mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-31 02:02:21 +06:00
Merge branch 'main' into add-aimv2-model
This commit is contained in:
commit
a1792294ac
2
.github/ISSUE_TEMPLATE/i18n.md
vendored
2
.github/ISSUE_TEMPLATE/i18n.md
vendored
@ -23,7 +23,7 @@ Some notes:
|
||||
* Please translate in a gender-neutral way.
|
||||
* Add your translations to the folder called `<languageCode>` inside the [source folder](https://github.com/huggingface/transformers/tree/main/docs/source).
|
||||
* Register your translation in `<languageCode>/_toctree.yml`; please follow the order of the [English version](https://github.com/huggingface/transformers/blob/main/docs/source/en/_toctree.yml).
|
||||
* Once you're finished, open a pull request and tag this issue by including #issue-number in the description, where issue-number is the number of this issue. Please ping @stevhliu and @MKhalusova for review.
|
||||
* Once you're finished, open a pull request and tag this issue by including #issue-number in the description, where issue-number is the number of this issue. Please ping @stevhliu for review.
|
||||
* 🙋 If you'd like others to help you with the translation, you can also post in the 🤗 [forums](https://discuss.huggingface.co/).
|
||||
|
||||
## Get Started section
|
||||
|
@ -70,7 +70,7 @@ Explore the [Hub](https://huggingface.com/) today to find a model and use Transf
|
||||
|
||||
## Installation
|
||||
|
||||
Transformers works with Python 3.9+ [PyTorch](https://pytorch.org/get-started/locally/) 2.0+, [TensorFlow](https://www.tensorflow.org/install/pip) 2.6+, and [Flax](https://flax.readthedocs.io/en/latest/) 0.4.1+.
|
||||
Transformers works with Python 3.9+ [PyTorch](https://pytorch.org/get-started/locally/) 2.1+, [TensorFlow](https://www.tensorflow.org/install/pip) 2.6+, and [Flax](https://flax.readthedocs.io/en/latest/) 0.4.1+.
|
||||
|
||||
Create and activate a virtual environment with [venv](https://docs.python.org/3/library/venv.html) or [uv](https://docs.astral.sh/uv/), a fast Rust-based Python package and project manager.
|
||||
|
||||
|
@ -20,7 +20,7 @@ rendered properly in your Markdown viewer.
|
||||
|
||||
# Installation
|
||||
|
||||
Transformers works with [PyTorch](https://pytorch.org/get-started/locally/), [TensorFlow 2.0](https://www.tensorflow.org/install/pip), and [Flax](https://flax.readthedocs.io/en/latest/). It has been tested on Python 3.9+, PyTorch 2.0+, TensorFlow 2.6+, and Flax 0.4.1+.
|
||||
Transformers works with [PyTorch](https://pytorch.org/get-started/locally/), [TensorFlow 2.0](https://www.tensorflow.org/install/pip), and [Flax](https://flax.readthedocs.io/en/latest/). It has been tested on Python 3.9+, PyTorch 2.1+, TensorFlow 2.6+, and Flax 0.4.1+.
|
||||
|
||||
## Virtual environment
|
||||
|
||||
|
@ -10,71 +10,134 @@ an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express o
|
||||
specific language governing permissions and limitations under the License.
|
||||
-->
|
||||
|
||||
# DINOv2
|
||||
|
||||
<div class="flex flex-wrap space-x-1">
|
||||
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
<img alt="Flax" src="https://img.shields.io/badge/Flax-29a79b.svg?style=flat&logo=
|
||||
">
|
||||
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
|
||||
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
<div style="float: right;">
|
||||
<div class="flex flex-wrap space-x-1">
|
||||
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
<img alt="Flax" src="https://img.shields.io/badge/Flax-29a79b.svg?style=flat&logo=">
|
||||
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
|
||||
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
</div>
|
||||
</div>
|
||||
|
||||
## Overview
|
||||
|
||||
The DINOv2 model was proposed in [DINOv2: Learning Robust Visual Features without Supervision](https://arxiv.org/abs/2304.07193) by
|
||||
Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov, Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, Mahmoud Assran, Nicolas Ballas, Wojciech Galuba, Russell Howes, Po-Yao Huang, Shang-Wen Li, Ishan Misra, Michael Rabbat, Vasu Sharma, Gabriel Synnaeve, Hu Xu, Hervé Jegou, Julien Mairal, Patrick Labatut, Armand Joulin, Piotr Bojanowski.
|
||||
DINOv2 is an upgrade of [DINO](https://arxiv.org/abs/2104.14294), a self-supervised method applied on [Vision Transformers](vit). This method enables all-purpose visual features, i.e., features that work across image distributions and tasks without finetuning.
|
||||
# DINOv2
|
||||
|
||||
The abstract from the paper is the following:
|
||||
[DINOv2](https://huggingface.co/papers/2304.07193) is a vision foundation model that uses [ViT](./vit) as a feature extractor for multiple downstream tasks like image classification and depth estimation. It focuses on stabilizing and accelerating training through techniques like a faster memory-efficient attention, sequence packing, improved stochastic depth, Fully Sharded Data Parallel (FSDP), and model distillation.
|
||||
|
||||
*The recent breakthroughs in natural language processing for model pretraining on large quantities of data have opened the way for similar foundation models in computer vision. These models could greatly simplify the use of images in any system by producing all-purpose visual features, i.e., features that work across image distributions and tasks without finetuning. This work shows that existing pretraining methods, especially self-supervised methods, can produce such features if trained on enough curated data from diverse sources. We revisit existing approaches and combine different techniques to scale our pretraining in terms of data and model size. Most of the technical contributions aim at accelerating and stabilizing the training at scale. In terms of data, we propose an automatic pipeline to build a dedicated, diverse, and curated image dataset instead of uncurated data, as typically done in the self-supervised literature. In terms of models, we train a ViT model (Dosovitskiy et al., 2020) with 1B parameters and distill it into a series of smaller models that surpass the best available all-purpose features, OpenCLIP (Ilharco et al., 2021) on most of the benchmarks at image and pixel levels.*
|
||||
You can find all the original DINOv2 checkpoints under the [Dinov2](https://huggingface.co/collections/facebook/dinov2-6526c98554b3d2576e071ce3) collection.
|
||||
|
||||
This model was contributed by [nielsr](https://huggingface.co/nielsr).
|
||||
The original code can be found [here](https://github.com/facebookresearch/dinov2).
|
||||
> [!TIP]
|
||||
> Click on the DINOv2 models in the right sidebar for more examples of how to apply DINOv2 to different vision tasks.
|
||||
|
||||
## Usage tips
|
||||
The example below demonstrates how to obtain an image embedding with [`Pipeline`] or the [`AutoModel`] class.
|
||||
|
||||
The model can be traced using `torch.jit.trace` which leverages JIT compilation to optimize the model making it faster to run. Note this still produces some mis-matched elements and the difference between the original model and the traced model is of the order of 1e-4.
|
||||
<hfoptions id="usage">
|
||||
<hfoption id="Pipeline">
|
||||
|
||||
```python
|
||||
```py
|
||||
import torch
|
||||
from transformers import AutoImageProcessor, AutoModel
|
||||
from PIL import Image
|
||||
from transformers import pipeline
|
||||
|
||||
pipe = pipeline(
|
||||
task="image-classification",
|
||||
model="facebook/dinov2-small-imagenet1k-1-layer",
|
||||
torch_dtype=torch.float16,
|
||||
device=0
|
||||
)
|
||||
|
||||
pipe("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg")
|
||||
```
|
||||
|
||||
</hfoption>
|
||||
<hfoption id="AutoModel">
|
||||
|
||||
```py
|
||||
import requests
|
||||
from transformers import AutoImageProcessor, AutoModelForImageClassification
|
||||
from PIL import Image
|
||||
|
||||
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
||||
image = Image.open(requests.get(url, stream=True).raw)
|
||||
|
||||
processor = AutoImageProcessor.from_pretrained("facebook/dinov2-small-imagenet1k-1-layer")
|
||||
model = AutoModelForImageClassification.from_pretrained(
|
||||
"facebook/dinov2-small-imagenet1k-1-layer",
|
||||
torch_dtype=torch.float16,
|
||||
device_map="auto",
|
||||
attn_implementation="sdpa"
|
||||
)
|
||||
|
||||
inputs = processor(images=image, return_tensors="pt")
|
||||
logits = model(**inputs).logits
|
||||
predicted_class_idx = logits.argmax(-1).item()
|
||||
print("Predicted class:", model.config.id2label[predicted_class_idx])
|
||||
```
|
||||
|
||||
</hfoption>
|
||||
</hfoptions>
|
||||
|
||||
Quantization reduces the memory burden of large models by representing the weights in a lower precision. Refer to the [Quantization](../quantization/overview) overview for more available quantization backends.
|
||||
|
||||
The example below uses [torchao](../quantization/torchao) to only quantize the weights to int4.
|
||||
|
||||
```py
|
||||
# pip install torchao
|
||||
import requests
|
||||
from transformers import TorchAoConfig, AutoImageProcessor, AutoModelForImageClassification
|
||||
from torchao.quantization import Int4WeightOnlyConfig
|
||||
from PIL import Image
|
||||
|
||||
url = 'http://images.cocodataset.org/val2017/000000039769.jpg'
|
||||
image = Image.open(requests.get(url, stream=True).raw)
|
||||
|
||||
processor = AutoImageProcessor.from_pretrained('facebook/dinov2-base')
|
||||
model = AutoModel.from_pretrained('facebook/dinov2-base')
|
||||
processor = AutoImageProcessor.from_pretrained('facebook/dinov2-giant-imagenet1k-1-layer')
|
||||
|
||||
quant_config = Int4WeightOnlyConfig(group_size=128)
|
||||
quantization_config = TorchAoConfig(quant_type=quant_config)
|
||||
|
||||
model = AutoModelForImageClassification.from_pretrained(
|
||||
'facebook/dinov2-giant-imagenet1k-1-layer',
|
||||
torch_dtype=torch.bfloat16,
|
||||
device_map="auto",
|
||||
quantization_config=quantization_config
|
||||
)
|
||||
|
||||
inputs = processor(images=image, return_tensors="pt")
|
||||
outputs = model(**inputs)
|
||||
last_hidden_states = outputs[0]
|
||||
|
||||
# We have to force return_dict=False for tracing
|
||||
model.config.return_dict = False
|
||||
|
||||
with torch.no_grad():
|
||||
traced_model = torch.jit.trace(model, [inputs.pixel_values])
|
||||
traced_outputs = traced_model(inputs.pixel_values)
|
||||
|
||||
print((last_hidden_states - traced_outputs[0]).abs().max())
|
||||
logits = outputs.logits
|
||||
predicted_class_idx = logits.argmax(-1).item()
|
||||
print("Predicted class:", model.config.id2label[predicted_class_idx])
|
||||
```
|
||||
|
||||
## Resources
|
||||
## Notes
|
||||
|
||||
A list of official Hugging Face and community (indicated by 🌎) resources to help you get started with DINOv2.
|
||||
- Use [torch.jit.trace](https://pytorch.org/docs/stable/generated/torch.jit.trace.html) to speedup inference. However, it will produce some mismatched elements. The difference between the original and traced model is 1e-4.
|
||||
|
||||
- Demo notebooks for DINOv2 can be found [here](https://github.com/NielsRogge/Transformers-Tutorials/tree/master/DINOv2). 🌎
|
||||
```py
|
||||
import torch
|
||||
from transformers import AutoImageProcessor, AutoModel
|
||||
from PIL import Image
|
||||
import requests
|
||||
|
||||
<PipelineTag pipeline="image-classification"/>
|
||||
url = 'http://images.cocodataset.org/val2017/000000039769.jpg'
|
||||
image = Image.open(requests.get(url, stream=True).raw)
|
||||
|
||||
- [`Dinov2ForImageClassification`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/pytorch/image-classification) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/image_classification.ipynb).
|
||||
- See also: [Image classification task guide](../tasks/image_classification)
|
||||
processor = AutoImageProcessor.from_pretrained('facebook/dinov2-base')
|
||||
model = AutoModel.from_pretrained('facebook/dinov2-base')
|
||||
|
||||
If you're interested in submitting a resource to be included here, please feel free to open a Pull Request and we'll review it! The resource should ideally demonstrate something new instead of duplicating an existing resource.
|
||||
inputs = processor(images=image, return_tensors="pt")
|
||||
outputs = model(**inputs)
|
||||
last_hidden_states = outputs[0]
|
||||
|
||||
# We have to force return_dict=False for tracing
|
||||
model.config.return_dict = False
|
||||
|
||||
with torch.no_grad():
|
||||
traced_model = torch.jit.trace(model, [inputs.pixel_values])
|
||||
traced_outputs = traced_model(inputs.pixel_values)
|
||||
|
||||
print((last_hidden_states - traced_outputs[0]).abs().max())
|
||||
```
|
||||
|
||||
## Dinov2Config
|
||||
|
||||
|
@ -13,180 +13,191 @@ rendered properly in your Markdown viewer.
|
||||
|
||||
specific language governing permissions and limitations under the License. -->
|
||||
|
||||
<div style="float: right;">
|
||||
<div class="flex flex-wrap space-x-1">
|
||||
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
</div>
|
||||
</div>
|
||||
|
||||
# Donut
|
||||
|
||||
## Overview
|
||||
[Donut (Document Understanding Transformer)](https://huggingface.co/papers2111.15664) is a visual document understanding model that doesn't require an Optical Character Recognition (OCR) engine. Unlike traditional approaches that extract text using OCR before processing, Donut employs an end-to-end Transformer-based architecture to directly analyze document images. This eliminates OCR-related inefficiencies making it more accurate and adaptable to diverse languages and formats.
|
||||
|
||||
The Donut model was proposed in [OCR-free Document Understanding Transformer](https://arxiv.org/abs/2111.15664) by
|
||||
Geewook Kim, Teakgyu Hong, Moonbin Yim, Jeongyeon Nam, Jinyoung Park, Jinyeong Yim, Wonseok Hwang, Sangdoo Yun, Dongyoon Han, Seunghyun Park.
|
||||
Donut consists of an image Transformer encoder and an autoregressive text Transformer decoder to perform document understanding
|
||||
tasks such as document image classification, form understanding and visual question answering.
|
||||
Donut features vision encoder ([Swin](./swin)) and a text decoder ([BART](./bart)). Swin converts document images into embeddings and BART processes them into meaningful text sequences.
|
||||
|
||||
The abstract from the paper is the following:
|
||||
You can find all the original Donut checkpoints under the [Naver Clova Information Extraction](https://huggingface.co/naver-clova-ix) organization.
|
||||
|
||||
*Understanding document images (e.g., invoices) is a core but challenging task since it requires complex functions such as reading text and a holistic understanding of the document. Current Visual Document Understanding (VDU) methods outsource the task of reading text to off-the-shelf Optical Character Recognition (OCR) engines and focus on the understanding task with the OCR outputs. Although such OCR-based approaches have shown promising performance, they suffer from 1) high computational costs for using OCR; 2) inflexibility of OCR models on languages or types of document; 3) OCR error propagation to the subsequent process. To address these issues, in this paper, we introduce a novel OCR-free VDU model named Donut, which stands for Document understanding transformer. As the first step in OCR-free VDU research, we propose a simple architecture (i.e., Transformer) with a pre-training objective (i.e., cross-entropy loss). Donut is conceptually simple yet effective. Through extensive experiments and analyses, we show a simple OCR-free VDU model, Donut, achieves state-of-the-art performances on various VDU tasks in terms of both speed and accuracy. In addition, we offer a synthetic data generator that helps the model pre-training to be flexible in various languages and domains.*
|
||||
> [!TIP]
|
||||
> Click on the Donut models in the right sidebar for more examples of how to apply Donut to different language and vision tasks.
|
||||
|
||||
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/donut_architecture.jpg"
|
||||
alt="drawing" width="600"/>
|
||||
The examples below demonstrate how to perform document understanding tasks using Donut with [`Pipeline`] and [`AutoModel`]
|
||||
|
||||
<small> Donut high-level overview. Taken from the <a href="https://arxiv.org/abs/2111.15664">original paper</a>. </small>
|
||||
|
||||
This model was contributed by [nielsr](https://huggingface.co/nielsr). The original code can be found
|
||||
[here](https://github.com/clovaai/donut).
|
||||
|
||||
## Usage tips
|
||||
|
||||
- The quickest way to get started with Donut is by checking the [tutorial
|
||||
notebooks](https://github.com/NielsRogge/Transformers-Tutorials/tree/master/Donut), which show how to use the model
|
||||
at inference time as well as fine-tuning on custom data.
|
||||
- Donut is always used within the [VisionEncoderDecoder](vision-encoder-decoder) framework.
|
||||
|
||||
## Inference examples
|
||||
|
||||
Donut's [`VisionEncoderDecoder`] model accepts images as input and makes use of
|
||||
[`~generation.GenerationMixin.generate`] to autoregressively generate text given the input image.
|
||||
|
||||
The [`DonutImageProcessor`] class is responsible for preprocessing the input image and
|
||||
[`XLMRobertaTokenizer`/`XLMRobertaTokenizerFast`] decodes the generated target tokens to the target string. The
|
||||
[`DonutProcessor`] wraps [`DonutImageProcessor`] and [`XLMRobertaTokenizer`/`XLMRobertaTokenizerFast`]
|
||||
into a single instance to both extract the input features and decode the predicted token ids.
|
||||
|
||||
- Step-by-step Document Image Classification
|
||||
<hfoptions id="usage">
|
||||
<hfoption id="Pipeline">
|
||||
|
||||
```py
|
||||
>>> import re
|
||||
# pip install datasets
|
||||
import torch
|
||||
from transformers import pipeline
|
||||
from PIL import Image
|
||||
|
||||
>>> from transformers import DonutProcessor, VisionEncoderDecoderModel
|
||||
>>> from datasets import load_dataset
|
||||
>>> import torch
|
||||
pipeline = pipeline(
|
||||
task="document-question-answering",
|
||||
model="naver-clova-ix/donut-base-finetuned-docvqa",
|
||||
device=0,
|
||||
torch_dtype=torch.float16
|
||||
)
|
||||
dataset = load_dataset("hf-internal-testing/example-documents", split="test")
|
||||
image = dataset[0]["image"]
|
||||
|
||||
>>> processor = DonutProcessor.from_pretrained("naver-clova-ix/donut-base-finetuned-rvlcdip")
|
||||
>>> model = VisionEncoderDecoderModel.from_pretrained("naver-clova-ix/donut-base-finetuned-rvlcdip")
|
||||
|
||||
>>> device = "cuda" if torch.cuda.is_available() else "cpu"
|
||||
>>> model.to(device) # doctest: +IGNORE_RESULT
|
||||
|
||||
>>> # load document image
|
||||
>>> dataset = load_dataset("hf-internal-testing/example-documents", split="test")
|
||||
>>> image = dataset[1]["image"]
|
||||
|
||||
>>> # prepare decoder inputs
|
||||
>>> task_prompt = "<s_rvlcdip>"
|
||||
>>> decoder_input_ids = processor.tokenizer(task_prompt, add_special_tokens=False, return_tensors="pt").input_ids
|
||||
|
||||
>>> pixel_values = processor(image, return_tensors="pt").pixel_values
|
||||
|
||||
>>> outputs = model.generate(
|
||||
... pixel_values.to(device),
|
||||
... decoder_input_ids=decoder_input_ids.to(device),
|
||||
... max_length=model.decoder.config.max_position_embeddings,
|
||||
... pad_token_id=processor.tokenizer.pad_token_id,
|
||||
... eos_token_id=processor.tokenizer.eos_token_id,
|
||||
... use_cache=True,
|
||||
... bad_words_ids=[[processor.tokenizer.unk_token_id]],
|
||||
... return_dict_in_generate=True,
|
||||
... )
|
||||
|
||||
>>> sequence = processor.batch_decode(outputs.sequences)[0]
|
||||
>>> sequence = sequence.replace(processor.tokenizer.eos_token, "").replace(processor.tokenizer.pad_token, "")
|
||||
>>> sequence = re.sub(r"<.*?>", "", sequence, count=1).strip() # remove first task start token
|
||||
>>> print(processor.token2json(sequence))
|
||||
{'class': 'advertisement'}
|
||||
pipeline(image=image, question="What time is the coffee break?")
|
||||
```
|
||||
|
||||
- Step-by-step Document Parsing
|
||||
</hfoption>
|
||||
<hfoption id="AutoModel">
|
||||
|
||||
```py
|
||||
>>> import re
|
||||
# pip install datasets
|
||||
import torch
|
||||
from datasets import load_dataset
|
||||
from transformers import AutoProcessor, AutoModelForVision2Seq
|
||||
|
||||
>>> from transformers import DonutProcessor, VisionEncoderDecoderModel
|
||||
>>> from datasets import load_dataset
|
||||
>>> import torch
|
||||
processor = AutoProcessor.from_pretrained("naver-clova-ix/donut-base-finetuned-docvqa")
|
||||
model = AutoModelForVision2Seq.from_pretrained("naver-clova-ix/donut-base-finetuned-docvqa")
|
||||
|
||||
>>> processor = DonutProcessor.from_pretrained("naver-clova-ix/donut-base-finetuned-cord-v2")
|
||||
>>> model = VisionEncoderDecoderModel.from_pretrained("naver-clova-ix/donut-base-finetuned-cord-v2")
|
||||
dataset = load_dataset("hf-internal-testing/example-documents", split="test")
|
||||
image = dataset[0]["image"]
|
||||
question = "What time is the coffee break?"
|
||||
task_prompt = f"<s_docvqa><s_question>{question}</s_question><s_answer>"
|
||||
inputs = processor(image, task_prompt, return_tensors="pt")
|
||||
|
||||
>>> device = "cuda" if torch.cuda.is_available() else "cpu"
|
||||
>>> model.to(device) # doctest: +IGNORE_RESULT
|
||||
|
||||
>>> # load document image
|
||||
>>> dataset = load_dataset("hf-internal-testing/example-documents", split="test")
|
||||
>>> image = dataset[2]["image"]
|
||||
|
||||
>>> # prepare decoder inputs
|
||||
>>> task_prompt = "<s_cord-v2>"
|
||||
>>> decoder_input_ids = processor.tokenizer(task_prompt, add_special_tokens=False, return_tensors="pt").input_ids
|
||||
|
||||
>>> pixel_values = processor(image, return_tensors="pt").pixel_values
|
||||
|
||||
>>> outputs = model.generate(
|
||||
... pixel_values.to(device),
|
||||
... decoder_input_ids=decoder_input_ids.to(device),
|
||||
... max_length=model.decoder.config.max_position_embeddings,
|
||||
... pad_token_id=processor.tokenizer.pad_token_id,
|
||||
... eos_token_id=processor.tokenizer.eos_token_id,
|
||||
... use_cache=True,
|
||||
... bad_words_ids=[[processor.tokenizer.unk_token_id]],
|
||||
... return_dict_in_generate=True,
|
||||
... )
|
||||
|
||||
>>> sequence = processor.batch_decode(outputs.sequences)[0]
|
||||
>>> sequence = sequence.replace(processor.tokenizer.eos_token, "").replace(processor.tokenizer.pad_token, "")
|
||||
>>> sequence = re.sub(r"<.*?>", "", sequence, count=1).strip() # remove first task start token
|
||||
>>> print(processor.token2json(sequence))
|
||||
{'menu': {'nm': 'CINNAMON SUGAR', 'unitprice': '17,000', 'cnt': '1 x', 'price': '17,000'}, 'sub_total': {'subtotal_price': '17,000'}, 'total': {'total_price': '17,000', 'cashprice': '20,000', 'changeprice': '3,000'}}
|
||||
outputs = model.generate(
|
||||
input_ids=inputs.input_ids,
|
||||
pixel_values=inputs.pixel_values,
|
||||
max_length=512
|
||||
)
|
||||
answer = processor.decode(outputs[0], skip_special_tokens=True)
|
||||
print(answer)
|
||||
```
|
||||
|
||||
- Step-by-step Document Visual Question Answering (DocVQA)
|
||||
</hfoption>
|
||||
</hfoptions>
|
||||
|
||||
Quantization reduces the memory burden of large models by representing the weights in a lower precision. Refer to the [Quantization](../quantization/overview) overview for more available quantization backends.
|
||||
|
||||
The example below uses [torchao](../quantization/torchao) to only quantize the weights to int4.
|
||||
|
||||
```py
|
||||
>>> import re
|
||||
# pip install datasets torchao
|
||||
import torch
|
||||
from datasets import load_dataset
|
||||
from transformers import TorchAoConfig, AutoProcessor, AutoModelForVision2Seq
|
||||
|
||||
>>> from transformers import DonutProcessor, VisionEncoderDecoderModel
|
||||
>>> from datasets import load_dataset
|
||||
>>> import torch
|
||||
quantization_config = TorchAoConfig("int4_weight_only", group_size=128)
|
||||
processor = AutoProcessor.from_pretrained("naver-clova-ix/donut-base-finetuned-docvqa")
|
||||
model = AutoModelForVision2Seq.from_pretrained("naver-clova-ix/donut-base-finetuned-docvqa", quantization_config=quantization_config)
|
||||
|
||||
>>> processor = DonutProcessor.from_pretrained("naver-clova-ix/donut-base-finetuned-docvqa")
|
||||
>>> model = VisionEncoderDecoderModel.from_pretrained("naver-clova-ix/donut-base-finetuned-docvqa")
|
||||
dataset = load_dataset("hf-internal-testing/example-documents", split="test")
|
||||
image = dataset[0]["image"]
|
||||
question = "What time is the coffee break?"
|
||||
task_prompt = f"<s_docvqa><s_question>{question}</s_question><s_answer>"
|
||||
inputs = processor(image, task_prompt, return_tensors="pt")
|
||||
|
||||
>>> device = "cuda" if torch.cuda.is_available() else "cpu"
|
||||
>>> model.to(device) # doctest: +IGNORE_RESULT
|
||||
|
||||
>>> # load document image from the DocVQA dataset
|
||||
>>> dataset = load_dataset("hf-internal-testing/example-documents", split="test")
|
||||
>>> image = dataset[0]["image"]
|
||||
|
||||
>>> # prepare decoder inputs
|
||||
>>> task_prompt = "<s_docvqa><s_question>{user_input}</s_question><s_answer>"
|
||||
>>> question = "When is the coffee break?"
