self.image_processor_list:
|
||||
image_processor = image_processing_class.from_dict(self.image_processor_dict)
|
||||
self.assertEqual(image_processor.size, {"shortest_edge": 20})
|
||||
self.assertEqual(image_processor.crop_size, {"height": 18, "width": 18})
|
||||
|
||||
image_processor = self.image_processing_class.from_dict(self.image_processor_dict, size=42, crop_size=84)
|
||||
image_processor = image_processing_class.from_dict(self.image_processor_dict, size=42, crop_size=84)
|
||||
self.assertEqual(image_processor.size, {"shortest_edge": 42})
|
||||
self.assertEqual(image_processor.crop_size, {"height": 84, "width": 84})
|
||||
|
Loading…
Reference in New Issue
Block a user