mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-31 02:02:21 +06:00
Moving pipeline tests from Narsil
to hf-internal-testing
. (#14463)
* Moving everything to `hf-internal-testing`. * Fixing test values. * Moving to other repo. * Last touch?
This commit is contained in:
parent
1a92bc5788
commit
a4553e6c64
@ -258,7 +258,7 @@ class CommonPipelineTest(unittest.TestCase):
|
||||
return self.data[i]
|
||||
|
||||
text_classifier = pipeline(
|
||||
task="text-classification", model="Narsil/tiny-distilbert-sequence-classification", framework="pt"
|
||||
task="text-classification", model="hf-internal-testing/tiny-random-distilbert", framework="pt"
|
||||
)
|
||||
dataset = MyDataset()
|
||||
for output in text_classifier(dataset):
|
||||
@ -266,7 +266,7 @@ class CommonPipelineTest(unittest.TestCase):
|
||||
|
||||
@require_torch
|
||||
def test_check_task_auto_inference(self):
|
||||
pipe = pipeline(model="Narsil/tiny-distilbert-sequence-classification")
|
||||
pipe = pipeline(model="hf-internal-testing/tiny-random-distilbert")
|
||||
|
||||
self.assertIsInstance(pipe, TextClassificationPipeline)
|
||||
|
||||
@ -275,7 +275,7 @@ class CommonPipelineTest(unittest.TestCase):
|
||||
class MyPipeline(TextClassificationPipeline):
|
||||
pass
|
||||
|
||||
text_classifier = pipeline(model="Narsil/tiny-distilbert-sequence-classification", pipeline_class=MyPipeline)
|
||||
text_classifier = pipeline(model="hf-internal-testing/tiny-random-distilbert", pipeline_class=MyPipeline)
|
||||
|
||||
self.assertIsInstance(text_classifier, MyPipeline)
|
||||
|
||||
@ -293,11 +293,11 @@ class CommonPipelineTest(unittest.TestCase):
|
||||
for _ in range(n):
|
||||
yield "This is a test"
|
||||
|
||||
pipe = pipeline(model="Narsil/tiny-distilbert-sequence-classification")
|
||||
pipe = pipeline(model="hf-internal-testing/tiny-random-distilbert")
|
||||
|
||||
results = []
|
||||
for out in pipe(data(10)):
|
||||
self.assertEqual(nested_simplify(out), {"label": "LABEL_1", "score": 0.502})
|
||||
self.assertEqual(nested_simplify(out), {"label": "LABEL_0", "score": 0.504})
|
||||
results.append(out)
|
||||
self.assertEqual(len(results), 10)
|
||||
|
||||
@ -305,7 +305,7 @@ class CommonPipelineTest(unittest.TestCase):
|
||||
# This will force using `num_workers=1` with a warning for now.
|
||||
results = []
|
||||
for out in pipe(data(10), num_workers=2):
|
||||
self.assertEqual(nested_simplify(out), {"label": "LABEL_1", "score": 0.502})
|
||||
self.assertEqual(nested_simplify(out), {"label": "LABEL_0", "score": 0.504})
|
||||
results.append(out)
|
||||
self.assertEqual(len(results), 10)
|
||||
|
||||
@ -315,20 +315,20 @@ class CommonPipelineTest(unittest.TestCase):
|
||||
for _ in range(n):
|
||||
yield "This is a test"
|
||||
|
||||
pipe = pipeline(model="Narsil/tiny-distilbert-sequence-classification", framework="tf")
|
||||
pipe = pipeline(model="hf-internal-testing/tiny-random-distilbert", framework="tf")
|
||||
out = pipe("This is a test")
|
||||
results = []
|
||||
for out in pipe(data(10)):
|
||||
self.assertEqual(nested_simplify(out), {"label": "LABEL_1", "score": 0.502})
|
||||
self.assertEqual(nested_simplify(out), {"label": "LABEL_0", "score": 0.504})
|
||||
results.append(out)
|
||||
self.assertEqual(len(results), 10)
|
||||
|
||||
@require_torch
|
||||
def test_unbatch_attentions_hidden_states(self):
|
||||
model = DistilBertForSequenceClassification.from_pretrained(
|
||||
"Narsil/tiny-distilbert-sequence-classification", output_hidden_states=True, output_attentions=True
|
||||
"hf-internal-testing/tiny-random-distilbert", output_hidden_states=True, output_attentions=True
|
||||
)
|
||||
tokenizer = AutoTokenizer.from_pretrained("Narsil/tiny-distilbert-sequence-classification")
|
||||
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-distilbert")
|
||||
text_classifier = TextClassificationPipeline(model=model, tokenizer=tokenizer)
|
||||
|
||||
# Used to throw an error because `hidden_states` are a tuple of tensors
|
||||
|
@ -67,7 +67,7 @@ class ImageClassificationPipelineTests(unittest.TestCase, metaclass=PipelineTest
|
||||
|
||||
import datasets
|
||||
|
||||
dataset = datasets.load_dataset("Narsil/image_dummy", "image", split="test")
|
||||
dataset = datasets.load_dataset("hf-internal-testing/fixtures_image_utils", "image", split="test")