|
||||
>>> prompt = task_prompt.replace("{user_input}", question)
|
||||
>>> decoder_input_ids = processor.tokenizer(prompt, add_special_tokens=False, return_tensors="pt").input_ids
|
||||
|
||||
>>> pixel_values = processor(image, return_tensors="pt").pixel_values
|
||||
|
||||
>>> outputs = model.generate(
|
||||
... pixel_values.to(device),
|
||||
... decoder_input_ids=decoder_input_ids.to(device),
|
||||
... max_length=model.decoder.config.max_position_embeddings,
|
||||
... pad_token_id=processor.tokenizer.pad_token_id,
|
||||
... eos_token_id=processor.tokenizer.eos_token_id,
|
||||
... use_cache=True,
|
||||
... bad_words_ids=[[processor.tokenizer.unk_token_id]],
|
||||
... return_dict_in_generate=True,
|
||||
... )
|
||||
|
||||
>>> sequence = processor.batch_decode(outputs.sequences)[0]
|
||||
>>> sequence = sequence.replace(processor.tokenizer.eos_token, "").replace(processor.tokenizer.pad_token, "")
|
||||
>>> sequence = re.sub(r"<.*?>", "", sequence, count=1).strip() # remove first task start token
|
||||
>>> print(processor.token2json(sequence))
|
||||
{'question': 'When is the coffee break?', 'answer': '11-14 to 11:39 a.m.'}
|
||||
outputs = model.generate(
|
||||
input_ids=inputs.input_ids,
|
||||
pixel_values=inputs.pixel_values,
|
||||
max_length=512
|
||||
)
|
||||
answer = processor.decode(outputs[0], skip_special_tokens=True)
|
||||
print(answer)
|
||||
```
|
||||
|
||||
See the [model hub](https://huggingface.co/models?filter=donut) to look for Donut checkpoints.
|
||||
## Notes
|
||||
|
||||
## Training
|
||||
- Use Donut for document image classification as shown below.
|
||||
|
||||
We refer to the [tutorial notebooks](https://github.com/NielsRogge/Transformers-Tutorials/tree/master/Donut).
|
||||
```py
|
||||
>>> import re
|
||||
>>> from transformers import DonutProcessor, VisionEncoderDecoderModel
|
||||
>>> from datasets import load_dataset
|
||||
>>> import torch
|
||||
|
||||
>>> processor = DonutProcessor.from_pretrained("naver-clova-ix/donut-base-finetuned-rvlcdip")
|
||||
>>> model = VisionEncoderDecoderModel.from_pretrained("naver-clova-ix/donut-base-finetuned-rvlcdip")
|
||||
|
||||
>>> device = "cuda" if torch.cuda.is_available() else "cpu"
|
||||
>>> model.to(device) # doctest: +IGNORE_RESULT
|
||||
|
||||
>>> # load document image
|
||||
>>> dataset = load_dataset("hf-internal-testing/example-documents", split="test")
|
||||
>>> image = dataset[1]["image"]
|
||||
|
||||
>>> # prepare decoder inputs
|
||||
>>> task_prompt = "<s_rvlcdip>"
|
||||
>>> decoder_input_ids = processor.tokenizer(task_prompt, add_special_tokens=False, return_tensors="pt").input_ids
|
||||
|
||||
>>> pixel_values = processor(image, return_tensors="pt").pixel_values
|
||||
|
||||
>>> outputs = model.generate(
|
||||
... pixel_values.to(device),
|
||||
... decoder_input_ids=decoder_input_ids.to(device),
|
||||
... max_length=model.decoder.config.max_position_embeddings,
|
||||
... pad_token_id=processor.tokenizer.pad_token_id,
|
||||
... eos_token_id=processor.tokenizer.eos_token_id,
|
||||
... use_cache=True,
|
||||
... bad_words_ids=[[processor.tokenizer.unk_token_id]],
|
||||
... return_dict_in_generate=True,
|
||||
... )
|
||||
|
||||
>>> sequence = processor.batch_decode(outputs.sequences)[0]
|
||||
>>> sequence = sequence.replace(processor.tokenizer.eos_token, "").replace(processor.tokenizer.pad_token, "")
|
||||
>>> sequence = re.sub(r"<.*?>", "", sequence, count=1).strip() # remove first task start token
|
||||
>>> print(processor.token2json(sequence))
|
||||
{'class': 'advertisement'}
|
||||
```
|
||||
|
||||
- Use Donut for document parsing as shown below.
|
||||
|
||||
```py
|
||||
>>> import re
|
||||
>>> from transformers import DonutProcessor, VisionEncoderDecoderModel
|
||||
>>> from datasets import load_dataset
|
||||
>>> import torch
|
||||
|
||||
>>> processor = DonutProcessor.from_pretrained("naver-clova-ix/donut-base-finetuned-cord-v2")
|
||||
>>> model = VisionEncoderDecoderModel.from_pretrained("naver-clova-ix/donut-base-finetuned-cord-v2")
|
||||
|
||||
>>> device = "cuda" if torch.cuda.is_available() else "cpu"
|
||||
>>> model.to(device) # doctest: +IGNORE_RESULT
|
||||
|
||||
>>> # load document image
|
||||
>>> dataset = load_dataset("hf-internal-testing/example-documents", split="test")
|
||||
>>> image = dataset[2]["image"]
|
||||
|
||||
>>> # prepare decoder inputs
|
||||
>>> task_prompt = "<s_cord-v2>"
|
||||
>>> decoder_input_ids = processor.tokenizer(task_prompt, add_special_tokens=False, return_tensors="pt").input_ids
|
||||
|
||||
>>> pixel_values = processor(image, return_tensors="pt").pixel_values
|
||||
|
||||
>>> outputs = model.generate(
|
||||
... pixel_values.to(device),
|
||||
... decoder_input_ids=decoder_input_ids.to(device),
|
||||
... max_length=model.decoder.config.max_position_embeddings,
|
||||
... pad_token_id=processor.tokenizer.pad_token_id,
|
||||
... eos_token_id=processor.tokenizer.eos_token_id,
|
||||
... use_cache=True,
|
||||
... bad_words_ids=[[processor.tokenizer.unk_token_id]],
|
||||
... return_dict_in_generate=True,
|
||||
... )
|
||||
|
||||
>>> sequence = processor.batch_decode(outputs.sequences)[0]
|
||||
>>> sequence = sequence.replace(processor.tokenizer.eos_token, "").replace(processor.tokenizer.pad_token, "")
|
||||
>>> sequence = re.sub(r"<.*?>", "", sequence, count=1).strip() # remove first task start token
|
||||
>>> print(processor.token2json(sequence))
|
||||
{'menu': {'nm': 'CINNAMON SUGAR', 'unitprice': '17,000', 'cnt': '1 x', 'price': '17,000'}, 'sub_total': {'subtotal_price': '17,000'}, 'total':
|
||||
{'total_price': '17,000', 'cashprice': '20,000', 'changeprice': '3,000'}}
|
||||
```
|
||||
|
||||
## DonutSwinConfig
|
||||
|
||||
|
@ -14,95 +14,100 @@ rendered properly in your Markdown viewer.
|
||||
|
||||
-->
|
||||
|
||||
# FalconMamba
|
||||
|
||||
<div class="flex flex-wrap space-x-1">
|
||||
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
<div style="float: right;">
|
||||
<div class="flex flex-wrap space-x-1">
|
||||
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
</div>
|
||||
</div>
|
||||
|
||||
## Overview
|
||||
# FalconMamba
|
||||
|
||||
The FalconMamba model was proposed by TII UAE (Technology Innovation Institute) in their release.
|
||||
[FalconMamba](https://huggingface.co/papers/2410.05355) is a 7B large language model, available as pretrained and instruction-tuned variants, based on the [Mamba](./mamba). This model implements a pure Mamba design that focuses on computational efficiency while maintaining strong performance. FalconMamba is significantly faster at inference and requires substantially less memory for long sequence generation. The models are pretrained on a diverse 5.8T token dataset including [RefinedWeb](https://huggingface.co/datasets/tiiuae/falcon-refinedweb), technical content, code, and mathematical data.
|
||||
|
||||
The abstract from the paper is the following:
|
||||
You can find the official FalconMamba checkpoints in the [FalconMamba 7B](https://huggingface.co/collections/tiiuae/falconmamba-7b-66b9a580324dd1598b0f6d4a) collection.
|
||||
|
||||
*We present FalconMamba, a new base large language model based on the novel Mamba architecture. FalconMamba is trained on 5.8 trillion tokens with carefully selected data mixtures. As a pure Mamba-based model, FalconMamba surpasses leading open-weight models based on Transformers, such as Mistral 7B, Llama3 8B, and Falcon2 11B. It is on par with Gemma 7B and outperforms models with different architecture designs, such as RecurrentGemma 9B. Currently, FalconMamba is the best-performing Mamba model in the literature at this scale, surpassing both existing Mamba and hybrid Mamba-Transformer models.
|
||||
Due to its architecture, FalconMamba is significantly faster at inference and requires substantially less memory for long sequence generation. Despite recent studies suggesting that hybrid Mamba-Transformer models outperform pure architecture designs, we argue and demonstrate that the pure Mamba design can achieve similar, even superior results compared to the hybrid design. We make the weights of our implementation of FalconMamba publicly available under a permissive license.*
|
||||
> [!TIP]
|
||||
> Click on the FalconMamba models in the right sidebar for more examples of how to apply FalconMamba to different language tasks.
|
||||
|
||||
Tips:
|
||||
The examples below demonstrate how to generate text with [`Pipeline`], [`AutoModel`], and from the command line.
|
||||
|
||||
- FalconMamba is mostly based on Mamba architecture, the same [tips and best practices](./mamba) would be relevant here.
|
||||
<hfoptions id="usage">
|
||||
<hfoption id="Pipeline">
|
||||
|
||||
The model has been trained on approximtely 6T tokens consisting a mixture of many data sources such as RefineWeb, Cosmopedia and Math data.
|
||||
|
||||
For more details about the training procedure and the architecture, have a look at [the technical paper of FalconMamba]() (coming soon).
|
||||
|
||||
# Usage
|
||||
|
||||
Below we demonstrate how to use the model:
|
||||
|
||||
```python
|
||||
from transformers import FalconMambaForCausalLM, AutoTokenizer
|
||||
```py
|
||||
import torch
|
||||
from transformers import pipeline
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained("tiiuae/falcon-mamba-7b")
|
||||
model = FalconMambaForCausalLM.from_pretrained("tiiuae/falcon-mamba-7b")
|
||||
|
||||
input_ids = tokenizer("Hey how are you doing?", return_tensors= "pt")["input_ids"]
|
||||
|
||||
out = model.generate(input_ids, max_new_tokens=10)
|
||||
print(tokenizer.batch_decode(out))
|
||||
pipeline = pipeline(
|
||||
"text-generation",
|
||||
model="tiiuae/falcon-mamba-7b-instruct",
|
||||
torch_dtype=torch.bfloat16,
|
||||
device=0
|
||||
)
|
||||
pipeline(
|
||||
"Explain the difference between transformers and SSMs",
|
||||
max_length=100,
|
||||
do_sample=True,
|
||||
temperature=0.7
|
||||
)
|
||||
```
|
||||
|
||||
The architecture is also compatible with `torch.compile` for faster generation:
|
||||
</hfoption>
|
||||
<hfoption id="AutoModel">
|
||||
|
||||
```python
|
||||
from transformers import FalconMambaForCausalLM, AutoTokenizer
|
||||
import torch
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained("tiiuae/falcon-mamba-7b")
|
||||
model = FalconMambaForCausalLM.from_pretrained("tiiuae/falcon-mamba-7b", torch_dtype=torch.bfloat16).to(0)
|
||||
model = torch.compile(model)
|
||||
|
||||
input_ids = tokenizer("Hey how are you doing?", return_tensors= "pt")["input_ids"]
|
||||
|
||||
out = model.generate(input_ids, max_new_tokens=10)
|
||||
print(tokenizer.batch_decode(out))
|
||||
```
|
||||
|
||||
If you have access to a GPU that is compatible with `bitsandbytes`, you can also quantize the model in 4-bit precision:
|
||||
|
||||
```python
|
||||
from transformers import FalconMambaForCausalLM, AutoTokenizer, BitsAndBytesConfig
|
||||
import torch
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained("tiiuae/falcon-mamba-7b")
|
||||
quantization_config = BitsAndBytesConfig(load_in_4bit=True)
|
||||
model = FalconMambaForCausalLM.from_pretrained("tiiuae/falcon-mamba-7b", quantization_config=quantization_config)
|
||||
|
||||
input_ids = tokenizer("Hey how are you doing?", return_tensors= "pt")["input_ids"]
|
||||
|
||||
out = model.generate(input_ids, max_new_tokens=10)
|
||||
print(tokenizer.batch_decode(out))
|
||||
```
|
||||
|
||||
You can also play with the instruction fine-tuned model:
|
||||
|
||||
```python
|
||||
from transformers import FalconMambaForCausalLM, AutoTokenizer
|
||||
```py
|
||||
import torch
|
||||
from transformers import AutoTokenizer, AutoModelForCausalLM
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained("tiiuae/falcon-mamba-7b-instruct")
|
||||
model = FalconMambaForCausalLM.from_pretrained("tiiuae/falcon-mamba-7b-instruct")
|
||||
model = AutoModelForCausalLM.from_pretrained(
|
||||
"tiiuae/falcon-mamba-7b-instruct",
|
||||
torch_dtype=torch.bfloat16,
|
||||
device_map="auto"
|
||||
)
|
||||
|
||||
# We use the tokenizer's chat template to format each message - see https://huggingface.co/docs/transformers/main/en/chat_templating
|
||||
messages = [
|
||||
{"role": "user", "content": "How many helicopters can a human eat in one sitting?"},
|
||||
]
|
||||
input_ids = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True).input_ids
|
||||
input_ids = tokenizer("Explain the difference between transformers and SSMs", return_tensors="pt").to("cuda")
|
||||
|
||||
outputs = model.generate(input_ids)
|
||||
print(tokenizer.decode(outputs[0]))
|
||||
output = model.generate(**input_ids, max_new_tokens=100, cache_implementation="static")
|
||||
print(tokenizer.decode(output[0], skip_special_tokens=True))
|
||||
```
|
||||
|
||||
</hfoption>
|
||||
<hfoption id="transformers-cli">
|
||||
|
||||
```bash
|
||||
transformers-cli chat --model_name_or_path tiiuae/falcon-mamba-7b-instruct --torch_dtype auto --device 0
|
||||
```
|
||||
|
||||
</hfoption>
|
||||
</hfoptions>
|
||||
|
||||
Quantization reduces the memory burden of large models by representing the weights in a lower precision. Refer to the [Quantization](../quantization/overview) overview for more available quantization backends.
|
||||
|
||||
The example below uses [bitsandbytes](../quantization/bitsandbytes) to quantize the weights to 4-bits.
|
||||
|
||||
```python
|
||||
import torch
|
||||
from transformers import AutoTokenizer, FalconMambaForCausalLM, BitsAndBytesConfig
|
||||
|
||||
quantization_config = BitsAndBytesConfig(
|
||||
load_in_4bit=True,
|
||||
bnb_4bit_compute_dtype=torch.bfloat16,
|
||||
bnb_4bit_quant_type="nf4",
|
||||
bnb_4bit_use_double_quant=True,
|
||||
)
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained("tiiuae/falcon-mamba-7b")
|
||||
model = FalconMambaForCausalLM.from_pretrained(
|
||||
"tiiuae/falcon-mamba-7b",
|
||||
torch_dtype=torch.bfloat16,
|
||||
device_map="auto",
|
||||
quantization_config=quantization_config,
|
||||
)
|
||||
|
||||
inputs = tokenizer("Explain the concept of state space models in simple terms", return_tensors="pt").to("cuda")
|
||||
outputs = model.generate(**inputs, max_new_tokens=100)
|
||||
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
|
||||
```
|
||||
|
||||
## FalconMambaConfig
|
||||
|
@ -14,36 +14,133 @@ specific language governing permissions and limitations under the License.
|
||||
rendered properly in your Markdown viewer.
|
||||
|
||||
-->
|
||||
<div style="float: right;">
|
||||
<div class="flex flex-wrap space-x-1">
|
||||
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
<img alt="TensorFlow" src="https://img.shields.io/badge/TensorFlow-FF6F00?style=flat&logo=tensorflow&logoColor=white">
|
||||
<img alt="Flax" src="https://img.shields.io/badge/Flax-29a79b.svg?style=flat&logo=
|
||||
">
|
||||
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
|
||||
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
</div>
|
||||
</div>
|
||||
|
||||
# Gemma2
|
||||
|
||||
<div class="flex flex-wrap space-x-1">
|
||||
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
|
||||
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
[Gemma 2](https://huggingface.co/papers/2408.00118) is a family of language models with pretrained and instruction-tuned variants, available in 2B, 9B, 27B parameters. The architecture is similar to the previous Gemma, except it features interleaved local attention (4096 tokens) and global attention (8192 tokens) and grouped-query attention (GQA) to increase inference performance.
|
||||
|
||||
The 2B and 9B models are trained with knowledge distillation, and the instruction-tuned variant was post-trained with supervised fine-tuning and reinforcement learning.
|
||||
|
||||
You can find all the original Gemma 2 checkpoints under the [Gemma 2](https://huggingface.co/collections/google/gemma-2-release-667d6600fd5220e7b967f315) collection.
|
||||
|
||||
> [!TIP]
|
||||
> Click on the Gemma 2 models in the right sidebar for more examples of how to apply Gemma to different language tasks.
|
||||
|
||||
The example below demonstrates how to chat with the model with [`Pipeline`] or the [`AutoModel`] class, and from the command line.
|
||||
|
||||
<hfoptions id="usage">
|
||||
<hfoption id="Pipeline">
|
||||
|
||||
|
||||
```python
|
||||
import torch
|
||||
from transformers import pipeline
|
||||
|
||||
pipe = pipeline(
|
||||
task="text-generation",
|
||||
model="google/gemma-2-9b",
|
||||
torch_dtype=torch.bfloat16,
|
||||
device="cuda",
|
||||
)
|
||||
|
||||
pipe("Explain quantum computing simply. ", max_new_tokens=50)
|
||||
```
|
||||
|
||||
</hfoption>
|
||||
<hfoption id="AutoModel">
|
||||
|
||||
```python
|
||||
import torch
|
||||
from transformers import AutoTokenizer, AutoModelForCausalLM
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained("google/gemma-2-9b")
|
||||
model = AutoModelForCausalLM.from_pretrained(
|
||||
"google/gemma-2-9b",
|
||||
torch_dtype=torch.bfloat16,
|
||||
device_map="auto",
|
||||
attn_implementation="sdpa"
|
||||
)
|
||||
|
||||
input_text = "Explain quantum computing simply."
|
||||
input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
|
||||
|
||||
outputs = model.generate(**input_ids, max_new_tokens=32, cache_implementation="static")
|
||||
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
|
||||
|
||||
```
|
||||
|
||||
</hfoption>
|
||||
<hfoption id="transformers-cli">
|
||||
|
||||
```
|
||||
echo -e "Explain quantum computing simply." | transformers-cli run --task text-generation --model google/gemma-2-2b --device 0
|
||||
```
|
||||
</hfoption>
|
||||
</hfoptions>
|
||||
|
||||
Quantization reduces the memory burden of large models by representing the weights in a lower precision. Refer to the [Quantization](../quantization/overview) overview for more available quantization backends.
|
||||
|
||||
The example below uses [bitsandbytes](../quantization/bitsandbytes) to only quantize the weights to int4.
|
||||
|
||||
```python
|
||||
import torch
|
||||
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
|
||||
|
||||
quantization_config = BitsAndBytesConfig(load_in_4bit=True)
|
||||
tokenizer = AutoTokenizer.from_pretrained("google/gemma-2-27b")
|
||||
model = AutoModelForCausalLM.from_pretrained(
|
||||
"google/gemma-2-27b",
|
||||
torch_dtype=torch.bfloat16,
|
||||
device_map="auto",
|
||||
attn_implementation="sdpa"
|
||||
)
|
||||
|
||||
input_text = "Explain quantum computing simply."
|
||||
input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
|
||||
|
||||
outputs = model.generate(**input_ids, max_new_tokens=32, cache_implementation="static")
|
||||
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
|
||||
```
|
||||
|
||||
Use the [AttentionMaskVisualizer](https://github.com/huggingface/transformers/blob/beb9b5b02246b9b7ee81ddf938f93f44cfeaad19/src/transformers/utils/attention_visualizer.py#L139) to better understand what tokens the model can and cannot attend to.
|
||||
|
||||
|
||||
```python
|
||||
from transformers.utils.attention_visualizer import AttentionMaskVisualizer
|
||||
visualizer = AttentionMaskVisualizer("google/gemma-2b")
|
||||
visualizer("You are an assistant. Make sure you print me")
|
||||
```
|
||||
|
||||
<div class="flex justify-center">
|
||||
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/gemma-2-attn-mask.png"/>
|
||||
</div>
|
||||
|
||||
## Overview
|
||||
## Notes
|
||||
|
||||
The Gemma2 model was proposed in [Gemma2: Open Models Based on Gemini Technology and Research](https://blog.google/technology/developers/google-gemma-2/) by Gemma2 Team, Google.
|
||||
Two Gemma2 models are released, with parameters sizes of 9 billion (9B) and 27 billion (27B).
|
||||
- Use a [`HybridCache`] instance to enable caching in Gemma 2. Gemma 2 doesn't support kv-caching strategies like [`DynamicCache`] or tuples of tensors because it uses sliding window attention every second layer.
|
||||
|
||||
The abstract from the blog post is the following:
|
||||
```python
|
||||
from transformers import AutoTokenizer, AutoModelForCausalLM, HybridCache
|
||||
|
||||
*Now we’re officially releasing Gemma 2 to researchers and developers globally. Available in both 9 billion (9B) and 27 billion (27B) parameter sizes, Gemma 2 is higher-performing and more efficient at inference than the first generation, with significant safety advancements built in. In fact, at 27B, it offers competitive alternatives to models more than twice its size, delivering the kind of performance that was only possible with proprietary models as recently as December.*
|
||||
|
||||
Tips:
|
||||
|
||||
- The original checkpoints can be converted using the conversion script `src/transformers/models/Gemma2/convert_Gemma2_weights_to_hf.py`
|
||||
|
||||
<Tip warning={true}>
|
||||
|
||||
- Gemma2 uses sliding window attention every second layer, which makes it unsuitable for typical kv caching with [`~DynamicCache`] or tuples of tensors. To enable caching in Gemma2 forward call, you must initialize a [`~HybridCache`] instance and pass it as `past_key_values` to the forward call. Note, that you also have to prepare `cache_position` if the `past_key_values` already contains previous keys and values.
|
||||
|
||||
</Tip>
|
||||
|
||||
This model was contributed by [Arthur Zucker](https://huggingface.co/ArthurZ), [Pedro Cuenca](https://huggingface.co/pcuenq) and [Tom Arsen]().
|
||||
model = AutoModelForCausalLM.from_pretrained("google/gemma-2-2b")
|
||||
tokenizer = AutoTokenizer.from_pretrained("google/gemma-2-2b")
|
||||
|
||||
inputs = tokenizer(text="My name is Gemma", return_tensors="pt")
|
||||
max_generated_length = inputs.input_ids.shape[1] + 10
|
||||
past_key_values = HybridCache(config=model.config, max_batch_size=1,
|
||||
max_cache_len=max_generated_length, device=model.device, dtype=model.dtype)
|
||||
outputs = model(**inputs, past_key_values=past_key_values, use_cache=True)
|
||||
```
|
||||
|
||||
## Gemma2Config
|
||||
|
||||
|
@ -14,197 +14,97 @@ rendered properly in your Markdown viewer.
|
||||
|
||||
-->
|
||||
|
||||
# OpenAI GPT2
|
||||
|
||||
<div class="flex flex-wrap space-x-1">
|
||||
<a href="https://huggingface.co/models?filter=gpt2">
|
||||
<img alt="Models" src="https://img.shields.io/badge/All_model_pages-gpt2-blueviolet">
|
||||
</a>
|
||||
<a href="https://huggingface.co/spaces/docs-demos/gpt2">
|
||||
<img alt="Spaces" src="https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue">
|
||||
</a>
|
||||
<div style="float: right;">
|
||||
<div class="flex flex-wrap space-x-1">
|
||||
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
<img alt="TensorFlow" src="https://img.shields.io/badge/TensorFlow-FF6F00?style=flat&logo=tensorflow&logoColor=white">
|
||||
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
|
||||
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
</div>
|
||||
</div>
|
||||
|
||||
## Overview
|
||||
|
||||
OpenAI GPT-2 model was proposed in [Language Models are Unsupervised Multitask Learners](https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf) by Alec
|
||||
Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei and Ilya Sutskever from [OpenAI](https://huggingface.co/openai). It's a causal (unidirectional)
|
||||
transformer pretrained using language modeling on a very large corpus of ~40 GB of text data.
|
||||
# GPT-2
|
||||
|
||||
The abstract from the paper is the following:
|
||||
[GPT-2](https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf) is a scaled up version of GPT, a causal transformer language model, with 10x more parameters and training data. The model was pretrained on a 40GB dataset to predict the next word in a sequence based on all the previous words. This approach enabled the model to perform many downstream tasks in a zero-shot setting.
|
||||
|
||||
*GPT-2 is a large transformer-based language model with 1.5 billion parameters, trained on a dataset[1] of 8 million
|
||||
web pages. GPT-2 is trained with a simple objective: predict the next word, given all of the previous words within some
|
||||
text. The diversity of the dataset causes this simple goal to contain naturally occurring demonstrations of many tasks
|
||||
across diverse domains. GPT-2 is a direct scale-up of GPT, with more than 10X the parameters and trained on more than
|
||||
10X the amount of data.*
|
||||
The model architecture uses a unidirectional (causal) attention mechanism where each token can only attend to previous tokens, making it particularly effective for text generation tasks.
|
||||
|
||||
[Write With Transformer](https://transformer.huggingface.co/doc/gpt2-large) is a webapp created and hosted by
|
||||
Hugging Face showcasing the generative capabilities of several models. GPT-2 is one of them and is available in five
|
||||
different sizes: small, medium, large, xl and a distilled version of the small checkpoint: *distilgpt-2*.
|
||||
You can find all the original GPT-2 checkpoints under the [OpenAI community](https://huggingface.co/openai-community?search_models=gpt) organization.
|
||||
|
||||
This model was contributed by [thomwolf](https://huggingface.co/thomwolf). The original code can be found [here](https://openai.com/blog/better-language-models/).
|
||||
> [!TIP]
|
||||
> Click on the GPT-2 models in the right sidebar for more examples of how to apply GPT-2 to different language tasks.
|
||||
|
||||
## Usage tips
|
||||
The example below demonstrates how to generate text with [`Pipeline`] or the [`AutoModel`], and from the command line.
|
||||
|
||||
- GPT-2 is a model with absolute position embeddings so it's usually advised to pad the inputs on the right rather than
|
||||
the left.
|
||||
- GPT-2 was trained with a causal language modeling (CLM) objective and is therefore powerful at predicting the next
|
||||
token in a sequence. Leveraging this feature allows GPT-2 to generate syntactically coherent text as it can be
|
||||
observed in the *run_generation.py* example script.
|
||||
- The model can take the *past_key_values* (for PyTorch) or *past* (for TF) as input, which is the previously computed
|
||||
key/value attention pairs. Using this (*past_key_values* or *past*) value prevents the model from re-computing
|
||||
pre-computed values in the context of text generation. For PyTorch, see *past_key_values* argument of the
|
||||
[`GPT2Model.forward`] method, or for TF the *past* argument of the
|
||||
[`TFGPT2Model.call`] method for more information on its usage.
|
||||
- Enabling the *scale_attn_by_inverse_layer_idx* and *reorder_and_upcast_attn* flags will apply the training stability
|
||||
improvements from [Mistral](https://github.com/stanford-crfm/mistral/) (for PyTorch only).
|
||||
<hfoptions id="usage">
|
||||
<hfoption id="Pipeline">
|
||||
|
||||
## Usage example
|
||||
```py
|
||||
import torch
|
||||
from transformers import pipeline
|
||||
|
||||
The `generate()` method can be used to generate text using GPT2 model.
|
||||
pipeline = pipeline(task="text-generation", model="openai-community/gpt2", torch_dtype=torch.float16, device=0)
|
||||
pipeline("Hello, I'm a language model")
|
||||
```
|
||||
</hfoption>
|
||||
<hfoption id="AutoModel">
|
||||
|
||||
```python
|
||||
>>> from transformers import AutoModelForCausalLM, AutoTokenizer
|
||||
```py
|
||||
import torch
|
||||
from transformers import AutoModelForCausalLM, AutoTokenizer
|
||||
|
||||
>>> model = AutoModelForCausalLM.from_pretrained("gpt2")
|
||||
>>> tokenizer = AutoTokenizer.from_pretrained("gpt2")
|
||||
model = AutoModelForCausalLM.from_pretrained("openai-community/gpt2", torch_dtype=torch.float16, device_map="auto", attn_implementation="sdpa")
|
||||
tokenizer = AutoTokenizer.from_pretrained("openai-community/gpt2")
|
||||
|
||||
>>> prompt = "GPT2 is a model developed by OpenAI."
|
||||
input_ids = tokenzier("Hello, I'm a language model". return_tensors="pt").to("cuda")
|
||||
|
||||
>>> input_ids = tokenizer(prompt, return_tensors="pt").input_ids
|
||||
|
||||
>>> gen_tokens = model.generate(
|
||||
... input_ids,
|
||||
... do_sample=True,
|
||||
... temperature=0.9,
|
||||
... max_length=100,
|
||||
... )
|
||||
>>> gen_text = tokenizer.batch_decode(gen_tokens)[0]
|
||||
output = model.generate(**input_ids, cache_implementation="static")
|
||||
print(tokenizer.decode(output[0], skip_special_tokens=True))
|
||||
```
|
||||
|
||||
## Using Flash Attention 2
|
||||
|
||||
Flash Attention 2 is a faster, optimized version of the attention scores computation which relies on `cuda` kernels.
|
||||
|
||||
### Installation
|
||||
|
||||
First, check whether your hardware is compatible with Flash Attention 2. The latest list of compatible hardware can be found in the [official documentation](https://github.com/Dao-AILab/flash-attention#installation-and-features). If your hardware is not compatible with Flash Attention 2, you can still benefit from attention kernel optimisations through Better Transformer support covered [above](https://huggingface.co/docs/transformers/main/en/model_doc/bark#using-better-transformer).
|
||||
|
||||
Next, [install](https://github.com/Dao-AILab/flash-attention#installation-and-features) the latest version of Flash Attention 2:
|
||||
</hfoption>
|
||||
<hfoption id="transformers-cli">
|
||||
|
||||
```bash
|
||||
pip install -U flash-attn --no-build-isolation
|
||||
echo -e "Hello, I'm a language model" | transformers-cli run --task text-generation --model openai-community/gpt2 --device 0
|
||||
```
|
||||
|
||||
### Usage
|
||||
</hfoption>
|
||||
</hfoptions>
|
||||
|
||||
To load a model using Flash Attention 2, we can pass the argument `attn_implementation="flash_attention_2"` to [`.from_pretrained`](https://huggingface.co/docs/transformers/main/en/main_classes/model#transformers.PreTrainedModel.from_pretrained). We'll also load the model in half-precision (e.g. `torch.float16`), since it results in almost no degradation to audio quality but significantly lower memory usage and faster inference:
|
||||
Quantization reduces the memory burden of large models by representing the weights in a lower precision. Refer to the [Quantization](../quantization/overview) overview for more available quantization backends.
|
||||
|
||||
```python
|
||||
>>> import torch
|
||||
>>> from transformers import AutoModelForCausalLM, AutoTokenizer
|
||||
>>> device = "cuda" # the device to load the model onto
|
||||
The example below uses [bitsandbytes](../quantization/bitsandbytes) to only quantize the weights to 4-bits.
|
||||
|
||||
>>> model = AutoModelForCausalLM.from_pretrained("gpt2", torch_dtype=torch.float16, attn_implementation="flash_attention_2")
|
||||
>>> tokenizer = AutoTokenizer.from_pretrained("gpt2")
|
||||
```py
|
||||
import torch
|
||||
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, pipeline
|
||||
|
||||
>>> prompt = "def hello_world():"
|
||||
quantization_config = BitsAndBytesConfig(
|
||||
load_in_4bit=True,
|
||||
bnb_4bit_quant_type="nf4",
|
||||
bnb_4bit_compute_dtype="float16",
|
||||
bnb_4bit_use_double_quant=True
|
||||
)
|
||||
|
||||
>>> model_inputs = tokenizer([prompt], return_tensors="pt").to(device)
|
||||
>>> model.to(device)
|
||||
model = AutoModelForCausalLM.from_pretrained(
|
||||
"openai-community/gpt2-xl",
|
||||
quantization_config=quantization_config,
|
||||
device_map="auto"
|
||||
)
|
||||
|
||||
>>> generated_ids = model.generate(**model_inputs, max_new_tokens=100, do_sample=True)
|
||||
>>> tokenizer.batch_decode(generated_ids)[0]
|
||||
tokenizer = AutoTokenizer.from_pretrained("openai-community/gpt2-xl")
|
||||
inputs = tokenizer("Once upon a time, there was a magical forest", return_tensors="pt").to("cuda")
|
||||
outputs = model.generate(**inputs, max_new_tokens=100)
|
||||
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
|
||||
```
|
||||
|
||||
## Notes
|
||||
|
||||
### Expected speedups
|
||||
|
||||
Below is an expected speedup diagram that compares pure inference time between the native implementation in transformers using `gpt2` checkpoint and the Flash Attention 2 version of the model using a sequence length of 512.
|
||||
|
||||
<div style="text-align: center">
|
||||
<img src="https://huggingface.co/datasets/EduardoPacheco/documentation-images/resolve/main/gpt2_flash_attention_2_speedup.jpg">
|
||||
</div>
|
||||
|
||||
|
||||
## Using Scaled Dot Product Attention (SDPA)
|
||||
PyTorch includes a native scaled dot-product attention (SDPA) operator as part of `torch.nn.functional`. This function
|
||||
encompasses several implementations that can be applied depending on the inputs and the hardware in use. See the
|
||||
[official documentation](https://pytorch.org/docs/stable/generated/torch.nn.functional.scaled_dot_product_attention.html)
|
||||
or the [GPU Inference](https://huggingface.co/docs/transformers/main/en/perf_infer_gpu_one#pytorch-scaled-dot-product-attention)
|
||||
page for more information.
|
||||
|
||||
SDPA is used by default for `torch>=2.1.1` when an implementation is available, but you may also set
|
||||
`attn_implementation="sdpa"` in `from_pretrained()` to explicitly request SDPA to be used.
|
||||
|
||||
```python
|
||||
from transformers import AutoModelForCausalLM
|
||||
model = AutoModelForCausalLM.from_pretrained("gpt2", torch_dtype=torch.float16, attn_implementation="sdpa")
|
||||
...
|
||||
```
|
||||
|
||||
For the best speedups, we recommend loading the model in half-precision (e.g. `torch.float16` or `torch.bfloat16`).
|
||||
|
||||
On a local benchmark (rtx3080ti-16GB, PyTorch 2.2.1, OS Ubuntu 22.04) using `float16` with
|
||||
[gpt2-large](https://huggingface.co/openai-community/gpt2-large), we saw the
|
||||
following speedups during training and inference.
|
||||
|
||||
### Training
|
||||
| Batch size | Seq len | Time per batch (Eager - s) | Time per batch (SDPA - s) | Speedup (%) | Eager peak mem (MB) | SDPA peak mem (MB) | Mem saving (%) |
|
||||
|-----------:|--------:|----------------------------:|--------------------------:|------------:|--------------------:|-------------------:|------------------:|
|
||||
| 1 | 128 | 0.039 | 0.032 | 23.042 | 3482.32 | 3494.62 | -0.352 |
|
||||
| 1 | 256 | 0.073 | 0.059 | 25.15 | 3546.66 | 3552.6 | -0.167 |
|
||||
| 1 | 512 | 0.155 | 0.118 | 30.96 | 4230.1 | 3665.59 | 15.4 |
|
||||
| 1 | 1024 | 0.316 | 0.209 | 50.839 | 8682.26 | 4881.09 | 77.875 |
|
||||
| 2 | 128 | 0.07 | 0.06 | 15.324 | 3557.8 | 3545.91 | 0.335 |
|
||||
| 2 | 256 | 0.143 | 0.122 | 16.53 | 3901.5 | 3657.68 | 6.666 |
|
||||
| 2 | 512 | 0.267 | 0.213 | 25.626 | 7062.21 | 4876.47 | 44.822 |
|
||||
| 2 | 1024 | OOM | 0.404 | / | OOM | 8096.35 | SDPA does not OOM |
|
||||
| 4 | 128 | 0.134 | 0.128 | 4.412 | 3675.79 | 3648.72 | 0.742 |
|
||||
| 4 | 256 | 0.243 | 0.217 | 12.292 | 6129.76 | 4871.12 | 25.839 |
|
||||
| 4 | 512 | 0.494 | 0.406 | 21.687 | 12466.6 | 8102.64 | 53.858 |
|
||||
| 4 | 1024 | OOM | 0.795 | / | OOM | 14568.2 | SDPA does not OOM |
|
||||
|
||||
### Inference
|
||||
| Batch size | Seq len | Per token latency Eager (ms) | Per token latency SDPA (ms) | Speedup (%) | Mem Eager (MB) | Mem SDPA (MB) | Mem saved (%) |
|
||||
|-----------:|--------:|-----------------------------:|----------------------------:|------------:|---------------:|--------------:|--------------:|
|
||||
| 1 | 128 | 7.991 | 6.968 | 14.681 | 1685.2 | 1701.32 | -0.947 |
|
||||
| 1 | 256 | 8.462 | 7.199 | 17.536 | 1745.49 | 1770.78 | -1.428 |
|
||||
| 1 | 512 | 8.68 | 7.853 | 10.529 | 1907.69 | 1921.29 | -0.708 |
|
||||
| 1 | 768 | 9.101 | 8.365 | 8.791 | 2032.93 | 2068.12 | -1.701 |
|
||||
| 2 | 128 | 9.169 | 9.001 | 1.861 | 1803.84 | 1811.4 | -0.418 |
|
||||
| 2 | 256 | 9.907 | 9.78 | 1.294 | 1907.72 | 1921.44 | -0.714 |
|
||||
| 2 | 512 | 11.519 | 11.644 | -1.071 | 2176.86 | 2197.75 | -0.951 |
|
||||
| 2 | 768 | 13.022 | 13.407 | -2.873 | 2464.3 | 2491.06 | -1.074 |
|
||||
| 4 | 128 | 10.097 | 9.831 | 2.709 | 1942.25 | 1985.13 | -2.16 |
|
||||
| 4 | 256 | 11.599 | 11.398 | 1.764 | 2177.28 | 2197.86 | -0.937 |
|
||||
| 4 | 512 | 14.653 | 14.45 | 1.411 | 2753.16 | 2772.57 | -0.7 |
|
||||
| 4 | 768 | 17.846 | 17.617 | 1.299 | 3327.04 | 3343.97 | -0.506 |
|
||||
|
||||
|
||||
|
||||
|
||||
## Resources
|
||||
|
||||
A list of official Hugging Face and community (indicated by 🌎) resources to help you get started with GPT2. If you're interested in submitting a resource to be included here, please feel free to open a Pull Request and we'll review it! The resource should ideally demonstrate something new instead of duplicating an existing resource.
|
||||
|
||||
<PipelineTag pipeline="text-generation"/>
|
||||
|
||||
- A blog on how to [Finetune a non-English GPT-2 Model with Hugging Face](https://www.philschmid.de/fine-tune-a-non-english-gpt-2-model-with-huggingface).
|
||||
- A blog on [How to generate text: using different decoding methods for language generation with Transformers](https://huggingface.co/blog/how-to-generate) with GPT-2.
|
||||
- A blog on [Training CodeParrot 🦜 from Scratch](https://huggingface.co/blog/codeparrot), a large GPT-2 model.
|
||||
- A blog on [Faster Text Generation with TensorFlow and XLA](https://huggingface.co/blog/tf-xla-generate) with GPT-2.
|
||||
- A blog on [How to train a Language Model with Megatron-LM](https://huggingface.co/blog/megatron-training) with a GPT-2 model.
|
||||
- A notebook on how to [finetune GPT2 to generate lyrics in the style of your favorite artist](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb). 🌎
|
||||
- A notebook on how to [finetune GPT2 to generate tweets in the style of your favorite Twitter user](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb). 🌎
|
||||
- [Causal language modeling](https://huggingface.co/course/en/chapter7/6?fw=pt#training-a-causal-language-model-from-scratch) chapter of the 🤗 Hugging Face Course.
|
||||
- [`GPT2LMHeadModel`] is supported by this [causal language modeling example script](https://github.com/huggingface/transformers/tree/main/examples/pytorch/language-modeling#gpt-2gpt-and-causal-language-modeling), [text generation example script](https://github.com/huggingface/transformers/tree/main/examples/pytorch/text-generation), and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/language_modeling.ipynb).
|
||||
- [`TFGPT2LMHeadModel`] is supported by this [causal language modeling example script](https://github.com/huggingface/transformers/tree/main/examples/tensorflow/language-modeling#run_clmpy) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/language_modeling-tf.ipynb).
|
||||
- [`FlaxGPT2LMHeadModel`] is supported by this [causal language modeling example script](https://github.com/huggingface/transformers/tree/main/examples/flax/language-modeling#causal-language-modeling) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/causal_language_modeling_flax.ipynb).
|
||||
- [Text classification task guide](../tasks/sequence_classification)
|
||||
- [Token classification task guide](../tasks/token_classification)
|
||||
- [Causal language modeling task guide](../tasks/language_modeling)
|
||||
- Pad inputs on the right because GPT-2 uses absolute position embeddings.
|
||||
- GPT-2 can reuse previously computed key-value attention pairs. Access this feature with the [past_key_values](https://huggingface.co/docs/transformers//en/model_doc/gpt2#transformers.GPT2Model.forward.past_key_values) parameter in [`GPT2Model.forward`].
|
||||
- Enable the [scale_attn_by_inverse_layer_idx](https://huggingface.co/docs/transformers/en/model_doc/gpt2#transformers.GPT2Config.scale_attn_by_inverse_layer_idx) and [reorder_and_upcast_attn](https://huggingface.co/docs/transformers/en/model_doc/gpt2#transformers.GPT2Config.reorder_and_upcast_attn) parameters to apply the training stability improvements from [Mistral](./mistral).
|
||||
|
||||
## GPT2Config
|
||||
|
||||
|
@ -14,96 +14,126 @@ rendered properly in your Markdown viewer.
|
||||
|
||||
-->
|
||||
|
||||
# Jamba
|
||||
|
||||
<div class="flex flex-wrap space-x-1">
|
||||
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
|
||||
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
<div style="float: right;">
|
||||
<div class="flex flex-wrap space-x-1">
|
||||
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
|
||||
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
</div>
|
||||
</div>
|
||||
|
||||
## Overview
|
||||
# Jamba
|
||||
|
||||
Jamba is a state-of-the-art, hybrid SSM-Transformer LLM. It is the first production-scale Mamba implementation, which opens up interesting research and application opportunities. While this initial experimentation shows encouraging gains, we expect these to be further enhanced with future optimizations and explorations.
|
||||
[Jamba](https://huggingface.co/papers/2403.19887) is a hybrid Transformer-Mamba mixture-of-experts (MoE) language model ranging from 52B to 398B total parameters. This model aims to combine the advantages of both model families, the performance of transformer models and the efficiency and longer context (256K tokens) of state space models (SSMs) like Mamba.
|
||||
|
||||
For full details of this model please read the [release blog post](https://www.ai21.com/blog/announcing-jamba).
|
||||
Jamba's architecture features a blocks-and-layers approach that allows Jamba to successfully integrate Transformer and Mamba architectures altogether. Each Jamba block contains either an attention or a Mamba layer, followed by a multi-layer perceptron (MLP), producing an overall ratio of one Transformer layer out of every eight total layers. MoE layers are mixed in to increase model capacity.
|
||||
|
||||
### Model Details
|
||||
You can find all the original Jamba checkpoints under the [AI21](https://huggingface.co/ai21labs) organization.
|
||||
|
||||
Jamba is a pretrained, mixture-of-experts (MoE) generative text model, with 12B active parameters and an overall of 52B parameters across all experts. It supports a 256K context length, and can fit up to 140K tokens on a single 80GB GPU.
|
||||
> [!TIP]
|
||||
> Click on the Jamba models in the right sidebar for more examples of how to apply Jamba to different language tasks.
|
||||
|
||||
As depicted in the diagram below, Jamba's architecture features a blocks-and-layers approach that allows Jamba to successfully integrate Transformer and Mamba architectures altogether. Each Jamba block contains either an attention or a Mamba layer, followed by a multi-layer perceptron (MLP), producing an overall ratio of one Transformer layer out of every eight total layers.
|
||||
The example below demonstrates how to generate text with [`Pipeline`], [`AutoModel`], and from the command line.
|
||||
|
||||
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/jamba_architecture.png"
|
||||
alt="drawing" width="600"/>
|
||||
<hfoptions id="usage">
|
||||
<hfoption id="Pipeline">
|
||||
|
||||
## Usage
|
||||
```py
|
||||
# install optimized Mamba implementations
|
||||
# !pip install mamba-ssm causal-conv1d>=1.2.0
|
||||
import torch
|
||||
from transformers import pipeline
|
||||
|
||||
### Prerequisites
|
||||
|
||||
Jamba requires you use `transformers` version 4.39.0 or higher:
|
||||
```bash
|
||||
pip install transformers>=4.39.0
|
||||
pipeline = pipeline(
|
||||
task="text-generation",
|
||||
model="ai21labs/AI21-Jamba-Mini-1.6",
|
||||
torch_dtype=torch.float16,
|
||||
device=0
|
||||
)
|
||||
pipeline("Plants create energy through a process known as")
|
||||
```
|
||||
|
||||
In order to run optimized Mamba implementations, you first need to install `mamba-ssm` and `causal-conv1d`:
|
||||
```bash
|
||||
pip install mamba-ssm causal-conv1d>=1.2.0
|
||||
```
|
||||
You also have to have the model on a CUDA device.
|
||||
</hfoption>
|
||||
<hfoption id="AutoModel">
|
||||
|
||||
You can run the model not using the optimized Mamba kernels, but it is **not** recommended as it will result in significantly lower latencies. In order to do that, you'll need to specify `use_mamba_kernels=False` when loading the model.
|
||||
|
||||
### Run the model
|
||||
```python
|
||||
```py
|
||||
import torch
|
||||
from transformers import AutoModelForCausalLM, AutoTokenizer
|
||||
|
||||
model = AutoModelForCausalLM.from_pretrained("ai21labs/Jamba-v0.1")
|
||||
tokenizer = AutoTokenizer.from_pretrained("ai21labs/Jamba-v0.1")
|
||||
tokenizer = AutoTokenizer.from_pretrained(
|
||||
"ai21labs/AI21-Jamba-Large-1.6",
|
||||
)
|
||||
model = AutoModelForCausalLM.from_pretrained(
|
||||
"ai21labs/AI21-Jamba-Large-1.6",
|
||||
torch_dtype=torch.float16,
|
||||
device_map="auto",
|
||||
attn_implementation="sdpa"
|
||||
)
|
||||
input_ids = tokenizer("Plants create energy through a process known as", return_tensors="pt").to("cuda")
|
||||
|
||||
input_ids = tokenizer("In the recent Super Bowl LVIII,", return_tensors='pt').to(model.device)["input_ids"]
|
||||
output = model.generate(**input_ids, cache_implementation="static")
|
||||
print(tokenizer.decode(output[0], skip_special_tokens=True))
|
||||
```
|
||||
</hfoption>
|
||||
<hfoption id="transformers-cli">
|
||||
|
||||
```bash
|
||||
echo -e "Plants create energy through a process known as" | transformers-cli run --task text-generation --model ai21labs/AI21-Jamba-Mini-1.6 --device 0
|
||||
```
|
||||
|
||||
</hfoption>
|
||||
</hfoptions>
|
||||
|
||||
Quantization reduces the memory burden of large models by representing the weights in a lower precision. Refer to the [Quantization](../quantization/overview) overview for more available quantization backends.
|
||||
|
||||
The example below uses [bitsandbytes](../quantization/bitsandbytes) to only quantize the weights to 8-bits.
|
||||
|
||||
```py
|
||||
import torch
|
||||
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
|
||||
|
||||
quantization_config = BitsAndBytesConfig(load_in_8bit=True,
|
||||
llm_int8_skip_modules=["mamba"])
|
||||
|
||||
# a device map to distribute the model evenly across 8 GPUs
|
||||
device_map = {'model.embed_tokens': 0, 'model.layers.0': 0, 'model.layers.1': 0, 'model.layers.2': 0, 'model.layers.3': 0, 'model.layers.4': 0, 'model.layers.5': 0, 'model.layers.6': 0, 'model.layers.7': 0, 'model.layers.8': 0, 'model.layers.9': 1, 'model.layers.10': 1, 'model.layers.11': 1, 'model.layers.12': 1, 'model.layers.13': 1, 'model.layers.14': 1, 'model.layers.15': 1, 'model.layers.16': 1, 'model.layers.17': 1, 'model.layers.18': 2, 'model.layers.19': 2, 'model.layers.20': 2, 'model.layers.21': 2, 'model.layers.22': 2, 'model.layers.23': 2, 'model.layers.24': 2, 'model.layers.25': 2, 'model.layers.26': 2, 'model.layers.27': 3, 'model.layers.28': 3, 'model.layers.29': 3, 'model.layers.30': 3, 'model.layers.31': 3, 'model.layers.32': 3, 'model.layers.33': 3, 'model.layers.34': 3, 'model.layers.35': 3, 'model.layers.36': 4, 'model.layers.37': 4, 'model.layers.38': 4, 'model.layers.39': 4, 'model.layers.40': 4, 'model.layers.41': 4, 'model.layers.42': 4, 'model.layers.43': 4, 'model.layers.44': 4, 'model.layers.45': 5, 'model.layers.46': 5, 'model.layers.47': 5, 'model.layers.48': 5, 'model.layers.49': 5, 'model.layers.50': 5, 'model.layers.51': 5, 'model.layers.52': 5, 'model.layers.53': 5, 'model.layers.54': 6, 'model.layers.55': 6, 'model.layers.56': 6, 'model.layers.57': 6, 'model.layers.58': 6, 'model.layers.59': 6, 'model.layers.60': 6, 'model.layers.61': 6, 'model.layers.62': 6, 'model.layers.63': 7, 'model.layers.64': 7, 'model.layers.65': 7, 'model.layers.66': 7, 'model.layers.67': 7, 'model.layers.68': 7, 'model.layers.69': 7, 'model.layers.70': 7, 'model.layers.71': 7, 'model.final_layernorm': 7, 'lm_head': 7}
|
||||
model = AutoModelForCausalLM.from_pretrained("ai21labs/AI21-Jamba-Large-1.6",
|
||||
torch_dtype=torch.bfloat16,
|
||||
attn_implementation="flash_attention_2",
|
||||
quantization_config=quantization_config,
|
||||
device_map=device_map)
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained("ai21labs/AI21-Jamba-Large-1.6")
|
||||
|
||||
messages = [
|
||||
{"role": "system", "content": "You are an ancient oracle who speaks in cryptic but wise phrases, always hinting at deeper meanings."},
|
||||
{"role": "user", "content": "Hello!"},
|
||||
]
|
||||
|
||||
input_ids = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors='pt').to(model.device)
|
||||
|
||||
outputs = model.generate(input_ids, max_new_tokens=216)
|
||||
|
||||
print(tokenizer.batch_decode(outputs))
|
||||
# ["<|startoftext|>In the recent Super Bowl LVIII, the Kansas City Chiefs emerged victorious, defeating the San Francisco 49ers in a thrilling overtime showdown. The game was a nail-biter, with both teams showcasing their skills and determination.\n\nThe Chiefs, led by their star quarterback Patrick Mahomes, displayed their offensive prowess, while the 49ers, led by their strong defense, put up a tough fight. The game went into overtime, with the Chiefs ultimately securing the win with a touchdown.\n\nThe victory marked the Chiefs' second Super Bowl win in four years, solidifying their status as one of the top teams in the NFL. The game was a testament to the skill and talent of both teams, and a thrilling end to the NFL season.\n\nThe Super Bowl is not just about the game itself, but also about the halftime show and the commercials. This year's halftime show featured a star-studded lineup, including Usher, Alicia Keys, and Lil Jon. The show was a spectacle of music and dance, with the performers delivering an energetic and entertaining performance.\n"]
|
||||
# Decode the output
|
||||
conversation = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
||||
|
||||
# Split the conversation to get only the assistant's response
|
||||
assistant_response = conversation.split(messages[-1]['content'])[1].strip()
|
||||
print(assistant_response)
|
||||
# Output: Seek and you shall find. The path is winding, but the journey is enlightening. What wisdom do you seek from the ancient echoes?
|
||||
```
|
||||
|
||||
<details>
|
||||
<summary><strong>Loading the model in half precision</strong></summary>
|
||||
## Notes
|
||||
|
||||
The published checkpoint is saved in BF16. In order to load it into RAM in BF16/FP16, you need to specify `torch_dtype`:
|
||||
- Don't quantize the Mamba blocks to prevent model performance degradation.