|
||||
|
||||
# Accepts URL + PIL.Image + lists
|
||||
outputs = image_classifier(
|
||||
|
@ -68,7 +68,7 @@ class ImageSegmentationPipelineTests(unittest.TestCase, metaclass=PipelineTestCa
|
||||
|
||||
import datasets
|
||||
|
||||
dataset = datasets.load_dataset("Narsil/image_dummy", "image", split="test")
|
||||
dataset = datasets.load_dataset("hf-internal-testing/fixtures_image_utils", "image", split="test")
|
||||
|
||||
batch = [
|
||||
Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png"),
|
||||
|
@ -74,7 +74,7 @@ class ObjectDetectionPipelineTests(unittest.TestCase, metaclass=PipelineTestCase
|
||||
|
||||
import datasets
|
||||
|
||||
dataset = datasets.load_dataset("Narsil/image_dummy", "image", split="test")
|
||||
dataset = datasets.load_dataset("hf-internal-testing/fixtures_image_utils", "image", split="test")
|
||||
|
||||
batch = [
|
||||
Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png"),
|
||||
|
@ -33,20 +33,20 @@ class TextClassificationPipelineTests(unittest.TestCase, metaclass=PipelineTestC
|
||||
@require_torch
|
||||
def test_small_model_pt(self):
|
||||
text_classifier = pipeline(
|
||||
task="text-classification", model="Narsil/tiny-distilbert-sequence-classification", framework="pt"
|
||||
task="text-classification", model="hf-internal-testing/tiny-random-distilbert", framework="pt"
|
||||
)
|
||||
|
||||
outputs = text_classifier("This is great !")
|
||||
self.assertEqual(nested_simplify(outputs), [{"label": "LABEL_1", "score": 0.502}])
|
||||
self.assertEqual(nested_simplify(outputs), [{"label": "LABEL_0", "score": 0.504}])
|
||||
|
||||
@require_tf
|
||||
def test_small_model_tf(self):
|
||||
text_classifier = pipeline(
|
||||
task="text-classification", model="Narsil/tiny-distilbert-sequence-classification", framework="tf"
|
||||
task="text-classification", model="hf-internal-testing/tiny-random-distilbert", framework="tf"
|
||||
)
|
||||
|
||||
outputs = text_classifier("This is great !")
|
||||
self.assertEqual(nested_simplify(outputs), [{"label": "LABEL_1", "score": 0.502}])
|
||||
self.assertEqual(nested_simplify(outputs), [{"label": "LABEL_0", "score": 0.504}])
|
||||
|
||||
@slow
|
||||
@require_torch
|
||||
|
@ -582,14 +582,14 @@ class TokenClassificationPipelineTests(unittest.TestCase, metaclass=PipelineTest
|
||||
|
||||
@require_tf
|
||||
def test_tf_only(self):
|
||||
model_name = "Narsil/small" # This model only has a TensorFlow version
|
||||
model_name = "hf-internal-testing/tiny-random-bert-tf-only" # This model only has a TensorFlow version
|
||||
# We test that if we don't specificy framework='tf', it gets detected automatically
|
||||
token_classifier = pipeline(task="ner", model=model_name)
|
||||
self.assertEqual(token_classifier.framework, "tf")
|
||||
|
||||
@require_tf
|
||||
def test_small_model_tf(self):
|
||||
model_name = "Narsil/small2"
|
||||
model_name = "hf-internal-testing/tiny-bert-for-token-classification"
|
||||
token_classifier = pipeline(task="token-classification", model=model_name, framework="tf")
|
||||
outputs = token_classifier("This is a test !")
|
||||
self.assertEqual(
|
||||
@ -602,8 +602,8 @@ class TokenClassificationPipelineTests(unittest.TestCase, metaclass=PipelineTest
|
||||
|
||||
@require_torch
|
||||
def test_no_offset_tokenizer(self):
|
||||
model_name = "Narsil/small2"
|
||||
tokenizer = AutoTokenizer.from_pretrained("Narsil/small2", use_fast=False)
|
||||
model_name = "hf-internal-testing/tiny-bert-for-token-classification"
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=False)
|
||||
token_classifier = pipeline(task="token-classification", model=model_name, tokenizer=tokenizer, framework="pt")
|
||||
outputs = token_classifier("This is a test !")
|
||||
self.assertEqual(
|
||||
@ -616,7 +616,7 @@ class TokenClassificationPipelineTests(unittest.TestCase, metaclass=PipelineTest
|
||||
|
||||
@require_torch
|
||||
def test_small_model_pt(self):
|
||||
model_name = "Narsil/small2"
|
||||
model_name = "hf-internal-testing/tiny-bert-for-token-classification"
|
||||
token_classifier = pipeline(task="token-classification", model=model_name, framework="pt")
|
||||
outputs = token_classifier("This is a test !")
|
||||
self.assertEqual(
|
||||
|
Loading…
Reference in New Issue
Block a user