|
||||
- It is not recommended to use Mamba without the optimized Mamba kernels as it results in significantly lower latencies. If you still want to use Mamba without the kernels, then set `use_mamba_kernels=False` in [`~AutoModel.from_pretrained`].
|
||||
|
||||
```python
|
||||
from transformers import AutoModelForCausalLM
|
||||
import torch
|
||||
model = AutoModelForCausalLM.from_pretrained("ai21labs/Jamba-v0.1", torch_dtype=torch.bfloat16)
|
||||
# you can also use torch_dtype=torch.float16
|
||||
```
|
||||
|
||||
When using half precision, you can enable the [FlashAttention2](https://github.com/Dao-AILab/flash-attention) implementation of the Attention blocks. In order to use it, you also need the model on a CUDA device. Since in this precision the model is to big to fit on a single 80GB GPU, you'll also need to parallelize it using [accelerate](https://huggingface.co/docs/accelerate/index):
|
||||
```python
|
||||
from transformers import AutoModelForCausalLM
|
||||
import torch
|
||||
model = AutoModelForCausalLM.from_pretrained("ai21labs/Jamba-v0.1",
|
||||
torch_dtype=torch.bfloat16,
|
||||
attn_implementation="flash_attention_2",
|
||||
device_map="auto")
|
||||
```
|
||||
|
||||
</details>
|
||||
<details><summary><strong>Load the model in 8-bit</strong></summary>
|
||||
|
||||
**Using 8-bit precision, it is possible to fit up to 140K sequence lengths on a single 80GB GPU.** You can easily quantize the model to 8-bit using [bitsandbytes](https://huggingface.co/docs/bitsandbytes/index). In order to not degrade model quality, we recommend to exclude the Mamba blocks from the quantization:
|
||||
|
||||
```python
|
||||
from transformers import AutoModelForCausalLM, BitsAndBytesConfig
|
||||
quantization_config = BitsAndBytesConfig(load_in_8bit=True, llm_int8_skip_modules=["mamba"])
|
||||
model = AutoModelForCausalLM.from_pretrained(
|
||||
"ai21labs/Jamba-v0.1", torch_dtype=torch.bfloat16, attn_implementation="flash_attention_2", quantization_config=quantization_config
|
||||
)
|
||||
```
|
||||
</details>
|
||||
```py
|
||||
import torch
|
||||
from transformers import AutoModelForCausalLM
|
||||
model = AutoModelForCausalLM.from_pretrained("ai21labs/AI21-Jamba-1.5-Large",
|
||||
use_mamba_kernels=False)
|
||||
```
|
||||
|
||||
## JambaConfig
|
||||
|
||||
|
@ -14,74 +14,55 @@ rendered properly in your Markdown viewer.
|
||||
|
||||
-->
|
||||
|
||||
# Mistral
|
||||
|
||||
<div class="flex flex-wrap space-x-1">
|
||||
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
<img alt="TensorFlow" src="https://img.shields.io/badge/TensorFlow-FF6F00?style=flat&logo=tensorflow&logoColor=white">
|
||||
<img alt="Flax" src="https://img.shields.io/badge/Flax-29a79b.svg?style=flat&logo=
|
||||
">
|
||||
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
|
||||
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
<div style="float: right;">
|
||||
<div class="flex flex-wrap space-x-1">
|
||||
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
<img alt="TensorFlow" src="https://img.shields.io/badge/TensorFlow-FF6F00?style=flat&logo=tensorflow&logoColor=white">
|
||||
<img alt="Flax" src="https://img.shields.io/badge/Flax-29a79b.svg?style=flat&logo=
|
||||
">
|
||||
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
|
||||
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
</div>
|
||||
</div>
|
||||
|
||||
## Overview
|
||||
# Mistral
|
||||
|
||||
Mistral was introduced in the [this blogpost](https://mistral.ai/news/announcing-mistral-7b/) by Albert Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lélio Renard Lavaud, Lucile Saulnier, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas Wang, Timothée Lacroix, William El Sayed.
|
||||
[Mistral](https://huggingface.co/papers/2310.06825) is a 7B parameter language model, available as a pretrained and instruction-tuned variant, focused on balancing
|
||||
the scaling costs of large models with performance and efficient inference. This model uses sliding window attention (SWA) trained with a 8K context length and a fixed cache size to handle longer sequences more effectively. Grouped-query attention (GQA) speeds up inference and reduces memory requirements. Mistral also features a byte-fallback BPE tokenizer to improve token handling and efficiency by ensuring characters are never mapped to out-of-vocabulary tokens.
|
||||
|
||||
The introduction of the blog post says:
|
||||
You can find all the original Mistral checkpoints under the [Mistral AI_](https://huggingface.co/mistralai) organization.
|
||||
|
||||
*Mistral AI team is proud to release Mistral 7B, the most powerful language model for its size to date.*
|
||||
> [!TIP]
|
||||
> Click on the Mistral models in the right sidebar for more examples of how to apply Mistral to different language tasks.
|
||||
|
||||
Mistral-7B is the first large language model (LLM) released by [mistral.ai](https://mistral.ai/).
|
||||
The example below demonstrates how to chat with [`Pipeline`] or the [`AutoModel`], and from the command line.
|
||||
|
||||
### Architectural details
|
||||
|
||||
Mistral-7B is a decoder-only Transformer with the following architectural choices:
|
||||
|
||||
- Sliding Window Attention - Trained with 8k context length and fixed cache size, with a theoretical attention span of 128K tokens
|
||||
- GQA (Grouped Query Attention) - allowing faster inference and lower cache size.
|
||||
- Byte-fallback BPE tokenizer - ensures that characters are never mapped to out of vocabulary tokens.
|
||||
|
||||
For more details refer to the [release blog post](https://mistral.ai/news/announcing-mistral-7b/).
|
||||
|
||||
### License
|
||||
|
||||
`Mistral-7B` is released under the Apache 2.0 license.
|
||||
|
||||
## Usage tips
|
||||
|
||||
The Mistral team has released 3 checkpoints:
|
||||
|
||||
- a base model, [Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1), which has been pre-trained to predict the next token on internet-scale data.
|
||||
- an instruction tuned model, [Mistral-7B-Instruct-v0.1](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1), which is the base model optimized for chat purposes using supervised fine-tuning (SFT) and direct preference optimization (DPO).
|
||||
- an improved instruction tuned model, [Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2), which improves upon v1.
|
||||
|
||||
The base model can be used as follows:
|
||||
<hfoptions id="usage">
|
||||
<hfoption id="Pipeline">
|
||||
|
||||
```python
|
||||
>>> from transformers import AutoModelForCausalLM, AutoTokenizer
|
||||
>>> import torch
|
||||
>>> from transformers import pipeline
|
||||
|
||||
>>> model = AutoModelForCausalLM.from_pretrained("mistralai/Mistral-7B-v0.1", device_map="auto")
|
||||
>>> tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-v0.1")
|
||||
>>> messages = [
|
||||
... {"role": "user", "content": "What is your favourite condiment?"},
|
||||
... {"role": "assistant", "content": "Well, I'm quite partial to a good squeeze of fresh lemon juice. It adds just the right amount of zesty flavour to whatever I'm cooking up in the kitchen!"},
|
||||
... {"role": "user", "content": "Do you have mayonnaise recipes?"}
|
||||
... ]
|
||||
|
||||
>>> prompt = "My favourite condiment is"
|
||||
|
||||
>>> model_inputs = tokenizer([prompt], return_tensors="pt").to("cuda")
|
||||
>>> model.to(device)
|
||||
|
||||
>>> generated_ids = model.generate(**model_inputs, max_new_tokens=100, do_sample=True)
|
||||
>>> tokenizer.batch_decode(generated_ids)[0]
|
||||
"My favourite condiment is to ..."
|
||||
>>> chatbot = pipeline("text-generation", model="mistralai/Mistral-7B-Instruct-v0.3", torch_dtype=torch.bfloat16, device=0)
|
||||
>>> chatbot(messages)
|
||||
```
|
||||
|
||||
The instruction tuned model can be used as follows:
|
||||
</hfoption>
|
||||
<hfoption id="AutoModel">
|
||||
|
||||
```python
|
||||
>>> import torch
|
||||
>>> from transformers import AutoModelForCausalLM, AutoTokenizer
|
||||
|
||||
>>> model = AutoModelForCausalLM.from_pretrained("mistralai/Mistral-7B-Instruct-v0.2", device_map="auto")
|
||||
>>> tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-Instruct-v0.2")
|
||||
>>> model = AutoModelForCausalLM.from_pretrained("mistralai/Mistral-7B-Instruct-v0.3", torch_dtype=torch.bfloat16, attn_implementation="sdpa", device_map="auto")
|
||||
>>> tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-Instruct-v0.3")
|
||||
|
||||
>>> messages = [
|
||||
... {"role": "user", "content": "What is your favourite condiment?"},
|
||||
@ -96,59 +77,20 @@ The instruction tuned model can be used as follows:
|
||||
"Mayonnaise can be made as follows: (...)"
|
||||
```
|
||||
|
||||
As can be seen, the instruction-tuned model requires a [chat template](../chat_templating) to be applied to make sure the inputs are prepared in the right format.
|
||||
|
||||
## Speeding up Mistral by using Flash Attention
|
||||
|
||||
The code snippets above showcase inference without any optimization tricks. However, one can drastically speed up the model by leveraging [Flash Attention](../perf_train_gpu_one#flash-attention-2), which is a faster implementation of the attention mechanism used inside the model.
|
||||
|
||||
First, make sure to install the latest version of Flash Attention 2 to include the sliding window attention feature.
|
||||
|
||||
```bash
|
||||
pip install -U flash-attn --no-build-isolation
|
||||
```
|
||||
|
||||
Make also sure that you have a hardware that is compatible with Flash-Attention 2. Read more about it in the official documentation of the [flash attention repository](https://github.com/Dao-AILab/flash-attention). Make also sure to load your model in half-precision (e.g. `torch.float16`)
|
||||
|
||||
To load and run a model using Flash Attention-2, refer to the snippet below:
|
||||
</hfoption>
|
||||
<hfoption id="transformers-cli">
|
||||
|
||||
```python
|
||||
>>> import torch
|
||||
>>> from transformers import AutoModelForCausalLM, AutoTokenizer
|
||||
|
||||
>>> model = AutoModelForCausalLM.from_pretrained("mistralai/Mistral-7B-v0.1", torch_dtype=torch.float16, attn_implementation="flash_attention_2", device_map="auto")
|
||||
>>> tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-v0.1")
|
||||
|
||||
>>> prompt = "My favourite condiment is"
|
||||
|
||||
>>> model_inputs = tokenizer([prompt], return_tensors="pt").to("cuda")
|
||||
>>> model.to(device)
|
||||
|
||||
>>> generated_ids = model.generate(**model_inputs, max_new_tokens=100, do_sample=True)
|
||||
>>> tokenizer.batch_decode(generated_ids)[0]
|
||||
"My favourite condiment is to (...)"
|
||||
echo -e "My favorite condiment is" | transformers-cli chat --model_name_or_path mistralai/Mistral-7B-v0.3 --torch_dtype auto --device 0 --attn_implementation flash_attention_2
|
||||
```
|
||||
|
||||
### Expected speedups
|
||||
</hfoption>
|
||||
</hfoptions>
|
||||
|
||||
Below is a expected speedup diagram that compares pure inference time between the native implementation in transformers using `mistralai/Mistral-7B-v0.1` checkpoint and the Flash Attention 2 version of the model.
|
||||
|
||||
<div style="text-align: center">
|
||||
<img src="https://huggingface.co/datasets/ybelkada/documentation-images/resolve/main/mistral-7b-inference-large-seqlen.png">
|
||||
</div>
|
||||
Quantization reduces the memory burden of large models by representing the weights in a lower precision. Refer to the [Quantization](../quantization/overview) overview for more available quantization backends.
|
||||
|
||||
### Sliding window Attention
|
||||
|
||||
The current implementation supports the sliding window attention mechanism and memory efficient cache management.
|
||||
To enable sliding window attention, just make sure to have a `flash-attn` version that is compatible with sliding window attention (`>=2.3.0`).
|
||||
|
||||
The Flash Attention-2 model uses also a more memory efficient cache slicing mechanism - as recommended per the official implementation of Mistral model that use rolling cache mechanism we keep the cache size fixed (`self.config.sliding_window`), support batched generation only for `padding_side="left"` and use the absolute position of the current token to compute the positional embedding.
|
||||
|
||||
## Shrinking down Mistral using quantization
|
||||
|
||||
As the Mistral model has 7 billion parameters, that would require about 14GB of GPU RAM in half precision (float16), since each parameter is stored in 2 bytes. However, one can shrink down the size of the model using [quantization](../quantization.md). If the model is quantized to 4 bits (or half a byte per parameter),that requires only about 3.5GB of RAM.
|
||||
|
||||
Quantizing a model is as simple as passing a `quantization_config` to the model. Below, we'll leverage the BitsAndyBytes quantization (but refer to [this page](../quantization.md) for other quantization methods):
|
||||
The example below uses [bitsandbytes](../quantization/bitsandbytes) to only quantize the weights to 4-bits.
|
||||
|
||||
```python
|
||||
>>> import torch
|
||||
@ -161,8 +103,8 @@ Quantizing a model is as simple as passing a `quantization_config` to the model.
|
||||
... bnb_4bit_compute_dtype="torch.float16",
|
||||
... )
|
||||
|
||||
>>> model = AutoModelForCausalLM.from_pretrained("mistralai/Mistral-7B-Instruct-v0.2", quantization_config=True, device_map="auto")
|
||||
>>> tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-Instruct-v0.2")
|
||||
>>> model = AutoModelForCausalLM.from_pretrained("mistralai/Mistral-7B-Instruct-v0.3", quantization_config=True, torch_dtype=torch.bfloat16, device_map="auto")
|
||||
>>> tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-Instruct-v0.3")
|
||||
|
||||
>>> prompt = "My favourite condiment is"
|
||||
|
||||
@ -179,19 +121,18 @@ Quantizing a model is as simple as passing a `quantization_config` to the model.
|
||||
"The expected output"
|
||||
```
|
||||
|
||||
This model was contributed by [Younes Belkada](https://huggingface.co/ybelkada) and [Arthur Zucker](https://huggingface.co/ArthurZ) .
|
||||
The original code can be found [here](https://github.com/mistralai/mistral-src).
|
||||
Use the [AttentionMaskVisualizer](https://github.com/huggingface/transformers/blob/beb9b5b02246b9b7ee81ddf938f93f44cfeaad19/src/transformers/utils/attention_visualizer.py#L139) to better understand what tokens the model can and cannot attend to.
|
||||
|
||||
## Resources
|
||||
```py
|
||||
>>> from transformers.utils.attention_visualizer import AttentionMaskVisualizer
|
||||
|
||||
A list of official Hugging Face and community (indicated by 🌎) resources to help you get started with Mistral. If you're interested in submitting a resource to be included here, please feel free to open a Pull Request and we'll review it! The resource should ideally demonstrate something new instead of duplicating an existing resource.
|
||||
>>> visualizer = AttentionMaskVisualizer("mistralai/Mistral-7B-Instruct-v0.3")
|
||||
>>> visualizer("Do you have mayonnaise recipes?")
|
||||
```
|
||||
|
||||
<PipelineTag pipeline="text-generation"/>
|
||||
|
||||
- A demo notebook to perform supervised fine-tuning (SFT) of Mistral-7B can be found [here](https://github.com/NielsRogge/Transformers-Tutorials/blob/master/Mistral/Supervised_fine_tuning_(SFT)_of_an_LLM_using_Hugging_Face_tooling.ipynb). 🌎
|
||||
- A [blog post](https://www.philschmid.de/fine-tune-llms-in-2024-with-trl) on how to fine-tune LLMs in 2024 using Hugging Face tooling. 🌎
|
||||
- The [Alignment Handbook](https://github.com/huggingface/alignment-handbook) by Hugging Face includes scripts and recipes to perform supervised fine-tuning (SFT) and direct preference optimization with Mistral-7B. This includes scripts for full fine-tuning, QLoRa on a single GPU as well as multi-GPU fine-tuning.
|
||||
- [Causal language modeling task guide](../tasks/language_modeling)
|
||||
<div class="flex justify-center">
|
||||
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/mistral-attn-mask.png"/>
|
||||
</div>
|
||||
|
||||
## MistralConfig
|
||||
|
||||
@ -245,4 +186,4 @@ A list of official Hugging Face and community (indicated by 🌎) resources to h
|
||||
## TFMistralForSequenceClassification
|
||||
|
||||
[[autodoc]] TFMistralForSequenceClassification
|
||||
- call
|
||||
- call
|
||||
|
@ -1,5 +1,4 @@
|
||||
#!/usr/bin/env python
|
||||
# coding=utf-8
|
||||
# Copyright 2022 The HuggingFace Team All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
|
@ -1,5 +1,4 @@
|
||||
#!/usr/bin/env python
|
||||
# coding=utf-8
|
||||
# Copyright 2022 The HuggingFace Team All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
@ -833,8 +832,7 @@ def main():
|
||||
# No need to shuffle here
|
||||
loader = data_loader(rng, _ds, batch_size=batch_size, shuffle=False)
|
||||
|
||||
for batch in loader:
|
||||
yield batch
|
||||
yield from loader
|
||||
|
||||
# Metric
|
||||
metric = evaluate.load("rouge", cache_dir=model_args.cache_dir)
|
||||
|
@ -1,5 +1,4 @@
|
||||
#!/usr/bin/env python
|
||||
# coding=utf-8
|
||||
# Copyright 2021 The HuggingFace Team All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
@ -30,7 +29,7 @@ from dataclasses import asdict, dataclass, field
|
||||
from enum import Enum
|
||||
from itertools import chain
|
||||
from pathlib import Path
|
||||
from typing import Dict, List, Optional
|
||||
from typing import Optional
|
||||
|
||||
import flax
|
||||
import jax
|
||||
@ -294,7 +293,7 @@ class FlaxDataCollatorForBartDenoisingLM:
|
||||
" language modeling. "
|
||||
)
|
||||
|
||||
def __call__(self, examples: List[Dict[str, List[int]]]) -> BatchEncoding:
|
||||
def __call__(self, examples: list[dict[str, list[int]]]) -> BatchEncoding:
|
||||
# convert list to dict and tensorize input
|
||||
batch = BatchEncoding(
|
||||
{k: np.array([examples[i][k] for i in range(len(examples))]) for k, v in examples[0].items()}
|
||||
|
@ -1,5 +1,4 @@
|
||||
#!/usr/bin/env python
|
||||
# coding=utf-8
|
||||
# Copyright 2021 The HuggingFace Team All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
|
@ -1,5 +1,4 @@
|
||||
#!/usr/bin/env python
|
||||
# coding=utf-8
|
||||
# Copyright 2021 The HuggingFace Team All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
@ -33,7 +32,7 @@ from itertools import chain
|
||||
|
||||
# You can also adapt this script on your own masked language modeling task. Pointers for this are left as comments.
|
||||
from pathlib import Path
|
||||
from typing import Dict, List, Optional, Tuple
|
||||
from typing import Optional
|
||||
|
||||
import flax
|
||||
import jax
|
||||
@ -302,7 +301,7 @@ class FlaxDataCollatorForLanguageModeling:
|
||||
"You should pass `mlm=False` to train on causal language modeling instead."
|
||||
)
|
||||
|
||||
def __call__(self, examples: List[Dict[str, np.ndarray]], pad_to_multiple_of: int) -> Dict[str, np.ndarray]:
|
||||
def __call__(self, examples: list[dict[str, np.ndarray]], pad_to_multiple_of: int) -> dict[str, np.ndarray]:
|
||||
# Handle dict or lists with proper padding and conversion to tensor.
|
||||
batch = self.tokenizer.pad(examples, pad_to_multiple_of=pad_to_multiple_of, return_tensors=TensorType.NUMPY)
|
||||
|
||||
@ -316,7 +315,7 @@ class FlaxDataCollatorForLanguageModeling:
|
||||
|
||||
def mask_tokens(
|
||||
self, inputs: np.ndarray, special_tokens_mask: Optional[np.ndarray]
|
||||
) -> Tuple[np.ndarray, np.ndarray]:
|
||||
) -> tuple[np.ndarray, np.ndarray]:
|
||||
"""
|
||||
Prepare masked tokens inputs/labels for masked language modeling: 80% MASK, 10% random, 10% original.
|
||||
"""
|
||||
|
@ -1,5 +1,4 @@
|
||||
#!/usr/bin/env python
|
||||
# coding=utf-8
|
||||
# Copyright 2021 The HuggingFace Team All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
@ -32,7 +31,7 @@ from dataclasses import asdict, dataclass, field
|
||||
from enum import Enum
|
||||
from itertools import chain
|
||||
from pathlib import Path
|
||||
from typing import Dict, List, Optional
|
||||
from typing import Optional
|
||||
|
||||
import flax
|
||||
import jax
|
||||
@ -338,7 +337,7 @@ class FlaxDataCollatorForT5MLM:
|
||||
pad_token_id: int
|
||||
decoder_start_token_id: int
|
||||
|
||||
def __call__(self, examples: List[Dict[str, np.ndarray]]) -> BatchEncoding:
|
||||
def __call__(self, examples: list[dict[str, np.ndarray]]) -> BatchEncoding:
|
||||
# convert list to dict and tensorize input
|
||||
batch = BatchEncoding(
|
||||
{k: np.array([examples[i][k] for i in range(len(examples))]) for k, v in examples[0].items()}
|
||||
|
@ -1,6 +1,7 @@
|
||||
#!/usr/bin/env python3
|
||||
import json
|
||||
from typing import Iterator, List, Union
|
||||
from collections.abc import Iterator
|
||||
from typing import Union
|
||||
|
||||
from tokenizers import AddedToken, Regex, Tokenizer, decoders, normalizers, pre_tokenizers, trainers
|
||||
from tokenizers.implementations.base_tokenizer import BaseTokenizer
|
||||
@ -72,7 +73,7 @@ class SentencePieceUnigramTokenizer(BaseTokenizer):
|
||||
|
||||
def train(
|
||||
self,
|
||||
files: Union[str, List[str]],
|
||||
files: Union[str, list[str]],
|
||||
vocab_size: int = 8000,
|
||||
show_progress: bool = True,
|
||||
):
|
||||
|
@ -1,5 +1,4 @@
|
||||
#!/usr/bin/env python
|
||||
# coding=utf-8
|
||||
# Copyright 2021 The HuggingFace Team All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
@ -28,7 +27,7 @@ import time
|
||||
from dataclasses import asdict, dataclass, field
|
||||
from enum import Enum
|
||||
from pathlib import Path
|
||||
from typing import Any, Callable, Dict, Optional, Tuple
|
||||
from typing import Any, Callable, Optional
|
||||
|
||||
import datasets
|
||||
import evaluate
|
||||
@ -908,8 +907,8 @@ def main():
|
||||
|
||||
# region Define train step functions
|
||||
def train_step(
|
||||
state: train_state.TrainState, batch: Dict[str, Array], dropout_rng: PRNGKey
|
||||
) -> Tuple[train_state.TrainState, float]:
|
||||
state: train_state.TrainState, batch: dict[str, Array], dropout_rng: PRNGKey
|
||||
) -> tuple[train_state.TrainState, float]:
|
||||
"""Trains model with an optimizer (both in `state`) on `batch`, returning a pair `(new_state, loss)`."""
|
||||
dropout_rng, new_dropout_rng = jax.random.split(dropout_rng)
|
||||
start_positions = batch.pop("start_positions")
|
||||
|
@ -1,4 +1,3 @@
|
||||
# coding=utf-8
|
||||
# Copyright 2020 The HuggingFace Team All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
@ -20,7 +19,7 @@ import collections
|
||||
import json
|
||||
import logging
|
||||
import os
|
||||
from typing import Optional, Tuple
|
||||
from typing import Optional
|
||||
|
||||
import numpy as np
|
||||
from tqdm.auto import tqdm
|
||||
@ -32,7 +31,7 @@ logger = logging.getLogger(__name__)
|
||||
def postprocess_qa_predictions(
|
||||
examples,
|
||||
features,
|
||||
predictions: Tuple[np.ndarray, np.ndarray],
|
||||
predictions: tuple[np.ndarray, np.ndarray],
|
||||
version_2_with_negative: bool = False,
|
||||
n_best_size: int = 20,
|
||||
max_answer_length: int = 30,
|
||||
@ -223,7 +222,7 @@ def postprocess_qa_predictions(
|
||||
# If we have an output_dir, let's save all those dicts.
|
||||
if output_dir is not None:
|
||||
if not os.path.isdir(output_dir):
|
||||
raise EnvironmentError(f"{output_dir} is not a directory.")
|
||||
raise OSError(f"{output_dir} is not a directory.")
|
||||
|
||||
prediction_file = os.path.join(
|
||||
output_dir, "predictions.json" if prefix is None else f"{prefix}_predictions.json"
|
||||
@ -253,7 +252,7 @@ def postprocess_qa_predictions(
|
||||
def postprocess_qa_predictions_with_beam_search(
|
||||
examples,
|
||||
features,
|
||||
predictions: Tuple[np.ndarray, np.ndarray],
|
||||
predictions: tuple[np.ndarray, np.ndarray],
|
||||
version_2_with_negative: bool = False,
|
||||
n_best_size: int = 20,
|
||||
max_answer_length: int = 30,
|
||||
@ -417,7 +416,7 @@ def postprocess_qa_predictions_with_beam_search(
|
||||
# If we have an output_dir, let's save all those dicts.
|
||||
if output_dir is not None:
|
||||
if not os.path.isdir(output_dir):
|
||||
raise EnvironmentError(f"{output_dir} is not a directory.")
|
||||
raise OSError(f"{output_dir} is not a directory.")
|
||||
|
||||
prediction_file = os.path.join(
|
||||
output_dir, "predictions.json" if prefix is None else f"{prefix}_predictions.json"
|
||||
|
@ -1,5 +1,4 @@
|
||||
#!/usr/bin/env python
|
||||
# coding=utf-8
|
||||
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
@ -25,7 +24,7 @@ import time
|
||||
from dataclasses import field
|
||||
from functools import partial
|
||||
from pathlib import Path
|
||||
from typing import Any, Callable, Dict, List, Optional, Union
|
||||
from typing import Any, Callable, Optional, Union
|
||||
|
||||
import datasets
|
||||
import evaluate
|
||||
@ -303,7 +302,7 @@ class FlaxDataCollatorSpeechSeq2SeqWithPadding:
|
||||
pad_input_to_multiple_of: Optional[int] = None
|
||||
pad_target_to_multiple_of: Optional[int] = None
|
||||
|
||||
def __call__(self, features: List[Dict[str, Union[List[int], np.ndarray]]]) -> Dict[str, np.ndarray]:
|
||||
def __call__(self, features: list[dict[str, Union[list[int], np.ndarray]]]) -> dict[str, np.ndarray]:
|
||||
# split inputs and labels since they have to be of different lengths and need
|
||||
# different padding methods
|
||||
model_input_name = self.processor.model_input_names[0]
|
||||
|
@ -1,5 +1,4 @@
|
||||
#!/usr/bin/env python
|
||||
# coding=utf-8
|
||||
# Copyright 2021 The HuggingFace Team All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
|
@ -1,4 +1,3 @@
|
||||
# coding=utf-8
|
||||
# Copyright 2021 HuggingFace Inc.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
@ -64,7 +63,7 @@ def get_setup_file():
|
||||
def get_results(output_dir, split="eval"):
|
||||
path = os.path.join(output_dir, f"{split}_results.json")
|
||||
if os.path.exists(path):
|
||||
with open(path, "r") as f:
|
||||
with open(path) as f:
|
||||
return json.load(f)
|
||||
raise ValueError(f"can't find {path}")
|
||||
|
||||
|
@ -1,5 +1,4 @@
|
||||
#!/usr/bin/env python
|
||||
# coding=utf-8
|
||||
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
@ -25,7 +24,7 @@ import time
|
||||
import warnings
|
||||
from dataclasses import dataclass, field
|
||||
from pathlib import Path
|
||||
from typing import Any, Callable, Dict, Optional, Tuple
|
||||
from typing import Any, Callable, Optional
|
||||
|
||||
import datasets
|
||||
import evaluate
|
||||
@ -572,8 +571,8 @@ def main():
|
||||
|
||||
# define step functions
|
||||
def train_step(
|
||||
state: train_state.TrainState, batch: Dict[str, Array], dropout_rng: PRNGKey
|
||||
) -> Tuple[train_state.TrainState, float]:
|
||||
state: train_state.TrainState, batch: dict[str, Array], dropout_rng: PRNGKey
|
||||
) -> tuple[train_state.TrainState, float]:
|
||||
"""Trains model with an optimizer (both in `state`) on `batch`, returning a pair `(new_state, loss)`."""
|
||||
dropout_rng, new_dropout_rng = jax.random.split(dropout_rng)
|
||||
targets = batch.pop("labels")
|
||||
|
@ -1,5 +1,4 @@
|
||||
#!/usr/bin/env python
|
||||
# coding=utf-8
|
||||
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
@ -27,7 +26,7 @@ from dataclasses import asdict, dataclass, field
|
||||
from enum import Enum
|
||||
from itertools import chain
|
||||
from pathlib import Path
|
||||
from typing import Any, Callable, Dict, Optional, Tuple
|
||||
from typing import Any, Callable, Optional
|
||||
|
||||
import datasets
|
||||
import evaluate
|
||||
@ -651,8 +650,8 @@ def main():
|
||||
|
||||
# define step functions
|
||||
def train_step(
|
||||
state: train_state.TrainState, batch: Dict[str, Array], dropout_rng: PRNGKey
|
||||
) -> Tuple[train_state.TrainState, float]:
|
||||
state: train_state.TrainState, batch: dict[str, Array], dropout_rng: PRNGKey
|
||||
) -> tuple[train_state.TrainState, float]:
|
||||
"""Trains model with an optimizer (both in `state`) on `batch`, returning a pair `(new_state, loss)`."""
|
||||
dropout_rng, new_dropout_rng = jax.random.split(dropout_rng)
|
||||
targets = batch.pop("labels")
|
||||
|
@ -1,5 +1,4 @@
|
||||
#!/usr/bin/env python
|
||||
# coding=utf-8
|
||||
# Copyright 2021 The HuggingFace Team All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
|
@ -15,7 +15,7 @@
|
||||
import csv
|
||||
from collections import defaultdict
|
||||
from dataclasses import dataclass, field
|
||||
from typing import List, Optional
|
||||
from typing import Optional
|
||||
|
||||
import matplotlib.pyplot as plt
|
||||
import numpy as np
|
||||
@ -59,7 +59,7 @@ class PlotArguments:
|
||||
default=None,
|
||||
metadata={"help": "Filename under which the plot will be saved. If unused no plot is saved."},
|
||||
)
|
||||
short_model_names: Optional[List[str]] = list_field(
|
||||
short_model_names: Optional[list[str]] = list_field(
|
||||
default=None, metadata={"help": "List of model names that are used instead of the ones in the csv file."}
|
||||
)
|
||||
|
||||
|
@ -1,5 +1,4 @@
|
||||
#!/usr/bin/env python
|
||||
# coding=utf-8
|
||||
# Copyright 2020 The HuggingFace Inc. team.
|
||||
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
|
||||
#
|
||||
|
@ -1,4 +1,3 @@
|
||||
# coding=utf-8
|
||||
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
|
||||
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
|
||||
#
|
||||
@ -18,7 +17,7 @@
|
||||
import logging
|
||||
import os
|
||||
from dataclasses import dataclass, field
|
||||
from typing import Dict, Optional
|
||||
from typing import Optional
|
||||
|
||||
import numpy as np
|
||||
from utils_multiple_choice import MultipleChoiceDataset, Split, processors
|
||||
@ -187,7 +186,7 @@ def main():
|
||||
else None
|
||||
)
|
||||
|
||||
def compute_metrics(p: EvalPrediction) -> Dict:
|
||||
def compute_metrics(p: EvalPrediction) -> dict:
|
||||
preds = np.argmax(p.predictions, axis=1)
|
||||
return {"acc": simple_accuracy(preds, p.label_ids)}
|
||||
|
||||
@ -228,7 +227,7 @@ def main():
|
||||
logger.info("***** Eval results *****")
|
||||
for key, value in result.items():
|
||||
logger.info(" %s = %s", key, value)
|
||||
writer.write("%s = %s\n" % (key, value))
|
||||
writer.write("{} = {}\n".format(key, value))
|
||||
|
||||
results.update(result)
|
||||
|
||||
|
@ -1,4 +1,3 @@
|
||||
# coding=utf-8
|
||||
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
|
||||
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
|
||||
#
|
||||
@ -22,7 +21,7 @@ import logging
|
||||
import os
|
||||
from dataclasses import dataclass
|
||||
from enum import Enum
|
||||
from typing import List, Optional
|
||||
from typing import Optional
|
||||
|
||||
import tqdm
|
||||
from filelock import FileLock
|
||||
@ -49,8 +48,8 @@ class InputExample:
|
||||
|
||||
example_id: str
|
||||
question: str
|
||||
contexts: List[str]
|
||||
endings: List[str]
|
||||
contexts: list[str]
|
||||
endings: list[str]
|
||||
label: Optional[str]
|
||||
|
||||
|
||||
@ -62,9 +61,9 @@ class InputFeatures:
|
||||
"""
|
||||
|
||||
example_id: str
|
||||
input_ids: List[List[int]]
|
||||
attention_mask: Optional[List[List[int]]]
|
||||
token_type_ids: Optional[List[List[int]]]
|
||||
input_ids: list[list[int]]
|
||||
attention_mask: Optional[list[list[int]]]
|
||||
token_type_ids: Optional[list[list[int]]]
|
||||
label: Optional[int]
|
||||
|
||||
|
||||
@ -84,7 +83,7 @@ if is_torch_available():
|
||||
soon.
|
||||
"""
|
||||
|
||||
features: List[InputFeatures]
|
||||
features: list[InputFeatures]
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
@ -149,7 +148,7 @@ if is_tf_available():
|
||||
soon.
|
||||
"""
|
||||
|
||||
features: List[InputFeatures]
|
||||
features: list[InputFeatures]
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
@ -253,7 +252,7 @@ class RaceProcessor(DataProcessor):
|
||||
|
||||
def get_train_examples(self, data_dir):
|
||||
"""See base class."""
|
||||
logger.info("LOOKING AT {} train".format(data_dir))
|
||||
logger.info(f"LOOKING AT {data_dir} train")
|
||||
high = os.path.join(data_dir, "train/high")
|
||||
middle = os.path.join(data_dir, "train/middle")
|
||||
high = self._read_txt(high)
|
||||
@ -262,7 +261,7 @@ class RaceProcessor(DataProcessor):
|
||||
|
||||
def get_dev_examples(self, data_dir):
|
||||
"""See base class."""
|
||||
logger.info("LOOKING AT {} dev".format(data_dir))
|
||||
logger.info(f"LOOKING AT {data_dir} dev")
|
||||
high = os.path.join(data_dir, "dev/high")
|
||||
middle = os.path.join(data_dir, "dev/middle")
|
||||
high = self._read_txt(high)
|
||||
@ -271,7 +270,7 @@ class RaceProcessor(DataProcessor):
|
||||
|
||||
def get_test_examples(self, data_dir):
|
||||
"""See base class."""
|
||||
logger.info("LOOKING AT {} test".format(data_dir))
|
||||
logger.info(f"LOOKING AT {data_dir} test")
|
||||
high = os.path.join(data_dir, "test/high")
|
||||
middle = os.path.join(data_dir, "test/middle")
|
||||
high = self._read_txt(high)
|
||||
@ -286,7 +285,7 @@ class RaceProcessor(DataProcessor):
|
||||
lines = []
|
||||
files = glob.glob(input_dir + "/*txt")
|
||||
for file in tqdm.tqdm(files, desc="read files"):
|
||||
with open(file, "r", encoding="utf-8") as fin:
|
||||
with open(file, encoding="utf-8") as fin:
|
||||
data_raw = json.load(fin)
|
||||
data_raw["race_id"] = file
|
||||
lines.append(data_raw)
|
||||
@ -296,7 +295,7 @@ class RaceProcessor(DataProcessor):
|
||||
"""Creates examples for the training and dev sets."""
|
||||
examples = []
|
||||
for _, data_raw in enumerate(lines):
|
||||
race_id = "%s-%s" % (set_type, data_raw["race_id"])
|
||||
race_id = "{}-{}".format(set_type, data_raw["race_id"])
|
||||
article = data_raw["article"]
|
||||
for i in range(len(data_raw["answers"])):
|
||||
truth = str(ord(data_raw["answers"][i]) - ord("A"))
|
||||
@ -320,17 +319,17 @@ class SynonymProcessor(DataProcessor):
|
||||
|
||||
def get_train_examples(self, data_dir):
|
||||
"""See base class."""
|
||||
logger.info("LOOKING AT {} train".format(data_dir))
|
||||
logger.info(f"LOOKING AT {data_dir} train")
|
||||
return self._create_examples(self._read_csv(os.path.join(data_dir, "mctrain.csv")), "train")
|
||||
|
||||
def get_dev_examples(self, data_dir):
|
||||
"""See base class."""
|
||||
logger.info("LOOKING AT {} dev".format(data_dir))
|
||||
logger.info(f"LOOKING AT {data_dir} dev")
|
||||
return self._create_examples(self._read_csv(os.path.join(data_dir, "mchp.csv")), "dev")
|
||||
|
||||
def get_test_examples(self, data_dir):
|
||||
"""See base class."""
|
||||
logger.info("LOOKING AT {} dev".format(data_dir))
|
||||
logger.info(f"LOOKING AT {data_dir} dev")
|
||||
|
||||
return self._create_examples(self._read_csv(os.path.join(data_dir, "mctest.csv")), "test")
|
||||
|
||||
@ -339,10 +338,10 @@ class SynonymProcessor(DataProcessor):
|
||||
return ["0", "1", "2", "3", "4"]
|
||||
|
||||
def _read_csv(self, input_file):
|
||||
with open(input_file, "r", encoding="utf-8") as f:
|
||||
with open(input_file, encoding="utf-8") as f:
|
||||
return list(csv.reader(f))
|
||||
|
||||
def _create_examples(self, lines: List[List[str]], type: str):
|
||||
def _create_examples(self, lines: list[list[str]], type: str):
|
||||
"""Creates examples for the training and dev sets."""
|
||||
|
||||
examples = [
|
||||
@ -366,17 +365,17 @@ class SwagProcessor(DataProcessor):
|
||||
|
||||
def get_train_examples(self, data_dir):
|
||||
"""See base class."""
|
||||
logger.info("LOOKING AT {} train".format(data_dir))
|
||||
logger.info(f"LOOKING AT {data_dir} train")
|
||||
return self._create_examples(self._read_csv(os.path.join(data_dir, "train.csv")), "train")
|
||||
|
||||
def get_dev_examples(self, data_dir):
|
||||
"""See base class."""
|
||||
logger.info("LOOKING AT {} dev".format(data_dir))
|
||||
logger.info(f"LOOKING AT {data_dir} dev")
|
||||
return self._create_examples(self._read_csv(os.path.join(data_dir, "val.csv")), "dev")
|
||||
|
||||
def get_test_examples(self, data_dir):
|
||||
"""See base class."""
|
||||
logger.info("LOOKING AT {} dev".format(data_dir))
|
||||
logger.info(f"LOOKING AT {data_dir} dev")
|
||||
raise ValueError(
|
||||
"For swag testing, the input file does not contain a label column. It can not be tested in current code "
|
||||
"setting!"
|
||||
@ -388,10 +387,10 @@ class SwagProcessor(DataProcessor):
|
||||
return ["0", "1", "2", "3"]
|
||||
|
||||
def _read_csv(self, input_file):
|
||||
with open(input_file, "r", encoding="utf-8") as f:
|
||||
with open(input_file, encoding="utf-8") as f:
|
||||
return list(csv.reader(f))
|
||||
|
||||
def _create_examples(self, lines: List[List[str]], type: str):
|
||||
def _create_examples(self, lines: list[list[str]], type: str):
|
||||
"""Creates examples for the training and dev sets."""
|
||||
if type == "train" and lines[0][-1] != "label":
|
||||
raise ValueError("For training, the input file must contain a label column.")
|
||||
@ -417,16 +416,16 @@ class ArcProcessor(DataProcessor):
|
||||
|
||||
def get_train_examples(self, data_dir):
|
||||
"""See base class."""
|
||||
logger.info("LOOKING AT {} train".format(data_dir))
|
||||
logger.info(f"LOOKING AT {data_dir} train")
|
||||
return self._create_examples(self._read_json(os.path.join(data_dir, "train.jsonl")), "train")
|
||||
|
||||
def get_dev_examples(self, data_dir):
|
||||
"""See base class."""
|
||||
logger.info("LOOKING AT {} dev".format(data_dir))
|
||||
logger.info(f"LOOKING AT {data_dir} dev")
|
||||
return self._create_examples(self._read_json(os.path.join(data_dir, "dev.jsonl")), "dev")
|
||||
|
||||
def get_test_examples(self, data_dir):
|
||||
logger.info("LOOKING AT {} test".format(data_dir))
|
||||
logger.info(f"LOOKING AT {data_dir} test")
|
||||
return self._create_examples(self._read_json(os.path.join(data_dir, "test.jsonl")), "test")
|
||||
|
||||
def get_labels(self):
|
||||
@ -434,7 +433,7 @@ class ArcProcessor(DataProcessor):
|
||||
return ["0", "1", "2", "3"]
|
||||
|
||||
def _read_json(self, input_file):
|
||||
with open(input_file, "r", encoding="utf-8") as fin:
|
||||
with open(input_file, encoding="utf-8") as fin:
|
||||
lines = fin.readlines()
|
||||
return lines
|
||||
|
||||
@ -504,11 +503,11 @@ class ArcProcessor(DataProcessor):
|
||||
|
||||
|
||||
def convert_examples_to_features(
|
||||
examples: List[InputExample],
|
||||
label_list: List[str],
|
||||
examples: list[InputExample],
|
||||
label_list: list[str],
|
||||
max_length: int,
|
||||
tokenizer: PreTrainedTokenizer,
|
||||
) -> List[InputFeatures]:
|
||||
) -> list[InputFeatures]:
|
||||
"""
|
||||
Loads a data file into a list of `InputFeatures`
|
||||
"""
|
||||
|
@ -2,7 +2,7 @@ import argparse
|
||||
import logging
|
||||
import os
|
||||
from pathlib import Path
|
||||
from typing import Any, Dict
|
||||
from typing import Any
|
||||
|
||||
import pytorch_lightning as pl
|
||||
from pytorch_lightning.utilities import rank_zero_info
|
||||
@ -201,7 +201,7 @@ class BaseTransformer(pl.LightningModule):
|
||||
)
|
||||
|
||||
@pl.utilities.rank_zero_only
|
||||
def on_save_checkpoint(self, checkpoint: Dict[str, Any]) -> None:
|
||||
def on_save_checkpoint(self, checkpoint: dict[str, Any]) -> None:
|
||||
save_path = self.output_dir.joinpath("best_tfmr")
|
||||
self.model.config.save_step = self.step_count
|
||||
self.model.save_pretrained(save_path)
|
||||
@ -282,7 +282,7 @@ class LoggingCallback(pl.Callback):
|
||||
# Log results
|
||||
for key in sorted(metrics):
|
||||
if key not in ["log", "progress_bar"]:
|
||||
rank_zero_info("{} = {}\n".format(key, str(metrics[key])))
|
||||
rank_zero_info(f"{key} = {str(metrics[key])}\n")
|
||||
|
||||
def on_test_end(self, trainer: pl.Trainer, pl_module: pl.LightningModule):
|
||||
rank_zero_info("***** Test results *****")
|
||||
@ -292,8 +292,8 @@ class LoggingCallback(pl.Callback):
|
||||
with open(output_test_results_file, "w") as writer:
|
||||
for key in sorted(metrics):
|
||||
if key not in ["log", "progress_bar"]:
|
||||
rank_zero_info("{} = {}\n".format(key, str(metrics[key])))
|
||||
writer.write("{} = {}\n".format(key, str(metrics[key])))
|
||||
rank_zero_info(f"{key} = {str(metrics[key])}\n")
|
||||
writer.write(f"{key} = {str(metrics[key])}\n")
|
||||
|
||||
|
||||
def add_generic_args(parser, root_dir) -> None:
|
||||
|
@ -1,4 +1,3 @@
|
||||
# coding=utf-8
|
||||
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
|
||||
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
|
||||
#
|
||||
@ -231,14 +230,14 @@ def train(args, train_dataset, model, tokenizer):
|
||||
if args.local_rank == -1 and args.evaluate_during_training:
|
||||
results = evaluate(args, model, tokenizer)
|
||||
for key, value in results.items():
|
||||
tb_writer.add_scalar("eval_{}".format(key), value, global_step)
|
||||
tb_writer.add_scalar(f"eval_{key}", value, global_step)
|
||||
tb_writer.add_scalar("lr", scheduler.get_lr()[0], global_step)
|
||||
tb_writer.add_scalar("loss", (tr_loss - logging_loss) / args.logging_steps, global_step)
|
||||
logging_loss = tr_loss
|
||||
|
||||
# Save model checkpoint
|
||||
if args.local_rank in [-1, 0] and args.save_steps > 0 and global_step % args.save_steps == 0:
|
||||
output_dir = os.path.join(args.output_dir, "checkpoint-{}".format(global_step))
|
||||
output_dir = os.path.join(args.output_dir, f"checkpoint-{global_step}")
|
||||
# Take care of distributed/parallel training
|
||||
model_to_save = model.module if hasattr(model, "module") else model
|
||||
model_to_save.save_pretrained(output_dir)
|
||||
@ -281,7 +280,7 @@ def evaluate(args, model, tokenizer, prefix=""):
|
||||
model = torch.nn.DataParallel(model)
|
||||
|
||||
# Eval!
|
||||
logger.info("***** Running evaluation {} *****".format(prefix))
|
||||
logger.info(f"***** Running evaluation {prefix} *****")
|
||||
logger.info(" Num examples = %d", len(dataset))
|
||||
logger.info(" Batch size = %d", args.eval_batch_size)
|
||||
|
||||
@ -348,11 +347,11 @@ def evaluate(args, model, tokenizer, prefix=""):
|
||||
logger.info(" Evaluation done in total %f secs (%f sec per example)", evalTime, evalTime / len(dataset))
|
||||
|
||||
# Compute predictions
|
||||
output_prediction_file = os.path.join(args.output_dir, "predictions_{}.json".format(prefix))
|
||||
output_nbest_file = os.path.join(args.output_dir, "nbest_predictions_{}.json".format(prefix))
|
||||
output_prediction_file = os.path.join(args.output_dir, f"predictions_{prefix}.json")
|
||||
output_nbest_file = os.path.join(args.output_dir, f"nbest_predictions_{prefix}.json")
|
||||
|
||||
if args.version_2_with_negative:
|
||||
output_null_log_odds_file = os.path.join(args.output_dir, "null_odds_{}.json".format(prefix))
|
||||
output_null_log_odds_file = os.path.join(args.output_dir, f"null_odds_{prefix}.json")
|
||||
else:
|
||||
output_null_log_odds_file = None
|
||||
|
||||
@ -828,10 +827,10 @@ def main():
|
||||
# Evaluate
|
||||
result = evaluate(args, model, tokenizer, prefix=global_step)
|
||||
|
||||
result = {k + ("_{}".format(global_step) if global_step else ""): v for k, v in result.items()}
|
||||
result = {k + (f"_{global_step}" if global_step else ""): v for k, v in result.items()}
|
||||
results.update(result)
|
||||
|
||||
logger.info("Results: {}".format(results))
|
||||
logger.info(f"Results: {results}")
|
||||
|
||||
return results
|
||||
|
||||
|
@ -1,4 +1,3 @@
|
||||
# coding=utf-8
|
||||
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
|
||||
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
|
||||
#
|
||||
|
@ -20,10 +20,10 @@ def fill_mask(masked_input, model, tokenizer, topk=5):
|
||||
topk_filled_outputs = []
|
||||
for index, predicted_token_bpe in enumerate(topk_predicted_token_bpe.split(" ")):
|
||||
predicted_token = predicted_token_bpe.replace("\u2581", " ")
|
||||
if " {0}".format(masked_token) in masked_input:
|
||||
if f" {masked_token}" in masked_input:
|
||||
topk_filled_outputs.append(
|
||||
(
|
||||
masked_input.replace(" {0}".format(masked_token), predicted_token),
|
||||
masked_input.replace(f" {masked_token}", predicted_token),
|
||||
values[index].item(),
|
||||
predicted_token,
|
||||
)
|
||||
|
@ -1,7 +1,6 @@
|
||||
#!/usr/bin/env python
|
||||
import argparse
|
||||
import json
|
||||
from typing import List
|
||||
|
||||
from ltp import LTP
|
||||
|
||||
@ -42,7 +41,7 @@ def is_chinese(word: str):
|
||||
return 1
|
||||
|
||||
|
||||
def get_chinese_word(tokens: List[str]):
|
||||
def get_chinese_word(tokens: list[str]):
|
||||
word_set = set()
|
||||
|
||||
for token in tokens:
|
||||
@ -53,7 +52,7 @@ def get_chinese_word(tokens: List[str]):
|
||||
return word_list
|
||||
|
||||
|
||||
def add_sub_symbol(bert_tokens: List[str], chinese_word_set: set()):
|
||||
def add_sub_symbol(bert_tokens: list[str], chinese_word_set: set()):
|
||||
if not chinese_word_set:
|
||||
return bert_tokens
|
||||
max_word_len = max([len(w) for w in chinese_word_set])
|
||||
@ -77,7 +76,7 @@ def add_sub_symbol(bert_tokens: List[str], chinese_word_set: set()):
|
||||
return bert_word
|
||||
|
||||
|
||||
def prepare_ref(lines: List[str], ltp_tokenizer: LTP, bert_tokenizer: BertTokenizer):
|
||||
def prepare_ref(lines: list[str], ltp_tokenizer: LTP, bert_tokenizer: BertTokenizer):
|
||||
ltp_res = []
|
||||
|
||||
for i in range(0, len(lines), 100):
|
||||
@ -117,7 +116,7 @@ def prepare_ref(lines: List[str], ltp_tokenizer: LTP, bert_tokenizer: BertTokeni
|
||||
def main(args):
|
||||
# For Chinese (Ro)Bert, the best result is from : RoBERTa-wwm-ext (https://github.com/ymcui/Chinese-BERT-wwm)
|
||||
# If we want to fine-tune these model, we have to use same tokenizer : LTP (https://github.com/HIT-SCIR/ltp)
|
||||
with open(args.file_name, "r", encoding="utf-8") as f:
|
||||
with open(args.file_name, encoding="utf-8") as f:
|
||||
data = f.readlines()
|
||||
data = [line.strip() for line in data if len(line) > 0 and not line.isspace()] # avoid delimiter like '\u2029'
|
||||
ltp_tokenizer = LTP(args.ltp) # faster in GPU device
|
||||
|
@ -1,5 +1,4 @@
|
||||
#!/usr/bin/env python
|
||||
# coding=utf-8
|
||||
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
|
||||
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
|
||||
#
|
||||
@ -358,7 +357,7 @@ def main():
|
||||
logger.info("***** Eval results *****")
|
||||
for key in sorted(result.keys()):
|
||||
logger.info(" %s = %s", key, str(result[key]))
|
||||
writer.write("%s = %s\n" % (key, str(result[key])))
|
||||
writer.write("{} = {}\n".format(key, str(result[key])))
|
||||
|
||||
results.update(result)
|
||||
|
||||
|
@ -1,5 +1,4 @@
|
||||
#!/usr/bin/env python
|
||||
# coding=utf-8
|
||||
# Copyright 2018 Google AI, Google Brain and Carnegie Mellon University Authors and the HuggingFace Inc. team.
|
||||
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
|
||||
#
|
||||
@ -163,7 +162,7 @@ def main():
|
||||
|
||||
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
||||
n_gpu = torch.cuda.device_count()
|
||||
logger.info("device: {}, n_gpu {}".format(device, n_gpu))
|
||||
logger.info(f"device: {device}, n_gpu {n_gpu}")
|
||||
|
||||
if not args.do_train and not args.do_eval:
|
||||
raise ValueError("At least one of `do_train` or `do_eval` must be True.")
|
||||
@ -261,7 +260,7 @@ def main():
|
||||
loss.item() if exp_average_loss is None else 0.7 * exp_average_loss + 0.3 * loss.item()
|
||||
)
|
||||
nb_tr_steps += 1
|
||||
tqdm_bar.desc = "Training loss: {:.2e} lr: {:.2e}".format(exp_average_loss, scheduler.get_lr()[0])
|
||||
tqdm_bar.desc = f"Training loss: {exp_average_loss:.2e} lr: {scheduler.get_lr()[0]:.2e}"
|
||||
|
||||
# Save a trained model
|
||||
if args.do_train:
|
||||
@ -313,7 +312,7 @@ def main():
|
||||
logger.info("***** Eval results *****")
|
||||
for key in sorted(result.keys()):
|
||||
logger.info(" %s = %s", key, str(result[key]))
|
||||
writer.write("%s = %s\n" % (key, str(result[key])))
|
||||
writer.write("{} = {}\n".format(key, str(result[key])))
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
@ -1,5 +1,4 @@
|
||||
#!/usr/bin/env python
|
||||
# coding=utf-8
|
||||
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
|
||||
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
|
||||
#
|
||||
@ -51,7 +50,7 @@ except ImportError:
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class SwagExample(object):
|
||||
class SwagExample:
|
||||
"""A single training/test example for the SWAG dataset."""
|
||||
|
||||
def __init__(self, swag_id, context_sentence, start_ending, ending_0, ending_1, ending_2, ending_3, label=None):
|
||||
@ -71,22 +70,22 @@ class SwagExample(object):
|
||||
|
||||
def __repr__(self):
|
||||
attributes = [
|
||||
"swag_id: {}".format(self.swag_id),
|
||||
"context_sentence: {}".format(self.context_sentence),
|
||||
"start_ending: {}".format(self.start_ending),
|
||||
"ending_0: {}".format(self.endings[0]),
|
||||
"ending_1: {}".format(self.endings[1]),
|
||||
"ending_2: {}".format(self.endings[2]),
|
||||
"ending_3: {}".format(self.endings[3]),
|
||||
f"swag_id: {self.swag_id}",
|
||||
f"context_sentence: {self.context_sentence}",
|
||||
f"start_ending: {self.start_ending}",
|
||||
f"ending_0: {self.endings[0]}",
|
||||
f"ending_1: {self.endings[1]}",
|
||||
f"ending_2: {self.endings[2]}",
|
||||
f"ending_3: {self.endings[3]}",
|
||||
]
|
||||
|
||||
if self.label is not None:
|
||||
attributes.append("label: {}".format(self.label))
|
||||
attributes.append(f"label: {self.label}")
|
||||
|
||||
return ", ".join(attributes)
|
||||
|
||||
|
||||
class InputFeatures(object):
|
||||
class InputFeatures:
|
||||
def __init__(self, example_id, choices_features, label):
|
||||
self.example_id = example_id
|
||||
self.choices_features = [
|
||||
@ -97,7 +96,7 @@ class InputFeatures(object):
|
||||
|
||||
|
||||
def read_swag_examples(input_file, is_training=True):
|
||||
with open(input_file, "r", encoding="utf-8") as f:
|
||||
with open(input_file, encoding="utf-8") as f:
|
||||
lines = list(csv.reader(f))
|
||||
|
||||
if is_training and lines[0][-1] != "label":
|
||||
@ -179,15 +178,15 @@ def convert_examples_to_features(examples, tokenizer, max_seq_length, is_trainin
|
||||
label = example.label
|
||||
if example_index < 5:
|
||||
logger.info("*** Example ***")
|
||||
logger.info("swag_id: {}".format(example.swag_id))
|
||||
logger.info(f"swag_id: {example.swag_id}")
|
||||
for choice_idx, (tokens, input_ids, input_mask, segment_ids) in enumerate(choices_features):
|
||||
logger.info("choice: {}".format(choice_idx))
|
||||
logger.info(f"choice: {choice_idx}")
|
||||
logger.info("tokens: {}".format(" ".join(tokens)))
|
||||
logger.info("input_ids: {}".format(" ".join(map(str, input_ids))))
|
||||
logger.info("input_mask: {}".format(" ".join(map(str, input_mask))))
|
||||
logger.info("segment_ids: {}".format(" ".join(map(str, segment_ids))))
|
||||
if is_training:
|
||||
logger.info("label: {}".format(label))
|
||||
logger.info(f"label: {label}")
|
||||
|
||||
features.append(InputFeatures(example_id=example.swag_id, choices_features=choices_features, label=label))
|
||||
|
||||
@ -382,14 +381,14 @@ def train(args, train_dataset, model, tokenizer):
|
||||
): # Only evaluate when single GPU otherwise metrics may not average well
|
||||
results = evaluate(args, model, tokenizer)
|
||||
for key, value in results.items():
|
||||
tb_writer.add_scalar("eval_{}".format(key), value, global_step)
|
||||
tb_writer.add_scalar(f"eval_{key}", value, global_step)
|
||||
tb_writer.add_scalar("lr", scheduler.get_lr()[0], global_step)
|
||||
tb_writer.add_scalar("loss", (tr_loss - logging_loss) / args.logging_steps, global_step)
|
||||
logging_loss = tr_loss
|
||||
|
||||
if args.local_rank in [-1, 0] and args.save_steps > 0 and global_step % args.save_steps == 0:
|
||||
# Save model checkpoint
|
||||
output_dir = os.path.join(args.output_dir, "checkpoint-{}".format(global_step))
|
||||
output_dir = os.path.join(args.output_dir, f"checkpoint-{global_step}")
|
||||
model_to_save = (
|
||||
model.module if hasattr(model, "module") else model
|
||||
) # Take care of distributed/parallel training
|
||||
@ -423,7 +422,7 @@ def evaluate(args, model, tokenizer, prefix=""):
|
||||
eval_dataloader = DataLoader(dataset, sampler=eval_sampler, batch_size=args.eval_batch_size)
|
||||
|
||||
# Eval!
|
||||
logger.info("***** Running evaluation {} *****".format(prefix))
|
||||
logger.info(f"***** Running evaluation {prefix} *****")
|
||||
logger.info(" Num examples = %d", len(dataset))
|
||||
logger.info(" Batch size = %d", args.eval_batch_size)
|
||||
|
||||
@ -466,7 +465,7 @@ def evaluate(args, model, tokenizer, prefix=""):
|
||||
logger.info("***** Eval results *****")
|
||||
for key in sorted(result.keys()):
|
||||
logger.info("%s = %s", key, str(result[key]))
|
||||
writer.write("%s = %s\n" % (key, str(result[key])))
|
||||
writer.write("{} = {}\n".format(key, str(result[key])))
|
||||
|
||||
return result
|
||||
|
||||
@ -710,10 +709,10 @@ def main():
|
||||
# Evaluate
|
||||
result = evaluate(args, model, tokenizer, prefix=global_step)
|
||||
|
||||
result = {k + ("_{}".format(global_step) if global_step else ""): v for k, v in result.items()}
|
||||
result = {k + (f"_{global_step}" if global_step else ""): v for k, v in result.items()}
|
||||
results.update(result)
|
||||
|
||||
logger.info("Results: {}".format(results))
|
||||
logger.info(f"Results: {results}")
|
||||
|
||||
return results
|
||||
|
||||
|
@ -1,5 +1,4 @@
|
||||
#!/usr/bin/env python
|
||||
# coding=utf-8
|
||||
# Copyright 2018 Google AI, Google Brain and Carnegie Mellon University Authors and the HuggingFace Inc. team.
|
||||
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
|
||||
#
|
||||
@ -66,7 +65,7 @@ def main():
|
||||
ptvsd.wait_for_attach()
|
||||
|
||||
device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
|
||||
logger.info("device: {}".format(device))
|
||||
logger.info(f"device: {device}")
|
||||
|
||||
# Load a pre-processed dataset
|
||||
# You can also build the corpus yourself using TransfoXLCorpus methods
|
||||
@ -111,7 +110,7 @@ def main():
|
||||
total_loss += seq_len * loss.item()
|
||||
total_len += seq_len
|
||||
total_time = time.time() - start_time
|
||||
logger.info("Time : {:.2f}s, {:.2f}ms/segment".format(total_time, 1000 * total_time / (idx + 1)))
|
||||
logger.info(f"Time : {total_time:.2f}s, {1000 * total_time / (idx + 1):.2f}ms/segment")
|
||||
return total_loss / total_len
|
||||
|
||||
# Run on test data.
|
||||
|
@ -1,4 +1,3 @@
|
||||
# coding=utf-8
|
||||
# Copyright 2020 Huggingface
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
@ -13,7 +12,6 @@
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import io
|
||||
import json
|
||||
import unittest
|
||||
|
||||
@ -25,7 +23,7 @@ from utils import calculate_bleu
|
||||
|
||||
|
||||
filename = get_tests_dir() + "/test_data/fsmt/fsmt_val_data.json"
|
||||
with io.open(filename, "r", encoding="utf-8") as f:
|
||||
with open(filename, encoding="utf-8") as f:
|
||||
bleu_data = json.load(f)
|
||||
|
||||
|
||||
|
@ -19,7 +19,6 @@ import time
|
||||
from json import JSONDecodeError
|
||||
from logging import getLogger
|
||||
from pathlib import Path
|
||||
from typing import Dict, List
|
||||
|
||||
import torch
|
||||
from torch.utils.data import DataLoader
|
||||
@ -55,10 +54,10 @@ def eval_data_dir(
|
||||
task="summarization",
|
||||
local_rank=None,
|
||||
num_return_sequences=1,
|
||||
dataset_kwargs: Dict = None,
|
||||
dataset_kwargs: dict = None,
|
||||
prefix="",
|
||||
**generate_kwargs,
|
||||
) -> Dict:
|
||||
) -> dict:
|
||||
"""Run evaluation on part of the data for one gpu and save to {save_dir}/rank_{rank}_output.json"""
|
||||
model_name = str(model_name)
|
||||
assert local_rank is not None
|
||||
@ -211,7 +210,7 @@ def run_generate():
|
||||
calc_bleu = "translation" in args.task
|
||||
score_fn = calculate_bleu if calc_bleu else calculate_rouge
|
||||
metric_name = "bleu" if calc_bleu else "rouge"
|
||||
metrics: Dict = score_fn(preds, labels)
|
||||
metrics: dict = score_fn(preds, labels)
|
||||
metrics["n_obs"] = len(preds)
|
||||
runtime = time.time() - start_time
|
||||
metrics["seconds_per_sample"] = round(runtime / metrics["n_obs"], 4)
|
||||
@ -227,7 +226,7 @@ def run_generate():
|
||||
shutil.rmtree(json_save_dir)
|
||||
|
||||
|
||||
def combine_partial_results(partial_results) -> List:
|
||||
def combine_partial_results(partial_results) -> list:
|
||||
"""Concatenate partial results into one file, then sort it by id."""
|
||||
records = []
|
||||
for partial_result in partial_results:
|
||||
@ -237,7 +236,7 @@ def combine_partial_results(partial_results) -> List:
|
||||
return preds
|
||||
|
||||
|
||||
def gather_results_from_each_node(num_replicas, save_dir, timeout) -> List[Dict[str, List]]:
|
||||
def gather_results_from_each_node(num_replicas, save_dir, timeout) -> list[dict[str, list]]:
|
||||
# WAIT FOR lots of .json files
|
||||
start_wait = time.time()
|
||||
logger.info("waiting for all nodes to finish")
|
||||
|
@ -20,7 +20,6 @@ import time
|
||||
import warnings
|
||||
from logging import getLogger
|
||||
from pathlib import Path
|
||||
from typing import Dict, List
|
||||
|
||||
import torch
|
||||
from tqdm import tqdm
|
||||
@ -36,7 +35,7 @@ DEFAULT_DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
||||
|
||||
|
||||
def generate_summaries_or_translations(
|
||||
examples: List[str],
|
||||
examples: list[str],
|
||||
out_file: str,
|
||||
model_name: str,
|
||||
batch_size: int = 8,
|
||||
@ -45,7 +44,7 @@ def generate_summaries_or_translations(
|
||||
task="summarization",
|
||||
prefix=None,
|
||||
**generate_kwargs,
|
||||
) -> Dict:
|
||||
) -> dict:
|
||||
"""Save model.generate results to <out_file>, and return how long it took."""
|
||||
fout = Path(out_file).open("w", encoding="utf-8")
|
||||
model_name = str(model_name)
|
||||
|
@ -34,7 +34,7 @@ task_score_names = {
|
||||
|
||||
def parse_search_arg(search):
|
||||
groups = search.split()
|
||||
entries = dict((g.split("=") for g in groups))
|
||||
entries = dict(g.split("=") for g in groups)
|
||||
entry_names = list(entries.keys())
|
||||
sets = [[f"--{k} {v}" for v in vs.split(":")] for k, vs in entries.items()]
|
||||
matrix = [list(x) for x in itertools.product(*sets)]
|
||||
@ -105,7 +105,7 @@ def run_search():
|
||||
col_widths = {col: len(str(col)) for col in col_names}
|
||||
results = []
|
||||
for r in matrix:
|
||||
hparams = dict((x.replace("--", "").split() for x in r))
|
||||
hparams = dict(x.replace("--", "").split() for x in r)
|
||||
args_exp = " ".join(r).split()
|
||||
args_exp.extend(["--bs", str(args.bs)]) # in case we need to reduce its size due to CUDA OOM
|
||||
sys.argv = args_normal + args_exp
|
||||
|
@ -12,7 +12,7 @@
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from typing import Any, Dict, List, Optional, Tuple, Union
|
||||
from typing import Any, Optional, Union
|
||||
|
||||
import torch
|
||||
from torch import nn
|
||||
@ -172,10 +172,10 @@ class Seq2SeqTrainer(Trainer):
|
||||
def prediction_step(
|
||||
self,
|
||||
model: nn.Module,
|
||||
inputs: Dict[str, Union[torch.Tensor, Any]],
|
||||
inputs: dict[str, Union[torch.Tensor, Any]],
|
||||
prediction_loss_only: bool,
|
||||
ignore_keys: Optional[List[str]] = None,
|
||||
) -> Tuple[Optional[float], Optional[torch.Tensor], Optional[torch.Tensor]]:
|
||||
ignore_keys: Optional[list[str]] = None,
|
||||
) -> tuple[Optional[float], Optional[torch.Tensor], Optional[torch.Tensor]]:
|
||||
"""
|
||||
Perform an evaluation step on :obj:`model` using obj:`inputs`.
|
||||
|
||||
|
@ -1,6 +1,5 @@
|
||||
#!/usr/bin/env python
|
||||
|
||||
import io
|
||||
import json
|
||||
import subprocess
|
||||
|
||||
@ -29,5 +28,5 @@ def get_all_data(pairs, n_objs):
|
||||
|
||||
text = get_all_data(pairs, n_objs)
|
||||
filename = "./fsmt_val_data.json"
|
||||
with io.open(filename, "w", encoding="utf-8") as f:
|
||||
with open(filename, "w", encoding="utf-8") as f:
|
||||
bleu_data = json.dump(text, f, indent=2, ensure_ascii=False)
|
||||
|
@ -19,9 +19,10 @@ import math
|
||||
import os
|
||||
import pickle
|
||||
import socket
|
||||
from collections.abc import Iterable
|
||||
from logging import getLogger
|
||||
from pathlib import Path
|
||||
from typing import Callable, Dict, Iterable, List, Tuple, Union
|
||||
from typing import Callable, Union
|
||||
|
||||
import git
|
||||
import numpy as np
|
||||
@ -67,7 +68,7 @@ def label_smoothed_nll_loss(lprobs, target, epsilon, ignore_index=-100):
|
||||
return loss, nll_loss
|
||||
|
||||
|
||||
def lmap(f: Callable, x: Iterable) -> List:
|
||||
def lmap(f: Callable, x: Iterable) -> list:
|
||||
"""list(map(f, x))"""
|
||||
return list(map(f, x))
|
||||
|
||||
@ -77,11 +78,11 @@ def calculate_bleu(output_lns, refs_lns, **kwargs) -> dict:
|
||||
return {"bleu": round(corpus_bleu(output_lns, [refs_lns], **kwargs).score, 4)}
|
||||
|
||||
|
||||
def build_compute_metrics_fn(task_name: str, tokenizer: PreTrainedTokenizer) -> Callable[[EvalPrediction], Dict]:
|
||||
def build_compute_metrics_fn(task_name: str, tokenizer: PreTrainedTokenizer) -> Callable[[EvalPrediction], dict]:
|
||||
def non_pad_len(tokens: np.ndarray) -> int:
|
||||
return np.count_nonzero(tokens != tokenizer.pad_token_id)
|
||||
|
||||
def decode_pred(pred: EvalPrediction) -> Tuple[List[str], List[str]]:
|
||||
def decode_pred(pred: EvalPrediction) -> tuple[list[str], list[str]]:
|
||||
pred_ids = pred.predictions
|
||||
label_ids = pred.label_ids
|
||||
pred_str = tokenizer.batch_decode(pred_ids, skip_special_tokens=True)
|
||||
@ -91,16 +92,16 @@ def build_compute_metrics_fn(task_name: str, tokenizer: PreTrainedTokenizer) ->
|
||||
label_str = lmap(str.strip, label_str)
|
||||
return pred_str, label_str
|
||||
|
||||
def summarization_metrics(pred: EvalPrediction) -> Dict:
|
||||
def summarization_metrics(pred: EvalPrediction) -> dict:
|
||||
pred_str, label_str = decode_pred(pred)
|
||||
rouge: Dict = calculate_rouge(pred_str, label_str)
|
||||
rouge: dict = calculate_rouge(pred_str, label_str)
|
||||
summ_len = np.round(np.mean(lmap(non_pad_len, pred.predictions)), 1)
|
||||
rouge.update({"gen_len": summ_len})
|
||||
return rouge
|
||||
|
||||
def translation_metrics(pred: EvalPrediction) -> Dict:
|
||||
def translation_metrics(pred: EvalPrediction) -> dict:
|
||||
pred_str, label_str = decode_pred(pred)
|
||||
bleu: Dict = calculate_bleu(pred_str, label_str)
|
||||
bleu: dict = calculate_bleu(pred_str, label_str)
|
||||
gen_len = np.round(np.mean(lmap(non_pad_len, pred.predictions)), 1)
|
||||
bleu.update({"gen_len": gen_len})
|
||||
return bleu
|
||||
@ -183,7 +184,7 @@ class AbstractSeq2SeqDataset(Dataset):
|
||||
return min(self.src_lens[i], self.max_target_length)
|
||||
|
||||
# call fairseq cython function
|
||||
batch_sampler: List[List[int]] = batch_by_size(
|
||||
batch_sampler: list[list[int]] = batch_by_size(
|
||||
sorted_indices,
|
||||
num_tokens_fn=num_tokens_in_example,
|
||||
max_tokens=max_tokens_per_batch,
|
||||
@ -207,7 +208,7 @@ class AbstractSeq2SeqDataset(Dataset):
|
||||
|
||||
|
||||
class LegacySeq2SeqDataset(AbstractSeq2SeqDataset):
|
||||
def __getitem__(self, index) -> Dict[str, torch.Tensor]:
|
||||
def __getitem__(self, index) -> dict[str, torch.Tensor]:
|
||||
"""Call tokenizer on src and tgt_lines"""
|
||||
index = index + 1 # linecache starts at 1
|
||||
source_line = self.prefix + linecache.getline(str(self.src_file), index).rstrip("\n")
|
||||
@ -237,7 +238,7 @@ class LegacySeq2SeqDataset(AbstractSeq2SeqDataset):
|
||||
**self.dataset_kwargs,
|
||||
)
|
||||
|
||||
def collate_fn(self, batch) -> Dict[str, torch.Tensor]:
|
||||
def collate_fn(self, batch) -> dict[str, torch.Tensor]:
|
||||
input_ids = torch.stack([x["input_ids"] for x in batch])
|
||||
masks = torch.stack([x["attention_mask"] for x in batch])
|
||||
target_ids = torch.stack([x["labels"] for x in batch])
|
||||
@ -255,7 +256,7 @@ class LegacySeq2SeqDataset(AbstractSeq2SeqDataset):
|
||||
class Seq2SeqDataset(AbstractSeq2SeqDataset):
|
||||
"""A dataset that calls prepare_seq2seq_batch."""
|
||||
|
||||
def __getitem__(self, index) -> Dict[str, str]:
|
||||
def __getitem__(self, index) -> dict[str, str]:
|
||||
index = index + 1 # linecache starts at 1
|
||||
source_line = self.prefix + linecache.getline(str(self.src_file), index).rstrip("\n")
|
||||
tgt_line = linecache.getline(str(self.tgt_file), index).rstrip("\n")
|
||||
@ -263,9 +264,9 @@ class Seq2SeqDataset(AbstractSeq2SeqDataset):
|
||||
assert tgt_line, f"empty tgt line for index {index}"
|
||||
return {"tgt_texts": tgt_line, "src_texts": source_line, "id": index - 1}
|
||||
|
||||
def collate_fn(self, batch) -> Dict[str, torch.Tensor]:
|
||||
def collate_fn(self, batch) -> dict[str, torch.Tensor]:
|
||||
"""Call prepare_seq2seq_batch."""
|
||||
batch_encoding: Dict[str, torch.Tensor] = self.tokenizer.prepare_seq2seq_batch(
|
||||
batch_encoding: dict[str, torch.Tensor] = self.tokenizer.prepare_seq2seq_batch(
|
||||
[x["src_texts"] for x in batch],
|
||||
tgt_texts=[x["tgt_texts"] for x in batch],
|
||||
max_length=self.max_source_length,
|
||||
@ -293,7 +294,7 @@ class Seq2SeqDataCollator:
|
||||
if data_args.tgt_lang is not None:
|
||||
self.dataset_kwargs["tgt_lang"] = data_args.tgt_lang
|
||||
|
||||
def __call__(self, batch) -> Dict[str, torch.Tensor]:
|
||||
def __call__(self, batch) -> dict[str, torch.Tensor]:
|
||||
if hasattr(self.tokenizer, "prepare_seq2seq_batch"):
|
||||
batch = self._encode(batch)
|
||||
input_ids, attention_mask, labels = (
|
||||
@ -329,7 +330,7 @@ class Seq2SeqDataCollator:
|
||||
shifted_input_ids[..., 0] = self.pad_token_id
|
||||
return shifted_input_ids
|
||||
|
||||
def _encode(self, batch) -> Dict[str, torch.Tensor]:
|
||||
def _encode(self, batch) -> dict[str, torch.Tensor]:
|
||||
batch_encoding = self.tokenizer.prepare_seq2seq_batch(
|
||||
[x["src_texts"] for x in batch],
|
||||
tgt_texts=[x["tgt_texts"] for x in batch],
|
||||
@ -355,7 +356,7 @@ class SortishSampler(Sampler):
|
||||
return iter(sortish_sampler_indices(self.data, self.bs, shuffle=self.shuffle))
|
||||
|
||||
|
||||
def sortish_sampler_indices(data: List, bs: int, shuffle=True) -> np.array:
|
||||
def sortish_sampler_indices(data: list, bs: int, shuffle=True) -> np.array:
|
||||
"Go through the text data by order of src length with a bit of randomness. From fastai repo."
|
||||
if not shuffle:
|
||||
return np.argsort(np.array(data) * -1)
|
||||
@ -455,7 +456,7 @@ def pickle_save(obj, path):
|
||||
return pickle.dump(obj, f)
|
||||
|
||||
|
||||
def flatten_list(summary_ids: List[List]):
|
||||
def flatten_list(summary_ids: list[list]):
|
||||
return list(itertools.chain.from_iterable(summary_ids))
|
||||
|
||||
|
||||
@ -506,14 +507,14 @@ def extract_rouge_mid_statistics(dct):
|
||||
|
||||
|
||||
def calculate_rouge(
|
||||
pred_lns: List[str],
|
||||
tgt_lns: List[str],
|
||||
pred_lns: list[str],
|
||||
tgt_lns: list[str],
|
||||
use_stemmer=True,
|
||||
rouge_keys=ROUGE_KEYS,
|
||||
return_precision_and_recall=False,
|
||||
bootstrap_aggregation=True,
|
||||
newline_sep=True,
|
||||
) -> Dict:
|
||||
) -> dict:
|
||||
"""Calculate rouge using rouge_scorer package.
|
||||
|
||||
Args:
|
||||
@ -590,19 +591,19 @@ def any_requires_grad(model: nn.Module) -> bool:
|
||||
|
||||
|
||||
def assert_all_frozen(model):
|
||||
model_grads: List[bool] = list(grad_status(model))
|
||||
model_grads: list[bool] = list(grad_status(model))
|
||||
n_require_grad = sum(lmap(int, model_grads))
|
||||
npars = len(model_grads)
|
||||
assert not any(model_grads), f"{n_require_grad / npars:.1%} of {npars} weights require grad"
|
||||
|
||||
|
||||
def assert_not_all_frozen(model):
|
||||
model_grads: List[bool] = list(grad_status(model))
|
||||
model_grads: list[bool] = list(grad_status(model))
|
||||
npars = len(model_grads)
|
||||
assert any(model_grads), f"none of {npars} weights require grad"
|
||||
|
||||
|
||||
def parse_numeric_n_bool_cl_kwargs(unparsed_args: List[str]) -> Dict[str, Union[int, float, bool]]:
|
||||
def parse_numeric_n_bool_cl_kwargs(unparsed_args: list[str]) -> dict[str, Union[int, float, bool]]:
|
||||
"""
|
||||
Parse an argv list of unspecified command line args to a dict.
|
||||
Assumes all values are either numeric or boolean in the form of true/false.
|
||||
|
@ -1,4 +1,3 @@
|
||||
# coding=utf-8
|
||||
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
|
||||
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
|
||||
#
|
||||
@ -20,7 +19,7 @@ import os
|
||||
import sys
|
||||
from dataclasses import dataclass, field
|
||||
from importlib import import_module
|
||||
from typing import Dict, List, Optional, Tuple
|
||||
from typing import Optional
|
||||
|
||||
import numpy as np
|
||||
from seqeval.metrics import accuracy_score, f1_score, precision_score, recall_score
|
||||
@ -159,7 +158,7 @@ def main():
|
||||
|
||||
# Prepare CONLL-2003 task
|
||||
labels = token_classification_task.get_labels(data_args.labels)
|
||||
label_map: Dict[int, str] = dict(enumerate(labels))
|
||||
label_map: dict[int, str] = dict(enumerate(labels))
|
||||
num_labels = len(labels)
|
||||
|
||||
# Load pretrained model and tokenizer
|
||||
@ -217,7 +216,7 @@ def main():
|
||||
else None
|
||||
)
|
||||
|
||||
def align_predictions(predictions: np.ndarray, label_ids: np.ndarray) -> Tuple[List[int], List[int]]:
|
||||
def align_predictions(predictions: np.ndarray, label_ids: np.ndarray) -> tuple[list[int], list[int]]:
|
||||
preds = np.argmax(predictions, axis=2)
|
||||
|
||||
batch_size, seq_len = preds.shape
|
||||
@ -233,7 +232,7 @@ def main():
|
||||
|
||||
return preds_list, out_label_list
|
||||
|
||||
def compute_metrics(p: EvalPrediction) -> Dict:
|
||||
def compute_metrics(p: EvalPrediction) -> dict:
|
||||
preds_list, out_label_list = align_predictions(p.predictions, p.label_ids)
|
||||
return {
|
||||
"accuracy_score": accuracy_score(out_label_list, preds_list),
|
||||
@ -279,7 +278,7 @@ def main():
|
||||
logger.info("***** Eval results *****")
|
||||
for key, value in result.items():
|
||||
logger.info(" %s = %s", key, value)
|
||||
writer.write("%s = %s\n" % (key, value))
|
||||
writer.write("{} = {}\n".format(key, value))
|
||||
|
||||
results.update(result)
|
||||
|
||||
@ -304,13 +303,13 @@ def main():
|
||||
with open(output_test_results_file, "w") as writer:
|
||||
for key, value in metrics.items():
|
||||
logger.info(" %s = %s", key, value)
|
||||
writer.write("%s = %s\n" % (key, value))
|
||||
writer.write("{} = {}\n".format(key, value))
|
||||
|
||||
# Save predictions
|
||||
output_test_predictions_file = os.path.join(training_args.output_dir, "test_predictions.txt")
|
||||
if trainer.is_world_process_zero():
|
||||
with open(output_test_predictions_file, "w") as writer:
|
||||
with open(os.path.join(data_args.data_dir, "test.txt"), "r") as f:
|
||||
with open(os.path.join(data_args.data_dir, "test.txt")) as f:
|
||||
token_classification_task.write_predictions_to_file(writer, f, preds_list)
|
||||
|
||||
return results
|
||||
|
@ -12,7 +12,7 @@ subword_len_counter = 0
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path)
|
||||
max_len -= tokenizer.num_special_tokens_to_add()
|
||||
|
||||
with open(dataset, "rt") as f_p:
|
||||
with open(dataset) as f_p:
|
||||
for line in f_p:
|
||||
line = line.rstrip()
|
||||
|
||||
|
@ -1,6 +1,6 @@
|
||||
import logging
|
||||
import os
|
||||
from typing import List, TextIO, Union
|
||||
from typing import TextIO, Union
|
||||
|
||||
from conllu import parse_incr
|
||||
from utils_ner import InputExample, Split, TokenClassificationTask
|
||||
@ -14,7 +14,7 @@ class NER(TokenClassificationTask):
|
||||
# in NER datasets, the last column is usually reserved for NER label
|
||||
self.label_idx = label_idx
|
||||
|
||||
def read_examples_from_file(self, data_dir, mode: Union[Split, str]) -> List[InputExample]:
|
||||
def read_examples_from_file(self, data_dir, mode: Union[Split, str]) -> list[InputExample]:
|
||||
if isinstance(mode, Split):
|
||||
mode = mode.value
|
||||
file_path = os.path.join(data_dir, f"{mode}.txt")
|
||||
@ -42,7 +42,7 @@ class NER(TokenClassificationTask):
|
||||
examples.append(InputExample(guid=f"{mode}-{guid_index}", words=words, labels=labels))
|
||||
return examples
|
||||
|
||||
def write_predictions_to_file(self, writer: TextIO, test_input_reader: TextIO, preds_list: List):
|
||||
def write_predictions_to_file(self, writer: TextIO, test_input_reader: TextIO, preds_list: list):
|
||||
example_id = 0
|
||||
for line in test_input_reader:
|
||||
if line.startswith("-DOCSTART-") or line == "" or line == "\n":
|
||||
@ -55,9 +55,9 @@ class NER(TokenClassificationTask):
|
||||
else:
|
||||
logger.warning("Maximum sequence length exceeded: No prediction for '%s'.", line.split()[0])
|
||||
|
||||
def get_labels(self, path: str) -> List[str]:
|
||||
def get_labels(self, path: str) -> list[str]:
|
||||
if path:
|
||||
with open(path, "r") as f:
|
||||
with open(path) as f:
|
||||
labels = f.read().splitlines()
|
||||
if "O" not in labels:
|
||||
labels = ["O"] + labels
|
||||
@ -71,9 +71,9 @@ class Chunk(NER):
|
||||
# in CONLL2003 dataset chunk column is second-to-last
|
||||
super().__init__(label_idx=-2)
|
||||
|
||||
def get_labels(self, path: str) -> List[str]:
|
||||
def get_labels(self, path: str) -> list[str]:
|
||||
if path:
|
||||
with open(path, "r") as f:
|
||||
with open(path) as f:
|
||||
labels = f.read().splitlines()
|
||||
if "O" not in labels:
|
||||
labels = ["O"] + labels
|
||||
@ -105,7 +105,7 @@ class Chunk(NER):
|
||||
|
||||
|
||||
class POS(TokenClassificationTask):
|
||||
def read_examples_from_file(self, data_dir, mode: Union[Split, str]) -> List[InputExample]:
|
||||
def read_examples_from_file(self, data_dir, mode: Union[Split, str]) -> list[InputExample]:
|
||||
if isinstance(mode, Split):
|
||||
mode = mode.value
|
||||
file_path = os.path.join(data_dir, f"{mode}.txt")
|
||||
@ -125,7 +125,7 @@ class POS(TokenClassificationTask):
|
||||
guid_index += 1
|
||||
return examples
|
||||
|
||||
def write_predictions_to_file(self, writer: TextIO, test_input_reader: TextIO, preds_list: List):
|
||||
def write_predictions_to_file(self, writer: TextIO, test_input_reader: TextIO, preds_list: list):
|
||||
example_id = 0
|
||||
for sentence in parse_incr(test_input_reader):
|
||||
s_p = preds_list[example_id]
|
||||
@ -136,9 +136,9 @@ class POS(TokenClassificationTask):
|
||||
writer.write(out)
|
||||
example_id += 1
|
||||
|
||||
def get_labels(self, path: str) -> List[str]:
|
||||
def get_labels(self, path: str) -> list[str]:
|
||||
if path:
|
||||
with open(path, "r") as f:
|
||||
with open(path) as f:
|
||||
return f.read().splitlines()
|
||||
else:
|
||||
return [
|
||||
|
@ -1,4 +1,3 @@
|
||||
# coding=utf-8
|
||||
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
|
||||
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
|
||||
#
|
||||
@ -19,7 +18,7 @@ import logging
|
||||
import os
|
||||
from dataclasses import dataclass
|
||||
from enum import Enum
|
||||
from typing import List, Optional, Union
|
||||
from typing import Optional, Union
|
||||
|
||||
from filelock import FileLock
|
||||
|
||||
@ -42,8 +41,8 @@ class InputExample:
|
||||
"""
|
||||
|
||||
guid: str
|
||||
words: List[str]
|
||||
labels: Optional[List[str]]
|
||||
words: list[str]
|
||||
labels: Optional[list[str]]
|
||||
|
||||
|
||||
@dataclass
|
||||
@ -53,10 +52,10 @@ class InputFeatures:
|
||||
Property names are the same names as the corresponding inputs to a model.
|
||||
"""
|
||||
|
||||
input_ids: List[int]
|
||||
attention_mask: List[int]
|
||||
token_type_ids: Optional[List[int]] = None
|
||||
label_ids: Optional[List[int]] = None
|
||||
input_ids: list[int]
|
||||
attention_mask: list[int]
|
||||
token_type_ids: Optional[list[int]] = None
|
||||
label_ids: Optional[list[int]] = None
|
||||
|
||||
|
||||
class Split(Enum):
|
||||
@ -67,17 +66,17 @@ class Split(Enum):
|
||||
|
||||
class TokenClassificationTask:
|
||||
@staticmethod
|
||||
def read_examples_from_file(data_dir, mode: Union[Split, str]) -> List[InputExample]:
|
||||
def read_examples_from_file(data_dir, mode: Union[Split, str]) -> list[InputExample]:
|
||||
raise NotImplementedError
|
||||
|
||||
@staticmethod
|
||||
def get_labels(path: str) -> List[str]:
|
||||
def get_labels(path: str) -> list[str]:
|
||||
raise NotImplementedError
|
||||
|
||||
@staticmethod
|
||||
def convert_examples_to_features(
|
||||
examples: List[InputExample],
|
||||
label_list: List[str],
|
||||
examples: list[InputExample],
|
||||
label_list: list[str],
|
||||
max_seq_length: int,
|
||||
tokenizer: PreTrainedTokenizer,
|
||||
cls_token_at_end=False,
|
||||
@ -91,7 +90,7 @@ class TokenClassificationTask:
|
||||
pad_token_label_id=-100,
|
||||
sequence_a_segment_id=0,
|
||||
mask_padding_with_zero=True,
|
||||
) -> List[InputFeatures]:
|
||||
) -> list[InputFeatures]:
|
||||
"""Loads a data file into a list of `InputFeatures`
|
||||
`cls_token_at_end` define the location of the CLS token:
|
||||
- False (Default, BERT/XLM pattern): [CLS] + A + [SEP] + B + [SEP]
|
||||
@ -214,7 +213,7 @@ if is_torch_available():
|
||||
soon.
|
||||
"""
|
||||
|
||||
features: List[InputFeatures]
|
||||
features: list[InputFeatures]
|
||||
pad_token_label_id: int = nn.CrossEntropyLoss().ignore_index
|
||||
# Use cross entropy ignore_index as padding label id so that only
|
||||
# real label ids contribute to the loss later.
|
||||
@ -224,7 +223,7 @@ if is_torch_available():
|
||||
token_classification_task: TokenClassificationTask,
|
||||
data_dir: str,
|
||||
tokenizer: PreTrainedTokenizer,
|
||||
labels: List[str],
|
||||
labels: list[str],
|
||||
model_type: str,
|
||||
max_seq_length: Optional[int] = None,
|
||||
overwrite_cache=False,
|
||||
@ -233,7 +232,7 @@ if is_torch_available():
|
||||
# Load data features from cache or dataset file
|
||||
cached_features_file = os.path.join(
|
||||
data_dir,
|
||||
"cached_{}_{}_{}".format(mode.value, tokenizer.__class__.__name__, str(max_seq_length)),
|
||||
f"cached_{mode.value}_{tokenizer.__class__.__name__}_{str(max_seq_length)}",
|
||||
)
|
||||
|
||||
# Make sure only the first process in distributed training processes the dataset,
|
||||
@ -283,7 +282,7 @@ if is_tf_available():
|
||||
soon.
|
||||
"""
|
||||
|
||||
features: List[InputFeatures]
|
||||
features: list[InputFeatures]
|
||||
pad_token_label_id: int = -100
|
||||
# Use cross entropy ignore_index as padding label id so that only
|
||||
# real label ids contribute to the loss later.
|
||||
@ -293,7 +292,7 @@ if is_tf_available():
|
||||
token_classification_task: TokenClassificationTask,
|
||||
data_dir: str,
|
||||
tokenizer: PreTrainedTokenizer,
|
||||
labels: List[str],
|
||||
labels: list[str],
|
||||
model_type: str,
|
||||
max_seq_length: Optional[int] = None,
|
||||
overwrite_cache=False,
|
||||
|
@ -4,7 +4,7 @@
|
||||
# the file from the modular. If any change should be done, please apply the change to the
|
||||
# modular_new_imgproc_model.py file directly. One of our CI enforces this.
|
||||
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
|
||||
from typing import Dict, List, Optional, Union
|
||||
from typing import Optional, Union
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
@ -74,13 +74,13 @@ class ImgprocModelImageProcessor(BaseImageProcessor):
|
||||
def __init__(
|
||||
self,
|
||||
do_resize: bool = True,
|
||||
size: Dict[str, int] = None,
|
||||
size: dict[str, int] = None,
|
||||
resample: PILImageResampling = PILImageResampling.BICUBIC,
|
||||
do_rescale: bool = True,
|
||||
rescale_factor: Union[int, float] = 1 / 255,
|
||||
do_normalize: bool = True,
|
||||
image_mean: Optional[Union[float, List[float]]] = None,
|
||||
image_std: Optional[Union[float, List[float]]] = None,
|
||||
image_mean: Optional[Union[float, list[float]]] = None,
|
||||
image_std: Optional[Union[float, list[float]]] = None,
|
||||
do_convert_rgb: bool = True,
|
||||
**kwargs,
|
||||
) -> None:
|
||||
@ -101,7 +101,7 @@ class ImgprocModelImageProcessor(BaseImageProcessor):
|
||||
def resize(
|
||||
self,
|
||||
image: np.ndarray,
|
||||
size: Dict[str, int],
|
||||
size: dict[str, int],
|
||||
resample: PILImageResampling = PILImageResampling.BICUBIC,
|
||||
data_format: Optional[Union[str, ChannelDimension]] = None,
|
||||
input_data_format: Optional[Union[str, ChannelDimension]] = None,
|
||||
@ -151,13 +151,13 @@ class ImgprocModelImageProcessor(BaseImageProcessor):
|
||||
self,
|
||||
images: ImageInput,
|
||||
do_resize: Optional[bool] = None,
|
||||
size: Optional[Dict[str, int]] = None,
|
||||
size: Optional[dict[str, int]] = None,
|
||||
resample: PILImageResampling = None,
|
||||
do_rescale: Optional[bool] = None,
|
||||
rescale_factor: Optional[float] = None,
|
||||
do_normalize: Optional[bool] = None,
|
||||
image_mean: Optional[Union[float, List[float]]] = None,
|
||||
image_std: Optional[Union[float, List[float]]] = None,
|
||||
image_mean: Optional[Union[float, list[float]]] = None,
|
||||
image_std: Optional[Union[float, list[float]]] = None,
|
||||
return_tensors: Optional[Union[str, TensorType]] = None,
|
||||
do_convert_rgb: bool = None,
|
||||
data_format: ChannelDimension = ChannelDimension.FIRST,
|
||||
|
@ -5,7 +5,7 @@
|
||||
# modular_add_function.py file directly. One of our CI enforces this.
|
||||
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
|
||||
# Note that zamba does not have the `apply_rotary_pos_emb` function!
|
||||
from typing import Optional, Tuple
|
||||
from typing import Optional
|
||||
|
||||
import torch
|
||||
from torch import nn
|
||||
@ -62,5 +62,5 @@ class TestAttention(nn.Module):
|
||||
def __init__(self):
|
||||
pass
|
||||
|
||||
def forward(self) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
||||
def forward(self) -> tuple[torch.Tensor, Optional[torch.Tensor], Optional[tuple[torch.Tensor]]]:
|
||||
_ = apply_rotary_pos_emb(1, 1, 1, 1)
|
||||
|
@ -5,7 +5,7 @@
|
||||
# modular_dummy.py file directly. One of our CI enforces this.
|
||||
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
|
||||
from functools import partial
|
||||
from typing import Callable, Optional, Tuple, Union
|
||||
from typing import Callable, Optional, Union
|
||||
|
||||
import torch
|
||||
from torch import nn
|
||||
@ -223,12 +223,12 @@ class DummyAttention(nn.Module):
|
||||
def forward(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
position_embeddings: Tuple[torch.Tensor, torch.Tensor],
|
||||
position_embeddings: tuple[torch.Tensor, torch.Tensor],
|
||||
attention_mask: Optional[torch.Tensor],
|
||||
past_key_value: Optional[Cache] = None,
|
||||
cache_position: Optional[torch.LongTensor] = None,
|
||||
**kwargs: Unpack[FlashAttentionKwargs],
|
||||
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
||||
) -> tuple[torch.Tensor, Optional[torch.Tensor], Optional[tuple[torch.Tensor]]]:
|
||||
input_shape = hidden_states.shape[:-1]
|
||||
hidden_shape = (*input_shape, -1, self.head_dim)
|
||||
|
||||
@ -290,9 +290,9 @@ class DummyDecoderLayer(nn.Module):
|
||||
output_attentions: Optional[bool] = False,
|
||||
use_cache: Optional[bool] = False,
|
||||
cache_position: Optional[torch.LongTensor] = None,
|
||||
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC
|
||||
position_embeddings: Optional[tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC
|
||||
**kwargs: Unpack[FlashAttentionKwargs],
|
||||
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
||||
) -> tuple[torch.FloatTensor, Optional[tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
||||
residual = hidden_states
|
||||
|
||||
hidden_states = self.input_layernorm(hidden_states)
|
||||
@ -494,7 +494,7 @@ class DummyModel(DummyPreTrainedModel):
|
||||
return_dict: Optional[bool] = None,
|
||||
cache_position: Optional[torch.LongTensor] = None,
|
||||
**flash_attn_kwargs: Unpack[FlashAttentionKwargs],
|
||||
) -> Union[Tuple, BaseModelOutputWithPast]:
|
||||
) -> Union[tuple, BaseModelOutputWithPast]:
|
||||
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
||||
output_hidden_states = (
|
||||
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
||||
|
@ -6,7 +6,7 @@
|
||||
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
|
||||
import math
|
||||
import os
|
||||
from typing import List, Optional, Tuple, Union
|
||||
from typing import Optional, Union
|
||||
|
||||
import torch
|
||||
from packaging import version
|
||||
@ -136,9 +136,9 @@ class DummyBertSelfAttention(nn.Module):
|
||||
head_mask: Optional[torch.FloatTensor] = None,
|
||||
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
||||
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
||||
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
||||
past_key_value: Optional[tuple[tuple[torch.FloatTensor]]] = None,
|
||||
output_attentions: Optional[bool] = False,
|
||||
) -> Tuple[torch.Tensor]:
|
||||
) -> tuple[torch.Tensor]:
|
||||
mixed_query_layer = self.query(hidden_states)
|
||||
|
||||
# If this is instantiated as a cross-attention module, the keys
|
||||
@ -245,9 +245,9 @@ class DummyBertSdpaSelfAttention(DummyBertSelfAttention):
|
||||
head_mask: Optional[torch.FloatTensor] = None,
|
||||
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
||||
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
||||
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
||||
past_key_value: Optional[tuple[tuple[torch.FloatTensor]]] = None,
|
||||
output_attentions: Optional[bool] = False,
|
||||
) -> Tuple[torch.Tensor]:
|
||||
) -> tuple[torch.Tensor]:
|
||||
if self.position_embedding_type != "absolute" or output_attentions or head_mask is not None:
|
||||
# TODO: Improve this warning with e.g. `model.config._attn_implementation = "manual"` once implemented.
|
||||
logger.warning_once(
|
||||
@ -386,9 +386,9 @@ class DummyBertAttention(nn.Module):
|
||||
head_mask: Optional[torch.FloatTensor] = None,
|
||||
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
||||
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
||||
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
||||
past_key_value: Optional[tuple[tuple[torch.FloatTensor]]] = None,
|
||||
output_attentions: Optional[bool] = False,
|
||||
) -> Tuple[torch.Tensor]:
|
||||
) -> tuple[torch.Tensor]:
|
||||
self_outputs = self.self(
|
||||
hidden_states,
|
||||
attention_mask,
|
||||
@ -454,9 +454,9 @@ class DummyBertLayer(nn.Module):
|
||||
head_mask: Optional[torch.FloatTensor] = None,
|
||||
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
||||
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
||||
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
||||
past_key_value: Optional[tuple[tuple[torch.FloatTensor]]] = None,
|
||||
output_attentions: Optional[bool] = False,
|
||||
) -> Tuple[torch.Tensor]:
|
||||
) -> tuple[torch.Tensor]:
|
||||
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2
|
||||
self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
|
||||
self_attention_outputs = self.attention(
|
||||
@ -532,12 +532,12 @@ class DummyBertEncoder(nn.Module):
|
||||
head_mask: Optional[torch.FloatTensor] = None,
|
||||
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
||||
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
||||
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
||||
past_key_values: Optional[tuple[tuple[torch.FloatTensor]]] = None,
|
||||
use_cache: Optional[bool] = None,
|
||||
output_attentions: Optional[bool] = False,
|
||||
output_hidden_states: Optional[bool] = False,
|
||||
return_dict: Optional[bool] = True,
|
||||
) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPastAndCrossAttentions]:
|
||||
) -> Union[tuple[torch.Tensor], BaseModelOutputWithPastAndCrossAttentions]:
|
||||
all_hidden_states = () if output_hidden_states else None
|
||||
all_self_attentions = () if output_attentions else None
|
||||
all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None
|
||||
@ -858,12 +858,12 @@ class DummyBertModel(DummyBertPreTrainedModel):
|
||||
inputs_embeds: Optional[torch.Tensor] = None,
|
||||
encoder_hidden_states: Optional[torch.Tensor] = None,
|
||||
encoder_attention_mask: Optional[torch.Tensor] = None,
|
||||
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
||||
past_key_values: Optional[list[torch.FloatTensor]] = None,
|
||||
use_cache: Optional[bool] = None,
|
||||
output_attentions: Optional[bool] = None,
|
||||
output_hidden_states: Optional[bool] = None,
|
||||
return_dict: Optional[bool] = None,
|
||||
) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPoolingAndCrossAttentions]:
|
||||
) -> Union[tuple[torch.Tensor], BaseModelOutputWithPoolingAndCrossAttentions]:
|
||||
r"""
|
||||
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
||||
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
|
||||
|
@ -4,7 +4,7 @@
|
||||
# the file from the modular. If any change should be done, please apply the change to the
|
||||
# modular_from_uppercase_model.py file directly. One of our CI enforces this.
|
||||
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
|
||||
from typing import Optional, Tuple
|
||||
from typing import Optional
|
||||
|
||||
import torch
|
||||
from torch import nn
|
||||
@ -53,7 +53,7 @@ class FromUppercaseModelAttention(nn.Module):
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
causal_attention_mask: Optional[torch.Tensor] = None,
|
||||
output_attentions: Optional[bool] = False,
|
||||
) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
|
||||
) -> tuple[torch.Tensor, Optional[torch.Tensor]]:
|
||||
"""Input shape: Batch x Time x Channel"""
|
||||
|
||||
bsz, tgt_len, embed_dim = hidden_states.size()
|
||||
@ -148,7 +148,7 @@ class FromUppercaseModelFlashAttention2(FromUppercaseModelAttention):
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
causal_attention_mask: Optional[torch.Tensor] = None,
|
||||
output_attentions: Optional[bool] = False,
|
||||
) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
|
||||
) -> tuple[torch.Tensor, Optional[torch.Tensor]]:
|
||||
output_attentions = False
|
||||
|
||||
batch_size, q_len, _ = hidden_states.size()
|
||||
@ -226,7 +226,7 @@ class FromUppercaseModelSdpaAttention(FromUppercaseModelAttention):
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
causal_attention_mask: Optional[torch.Tensor] = None,
|
||||
output_attentions: Optional[bool] = False,
|
||||
) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
|
||||
) -> tuple[torch.Tensor, Optional[torch.Tensor]]:
|
||||
if output_attentions:
|
||||
# TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented.
|
||||
logger.warning_once(
|
||||
@ -322,7 +322,7 @@ class FromUppercaseModelEncoderLayer(nn.Module):
|
||||
attention_mask: torch.Tensor,
|
||||
causal_attention_mask: torch.Tensor,
|
||||
output_attentions: Optional[bool] = False,
|
||||
) -> Tuple[torch.FloatTensor]:
|
||||
) -> tuple[torch.FloatTensor]:
|
||||
"""
|
||||
Args:
|
||||
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
||||
|
@ -5,7 +5,7 @@
|
||||
# modular_multimodal1.py file directly. One of our CI enforces this.
|
||||
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
|
||||
from functools import partial
|
||||
from typing import Callable, Optional, Tuple, Union
|
||||
from typing import Callable, Optional, Union
|
||||
|
||||
import torch
|
||||
from torch import nn
|
||||
@ -223,12 +223,12 @@ class Multimodal1TextAttention(nn.Module):
|
||||
def forward(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
position_embeddings: Tuple[torch.Tensor, torch.Tensor],
|
||||
position_embeddings: tuple[torch.Tensor, torch.Tensor],
|
||||
attention_mask: Optional[torch.Tensor],
|
||||
past_key_value: Optional[Cache] = None,
|
||||
cache_position: Optional[torch.LongTensor] = None,
|
||||
**kwargs: Unpack[FlashAttentionKwargs],
|
||||
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
||||
) -> tuple[torch.Tensor, Optional[torch.Tensor], Optional[tuple[torch.Tensor]]]:
|
||||
input_shape = hidden_states.shape[:-1]
|
||||
hidden_shape = (*input_shape, -1, self.head_dim)
|
||||
|
||||
@ -290,9 +290,9 @@ class Multimodal1TextDecoderLayer(nn.Module):
|
||||
output_attentions: Optional[bool] = False,
|
||||
use_cache: Optional[bool] = False,
|
||||
cache_position: Optional[torch.LongTensor] = None,
|
||||
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC
|
||||
position_embeddings: Optional[tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC
|
||||
**kwargs: Unpack[FlashAttentionKwargs],
|
||||
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
||||
) -> tuple[torch.FloatTensor, Optional[tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
||||
residual = hidden_states
|
||||
|
||||
hidden_states = self.input_layernorm(hidden_states)
|
||||
@ -494,7 +494,7 @@ class Multimodal1TextModel(Multimodal1TextPreTrainedModel):
|
||||
return_dict: Optional[bool] = None,
|
||||
cache_position: Optional[torch.LongTensor] = None,
|
||||
**flash_attn_kwargs: Unpack[FlashAttentionKwargs],
|
||||
) -> Union[Tuple, BaseModelOutputWithPast]:
|
||||
) -> Union[tuple, BaseModelOutputWithPast]:
|
||||
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
||||
output_hidden_states = (
|
||||
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
||||
|
@ -5,7 +5,7 @@
|
||||
# modular_multimodal2.py file directly. One of our CI enforces this.
|
||||
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
|
||||
|
||||
from typing import Optional, Tuple, Union
|
||||
from typing import Optional, Union
|
||||
|
||||
import torch
|
||||
from torch import nn
|
||||
@ -65,7 +65,7 @@ class Multimodal2VisionAttention(nn.Module):
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
causal_attention_mask: Optional[torch.Tensor] = None,
|
||||
output_attentions: Optional[bool] = False,
|
||||
) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
|
||||
) -> tuple[torch.Tensor, Optional[torch.Tensor]]:
|
||||
"""Input shape: Batch x Time x Channel"""
|
||||
|
||||
bsz, tgt_len, embed_dim = hidden_states.size()
|
||||
@ -152,7 +152,7 @@ class Multimodal2VisionSdpaAttention(Multimodal2VisionAttention):
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
causal_attention_mask: Optional[torch.Tensor] = None,
|
||||
output_attentions: Optional[bool] = False,
|
||||
) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
|
||||
) -> tuple[torch.Tensor, Optional[torch.Tensor]]:
|
||||
if output_attentions:
|
||||
# TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented.
|
||||
logger.warning_once(
|
||||
@ -233,7 +233,7 @@ class Multimodal2VisionFlashAttention2(Multimodal2VisionAttention):
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
causal_attention_mask: Optional[torch.Tensor] = None,
|
||||
output_attentions: Optional[bool] = False,
|
||||
) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
|
||||
) -> tuple[torch.Tensor, Optional[torch.Tensor]]:
|
||||
output_attentions = False
|
||||
|
||||
batch_size, q_len, _ = hidden_states.size()
|
||||
@ -334,7 +334,7 @@ class Multimodal2VisionEncoderLayer(nn.Module):
|
||||
attention_mask: torch.Tensor,
|
||||
causal_attention_mask: torch.Tensor,
|
||||
output_attentions: Optional[bool] = False,
|
||||
) -> Tuple[torch.FloatTensor]:
|
||||
) -> tuple[torch.FloatTensor]:
|
||||
"""
|
||||
Args:
|
||||
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
||||
@ -392,7 +392,7 @@ class Multimodal2VisionEncoder(nn.Module):
|
||||
output_attentions: Optional[bool] = None,
|
||||
output_hidden_states: Optional[bool] = None,
|
||||
return_dict: Optional[bool] = None,
|
||||
) -> Union[Tuple, BaseModelOutput]:
|
||||
) -> Union[tuple, BaseModelOutput]:
|
||||
r"""
|
||||
Args:
|
||||
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
|
||||
@ -587,7 +587,7 @@ class Multimodal2VisionTransformer(nn.Module):
|
||||
output_hidden_states: Optional[bool] = None,
|
||||
return_dict: Optional[bool] = None,
|
||||
interpolate_pos_encoding: Optional[bool] = False,
|
||||
) -> Union[Tuple, BaseModelOutputWithPooling]:
|
||||
) -> Union[tuple, BaseModelOutputWithPooling]:
|
||||
r"""
|
||||
Returns:
|
||||
|
||||
@ -671,7 +671,7 @@ class Multimodal2VisionModel(Multimodal2VisionPreTrainedModel):
|
||||
output_hidden_states: Optional[bool] = None,
|
||||
interpolate_pos_encoding: bool = False,
|
||||
return_dict: Optional[bool] = None,
|
||||
) -> Union[Tuple, BaseModelOutputWithPooling]:
|
||||
) -> Union[tuple, BaseModelOutputWithPooling]:
|
||||
r"""
|
||||
Returns:
|
||||
|
||||
|
@ -4,7 +4,7 @@
|
||||
# the file from the modular. If any change should be done, please apply the change to the
|
||||
# modular_my_new_model2.py file directly. One of our CI enforces this.
|
||||
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
|
||||
from typing import Callable, List, Optional, Tuple, Union
|
||||
from typing import Callable, Optional, Union
|
||||
|
||||
import torch
|
||||
from torch import nn
|
||||
@ -222,12 +222,12 @@ class MyNewModel2Attention(nn.Module):
|
||||
def forward(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
position_embeddings: Tuple[torch.Tensor, torch.Tensor],
|
||||
position_embeddings: tuple[torch.Tensor, torch.Tensor],
|
||||
attention_mask: Optional[torch.Tensor],
|
||||
past_key_value: Optional[Cache] = None,
|
||||
cache_position: Optional[torch.LongTensor] = None,
|
||||
**kwargs: Unpack[FlashAttentionKwargs],
|
||||
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
||||
) -> tuple[torch.Tensor, Optional[torch.Tensor], Optional[tuple[torch.Tensor]]]:
|
||||
input_shape = hidden_states.shape[:-1]
|
||||
hidden_shape = (*input_shape, -1, self.head_dim)
|
||||
|
||||
@ -289,9 +289,9 @@ class MyNewModel2DecoderLayer(nn.Module):
|
||||
output_attentions: Optional[bool] = False,
|
||||
use_cache: Optional[bool] = False,
|
||||
cache_position: Optional[torch.LongTensor] = None,
|
||||
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC
|
||||
position_embeddings: Optional[tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC
|
||||
**kwargs: Unpack[FlashAttentionKwargs],
|
||||
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
||||
) -> tuple[torch.FloatTensor, Optional[tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
||||
residual = hidden_states
|
||||
|
||||
hidden_states = self.input_layernorm(hidden_states)
|
||||
@ -485,7 +485,7 @@ class MyNewModel2Model(MyNewModel2PreTrainedModel):
|
||||
input_ids: torch.LongTensor = None,
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
position_ids: Optional[torch.LongTensor] = None,
|
||||
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
|
||||
past_key_values: Optional[Union[Cache, list[torch.FloatTensor]]] = None,
|
||||
inputs_embeds: Optional[torch.FloatTensor] = None,
|
||||
use_cache: Optional[bool] = None,
|
||||
output_attentions: Optional[bool] = None,
|
||||
@ -493,7 +493,7 @@ class MyNewModel2Model(MyNewModel2PreTrainedModel):
|
||||
return_dict: Optional[bool] = None,
|
||||
cache_position: Optional[torch.LongTensor] = None,
|
||||
**kwargs, # NOOP kwarg for now
|
||||
) -> Union[Tuple, BaseModelOutputWithPast]:
|
||||
) -> Union[tuple, BaseModelOutputWithPast]:
|
||||
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
||||
output_hidden_states = (
|
||||
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
||||
@ -753,14 +753,14 @@ class MyNewModel2ForSequenceClassification(MyNewModel2PreTrainedModel):
|
||||
input_ids: Optional[torch.LongTensor] = None,
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
position_ids: Optional[torch.LongTensor] = None,
|
||||
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
|
||||
past_key_values: Optional[Union[Cache, list[torch.FloatTensor]]] = None,
|
||||
inputs_embeds: Optional[torch.FloatTensor] = None,
|
||||
labels: Optional[torch.LongTensor] = None,
|
||||
use_cache: Optional[bool] = None,
|
||||
output_attentions: Optional[bool] = None,
|
||||
output_hidden_states: Optional[bool] = None,
|
||||
return_dict: Optional[bool] = None,
|
||||
) -> Union[Tuple, SequenceClassifierOutputWithPast]:
|
||||
) -> Union[tuple, SequenceClassifierOutputWithPast]:
|
||||
r"""
|
||||
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
||||
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
||||
|
@ -5,7 +5,7 @@
|
||||
# modular_new_task_model.py file directly. One of our CI enforces this.
|
||||
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
|
||||
from dataclasses import dataclass
|
||||
from typing import ClassVar, List, Optional, Tuple, Union
|
||||
from typing import ClassVar, Optional, Union
|
||||
|
||||
import torch
|
||||
from torch import nn
|
||||
@ -61,9 +61,9 @@ class NewTaskModelCausalLMOutputWithPast(ModelOutput):
|
||||
|
||||
loss: Optional[torch.FloatTensor] = None
|
||||
logits: torch.FloatTensor = None
|
||||
past_key_values: Optional[Union[List[torch.FloatTensor], Cache]] = None
|
||||
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
||||
attentions: Optional[Tuple[torch.FloatTensor]] = None
|
||||
past_key_values: Optional[Union[list[torch.FloatTensor], Cache]] = None
|
||||
hidden_states: Optional[tuple[torch.FloatTensor]] = None
|
||||
attentions: Optional[tuple[torch.FloatTensor]] = None
|
||||
image_hidden_states: Optional[torch.FloatTensor] = None
|
||||
|
||||
|
||||
@ -337,7 +337,7 @@ class NewTaskModelForNewTask(NewTaskModelPreTrainedModel, GenerationMixin):
|
||||
pixel_values: torch.FloatTensor = None,
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
position_ids: Optional[torch.LongTensor] = None,
|
||||
past_key_values: Optional[Union[List[torch.FloatTensor], Cache]] = None,
|
||||
past_key_values: Optional[Union[list[torch.FloatTensor], Cache]] = None,
|
||||
token_type_ids: Optional[torch.LongTensor] = None,
|
||||
cache_position: Optional[torch.LongTensor] = None,
|
||||
inputs_embeds: Optional[torch.FloatTensor] = None,
|
||||
@ -347,7 +347,7 @@ class NewTaskModelForNewTask(NewTaskModelPreTrainedModel, GenerationMixin):
|
||||
output_hidden_states: Optional[bool] = None,
|
||||
return_dict: Optional[bool] = None,
|
||||
num_logits_to_keep: int = 0,
|
||||
) -> Union[Tuple, NewTaskModelCausalLMOutputWithPast]:
|
||||
) -> Union[tuple, NewTaskModelCausalLMOutputWithPast]:
|
||||
r"""
|
||||
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
||||
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
||||
|
@ -6,7 +6,7 @@
|
||||
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
|
||||
import math
|
||||
import os
|
||||
from typing import List, Optional, Tuple, Union
|
||||
from typing import Optional, Union
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
@ -139,9 +139,9 @@ class RobertaSelfAttention(nn.Module):
|
||||
head_mask: Optional[torch.FloatTensor] = None,
|
||||
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
||||
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
||||
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
||||
past_key_value: Optional[tuple[tuple[torch.FloatTensor]]] = None,
|
||||
output_attentions: Optional[bool] = False,
|
||||
) -> Tuple[torch.Tensor]:
|
||||
) -> tuple[torch.Tensor]:
|
||||
mixed_query_layer = self.query(hidden_states)
|
||||
|
||||
# If this is instantiated as a cross-attention module, the keys
|
||||
@ -248,9 +248,9 @@ class RobertaSdpaSelfAttention(RobertaSelfAttention):
|
||||
head_mask: Optional[torch.FloatTensor] = None,
|
||||
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
||||
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
||||
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
||||
past_key_value: Optional[tuple[tuple[torch.FloatTensor]]] = None,
|
||||
output_attentions: Optional[bool] = False,
|
||||
) -> Tuple[torch.Tensor]:
|
||||
) -> tuple[torch.Tensor]:
|
||||
if self.position_embedding_type != "absolute" or output_attentions or head_mask is not None:
|
||||
# TODO: Improve this warning with e.g. `model.config._attn_implementation = "manual"` once implemented.
|
||||
logger.warning_once(
|
||||
@ -389,9 +389,9 @@ class RobertaAttention(nn.Module):
|
||||
head_mask: Optional[torch.FloatTensor] = None,
|
||||
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
||||
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
||||
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
||||
past_key_value: Optional[tuple[tuple[torch.FloatTensor]]] = None,
|
||||
output_attentions: Optional[bool] = False,
|
||||
) -> Tuple[torch.Tensor]:
|
||||
) -> tuple[torch.Tensor]:
|
||||
self_outputs = self.self(
|
||||
hidden_states,
|
||||
attention_mask,
|
||||
@ -457,9 +457,9 @@ class RobertaLayer(nn.Module):
|
||||
head_mask: Optional[torch.FloatTensor] = None,
|
||||
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
||||
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
||||
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
||||
past_key_value: Optional[tuple[tuple[torch.FloatTensor]]] = None,
|
||||
output_attentions: Optional[bool] = False,
|
||||
) -> Tuple[torch.Tensor]:
|
||||
) -> tuple[torch.Tensor]:
|
||||
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2
|
||||
self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
|
||||
self_attention_outputs = self.attention(
|
||||
@ -535,12 +535,12 @@ class RobertaEncoder(nn.Module):
|
||||
head_mask: Optional[torch.FloatTensor] = None,
|
||||
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
||||
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
||||
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
||||
past_key_values: Optional[tuple[tuple[torch.FloatTensor]]] = None,
|
||||
use_cache: Optional[bool] = None,
|
||||
output_attentions: Optional[bool] = False,
|
||||
output_hidden_states: Optional[bool] = False,
|
||||
return_dict: Optional[bool] = True,
|
||||
) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPastAndCrossAttentions]:
|
||||
) -> Union[tuple[torch.Tensor], BaseModelOutputWithPastAndCrossAttentions]:
|
||||
all_hidden_states = () if output_hidden_states else None
|
||||
all_self_attentions = () if output_attentions else None
|
||||
all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None
|
||||
@ -861,12 +861,12 @@ class RobertaModel(RobertaPreTrainedModel):
|
||||
inputs_embeds: Optional[torch.Tensor] = None,
|
||||
encoder_hidden_states: Optional[torch.Tensor] = None,
|
||||
encoder_attention_mask: Optional[torch.Tensor] = None,
|
||||
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
||||
past_key_values: Optional[list[torch.FloatTensor]] = None,
|
||||
use_cache: Optional[bool] = None,
|
||||
output_attentions: Optional[bool] = None,
|
||||
output_hidden_states: Optional[bool] = None,
|
||||
return_dict: Optional[bool] = None,
|
||||
) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPoolingAndCrossAttentions]:
|
||||
) -> Union[tuple[torch.Tensor], BaseModelOutputWithPoolingAndCrossAttentions]:
|
||||
r"""
|
||||
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
||||
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
|
||||
|
@ -4,7 +4,7 @@
|
||||
# the file from the modular. If any change should be done, please apply the change to the
|
||||
# modular_super.py file directly. One of our CI enforces this.
|
||||
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
|
||||
from typing import Callable, List, Optional, Tuple, Union
|
||||
from typing import Callable, Optional, Union
|
||||
|
||||
import torch
|
||||
from torch import nn
|
||||
@ -222,12 +222,12 @@ class SuperAttention(nn.Module):
|
||||
def forward(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
position_embeddings: Tuple[torch.Tensor, torch.Tensor],
|
||||
position_embeddings: tuple[torch.Tensor, torch.Tensor],
|
||||
attention_mask: Optional[torch.Tensor],
|
||||
past_key_value: Optional[Cache] = None,
|
||||
cache_position: Optional[torch.LongTensor] = None,
|
||||
**kwargs: Unpack[FlashAttentionKwargs],
|
||||
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
||||
) -> tuple[torch.Tensor, Optional[torch.Tensor], Optional[tuple[torch.Tensor]]]:
|
||||
input_shape = hidden_states.shape[:-1]
|
||||
hidden_shape = (*input_shape, -1, self.head_dim)
|
||||
|
||||
@ -289,9 +289,9 @@ class SuperDecoderLayer(nn.Module):
|
||||
output_attentions: Optional[bool] = False,
|
||||
use_cache: Optional[bool] = False,
|
||||
cache_position: Optional[torch.LongTensor] = None,
|
||||
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC
|
||||
position_embeddings: Optional[tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC
|
||||
**kwargs: Unpack[FlashAttentionKwargs],
|
||||
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
||||
) -> tuple[torch.FloatTensor, Optional[tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
||||
residual = hidden_states
|
||||
|
||||
hidden_states = self.input_layernorm(hidden_states)
|
||||
@ -485,14 +485,14 @@ class SuperModel(SuperPreTrainedModel):
|
||||
input_ids: torch.LongTensor = None,
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
position_ids: Optional[torch.LongTensor] = None,
|
||||
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
|
||||
past_key_values: Optional[Union[Cache, list[torch.FloatTensor]]] = None,
|
||||
inputs_embeds: Optional[torch.FloatTensor] = None,
|
||||
use_cache: Optional[bool] = None,
|
||||
output_attentions: Optional[bool] = None,
|
||||
output_hidden_states: Optional[bool] = None,
|
||||
return_dict: Optional[bool] = None,
|
||||
cache_position: Optional[torch.LongTensor] = None,
|
||||
) -> Union[Tuple, BaseModelOutputWithPast]:
|
||||
) -> Union[tuple, BaseModelOutputWithPast]:
|
||||
out = super().forward(
|
||||
input_ids,
|
||||
attention_mask,
|
||||
|
@ -5,7 +5,7 @@
|
||||
# modular_switch_function.py file directly. One of our CI enforces this.
|
||||
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
|
||||
# Note that llama and cohere have different definitions for rotate_half
|
||||
from typing import Callable, Optional, Tuple
|
||||
from typing import Callable, Optional
|
||||
|
||||
import torch
|
||||
from torch import nn
|
||||
@ -123,12 +123,12 @@ class SwitchFunctionAttention(nn.Module):
|
||||
def forward(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
position_embeddings: Tuple[torch.Tensor, torch.Tensor],
|
||||
position_embeddings: tuple[torch.Tensor, torch.Tensor],
|
||||
attention_mask: Optional[torch.Tensor],
|
||||
past_key_value: Optional[Cache] = None,
|
||||
cache_position: Optional[torch.LongTensor] = None,
|
||||
**kwargs: Unpack[FlashAttentionKwargs],
|
||||
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
||||
) -> tuple[torch.Tensor, Optional[torch.Tensor], Optional[tuple[torch.Tensor]]]:
|
||||
input_shape = hidden_states.shape[:-1]
|
||||
hidden_shape = (*input_shape, -1, self.head_dim)
|
||||
|
||||
|
@ -1,4 +1,4 @@
|
||||
from typing import List, Optional, Tuple, Union
|
||||
from typing import Optional, Union
|
||||
|
||||
import torch
|
||||
|
||||
@ -18,10 +18,10 @@ class DummyBertModel(BertModel):
|
||||
inputs_embeds: Optional[torch.Tensor] = None,
|
||||
encoder_hidden_states: Optional[torch.Tensor] = None,
|
||||
encoder_attention_mask: Optional[torch.Tensor] = None,
|
||||
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
||||
past_key_values: Optional[list[torch.FloatTensor]] = None,
|
||||
use_cache: Optional[bool] = None,
|
||||
output_attentions: Optional[bool] = None,
|
||||
output_hidden_states: Optional[bool] = None,
|
||||
return_dict: Optional[bool] = None,
|
||||
) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPoolingAndCrossAttentions]:
|
||||
) -> Union[tuple[torch.Tensor], BaseModelOutputWithPoolingAndCrossAttentions]:
|
||||
return super().forward(input_ids)
|
||||
|
@ -1,4 +1,4 @@
|
||||
from typing import ClassVar, List, Optional, Union
|
||||
from typing import ClassVar, Optional, Union
|
||||
|
||||
import torch
|
||||
import torch.utils.checkpoint
|
||||
@ -29,7 +29,7 @@ class NewTaskModelForNewTask(PaliGemmaForConditionalGeneration):
|
||||
pixel_values: torch.FloatTensor = None,
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
position_ids: Optional[torch.LongTensor] = None,
|
||||
past_key_values: Optional[Union[List[torch.FloatTensor], Cache]] = None,
|
||||
past_key_values: Optional[Union[list[torch.FloatTensor], Cache]] = None,
|
||||
token_type_ids: Optional[torch.LongTensor] = None,
|
||||
cache_position: Optional[torch.LongTensor] = None,
|
||||
inputs_embeds: Optional[torch.FloatTensor] = None,
|
||||
|
@ -1,4 +1,4 @@
|
||||
from typing import List, Optional, Tuple, Union
|
||||
from typing import Optional, Union
|
||||
|
||||
import torch
|
||||
|
||||
@ -15,14 +15,14 @@ class SuperModel(LlamaModel):
|
||||
input_ids: torch.LongTensor = None,
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
position_ids: Optional[torch.LongTensor] = None,
|
||||
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
|
||||
past_key_values: Optional[Union[Cache, list[torch.FloatTensor]]] = None,
|
||||
inputs_embeds: Optional[torch.FloatTensor] = None,
|
||||
use_cache: Optional[bool] = None,
|
||||
output_attentions: Optional[bool] = None,
|
||||
output_hidden_states: Optional[bool] = None,
|
||||
return_dict: Optional[bool] = None,
|
||||
cache_position: Optional[torch.LongTensor] = None,
|
||||
) -> Union[Tuple, CausalLMOutputWithPast]:
|
||||
) -> Union[tuple, CausalLMOutputWithPast]:
|
||||
out = super().forward(
|
||||
input_ids,
|
||||
attention_mask,
|
||||
|
@ -1,5 +1,4 @@
|
||||
#!/usr/bin/env python
|
||||
# coding=utf-8
|
||||
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
|
@ -1,5 +1,4 @@
|
||||
#!/usr/bin/env python
|
||||
# coding=utf-8
|
||||
# Copyright 2022 The HuggingFace Team All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
|
@ -1,5 +1,4 @@
|
||||
#!/usr/bin/env python
|
||||
# coding=utf-8
|
||||
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
|
@ -1,4 +1,3 @@
|
||||
# coding=utf-8
|
||||
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
|
@ -1,5 +1,4 @@
|
||||
#!/usr/bin/env python
|
||||
# coding=utf-8
|
||||
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
|
@ -1,5 +1,4 @@
|
||||
#!/usr/bin/env python
|
||||
# coding=utf-8
|
||||
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
|
@ -1,5 +1,4 @@
|
||||
#!/usr/bin/env python
|
||||
# coding=utf-8
|
||||
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
|
@ -1,5 +1,4 @@
|
||||
#!/usr/bin/env python
|
||||
# coding=utf-8
|
||||
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
@ -18,9 +17,10 @@
|
||||
import logging
|
||||
import os
|
||||
import sys
|
||||
from collections.abc import Mapping
|
||||
from dataclasses import dataclass, field
|
||||
from functools import partial
|
||||
from typing import Any, Dict, List, Mapping, Optional
|
||||
from typing import Any, Optional
|
||||
|
||||
import albumentations as A
|
||||
import numpy as np
|
||||
@ -200,7 +200,7 @@ class Evaluator:
|
||||
def reset_metric(self):
|
||||
self.metric.reset()
|
||||
|
||||
def postprocess_target_batch(self, target_batch) -> List[Dict[str, torch.Tensor]]:
|
||||
def postprocess_target_batch(self, target_batch) -> list[dict[str, torch.Tensor]]:
|
||||
"""Collect targets in a form of list of dictionaries with keys "masks", "labels"."""
|
||||
batch_masks = target_batch[0]
|
||||
batch_labels = target_batch[1]
|
||||
@ -214,13 +214,13 @@ class Evaluator:
|
||||
)
|
||||
return post_processed_targets
|
||||
|
||||
def get_target_sizes(self, post_processed_targets) -> List[List[int]]:
|
||||
def get_target_sizes(self, post_processed_targets) -> list[list[int]]:
|
||||
target_sizes = []
|
||||
for target in post_processed_targets:
|
||||
target_sizes.append(target["masks"].shape[-2:])
|
||||
return target_sizes
|
||||
|
||||
def postprocess_prediction_batch(self, prediction_batch, target_sizes) -> List[Dict[str, torch.Tensor]]:
|
||||
def postprocess_prediction_batch(self, prediction_batch, target_sizes) -> list[dict[str, torch.Tensor]]:
|
||||
"""Collect predictions in a form of list of dictionaries with keys "masks", "labels", "scores"."""
|
||||
|
||||
model_output = ModelOutput(class_queries_logits=prediction_batch[0], masks_queries_logits=prediction_batch[1])
|
||||
|
@ -1,5 +1,4 @@
|
||||
#!/usr/bin/env python
|
||||
# coding=utf-8
|
||||
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
@ -21,9 +20,10 @@ import logging
|
||||
import math
|
||||
import os
|
||||
import sys
|
||||
from collections.abc import Mapping
|
||||
from functools import partial
|
||||
from pathlib import Path
|
||||
from typing import Any, Mapping
|
||||
from typing import Any
|
||||
|
||||
import albumentations as A
|
||||
import datasets
|
||||
|
@ -1,5 +1,4 @@
|
||||
#!/usr/bin/env python
|
||||
# coding=utf-8
|
||||
# Copyright 2020 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
|
@ -1,5 +1,4 @@
|
||||
#!/usr/bin/env python
|
||||
# coding=utf-8
|
||||
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
|
@ -1,5 +1,4 @@
|
||||
#!/usr/bin/env python
|
||||
# coding=utf-8
|
||||
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
@ -551,7 +550,7 @@ def main():
|
||||
covariance_matrix=1e-5 * sigma,
|
||||
)
|
||||
new_token_embeddings = torch.stack(
|
||||
tuple((dist.sample() for _ in range(len(special_tokens)))),
|
||||
tuple(dist.sample() for _ in range(len(special_tokens))),
|
||||
dim=0,
|
||||
)
|
||||
else:
|
||||
@ -571,7 +570,7 @@ def main():
|
||||
covariance_matrix=1e-5 * sigma,
|
||||
)
|
||||
new_token_embeddings = torch.stack(
|
||||
tuple((dist.sample() for _ in range(len(special_tokens)))),
|
||||
tuple(dist.sample() for _ in range(len(special_tokens))),
|
||||
dim=0,
|
||||
)
|
||||
|
||||
|
@ -1,5 +1,4 @@
|
||||
#!/usr/bin/env python
|
||||
# coding=utf-8
|
||||
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
@ -518,7 +517,7 @@ def main():
|
||||
covariance_matrix=1e-5 * sigma,
|
||||
)
|
||||
new_token_embeddings = torch.stack(
|
||||
tuple((dist.sample() for _ in range(len(special_tokens)))),
|
||||
tuple(dist.sample() for _ in range(len(special_tokens))),
|
||||
dim=0,
|
||||
)
|
||||
else:
|
||||
@ -538,7 +537,7 @@ def main():
|
||||
covariance_matrix=1e-5 * sigma,
|
||||
)
|
||||
new_token_embeddings = torch.stack(
|
||||
tuple((dist.sample() for _ in range(len(special_tokens)))),
|
||||
tuple(dist.sample() for _ in range(len(special_tokens))),
|
||||
dim=0,
|
||||
)
|
||||
|
||||
|
@ -1,5 +1,4 @@
|
||||
#!/usr/bin/env python
|
||||
# coding=utf-8
|
||||
# Copyright 2020 The HuggingFace Team All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
|
@ -1,5 +1,4 @@
|
||||
#!/usr/bin/env python
|
||||
# coding=utf-8
|
||||
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
|
@ -1,5 +1,4 @@
|
||||
#!/usr/bin/env python
|
||||
# coding=utf-8
|
||||
# Copyright 2020 The HuggingFace Team All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
|
@ -1,5 +1,4 @@
|
||||
#!/usr/bin/env python
|
||||
# coding=utf-8
|
||||
# Copyright The HuggingFace Team and The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
|
@ -1,5 +1,4 @@
|
||||
#!/usr/bin/env python
|
||||
# coding=utf-8
|
||||
# Copyright The HuggingFace Team and The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
|
@ -1,5 +1,4 @@
|
||||
#!/usr/bin/env python
|
||||
# coding=utf-8
|
||||
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
@ -18,9 +17,10 @@
|
||||
import logging
|
||||
import os
|
||||
import sys
|
||||
from collections.abc import Mapping
|
||||
from dataclasses import dataclass, field
|
||||
from functools import partial
|
||||
from typing import Any, List, Mapping, Optional, Tuple, Union
|
||||
from typing import Any, Optional, Union
|
||||
|
||||
import albumentations as A
|
||||
import numpy as np
|
||||
@ -60,7 +60,7 @@ class ModelOutput:
|
||||
|
||||
|
||||
def format_image_annotations_as_coco(
|
||||
image_id: str, categories: List[int], areas: List[float], bboxes: List[Tuple[float]]
|
||||
image_id: str, categories: list[int], areas: list[float], bboxes: list[tuple[float]]
|
||||
) -> dict:
|
||||
"""Format one set of image annotations to the COCO format
|
||||
|
||||
@ -94,7 +94,7 @@ def format_image_annotations_as_coco(
|
||||
}
|
||||
|
||||
|
||||
def convert_bbox_yolo_to_pascal(boxes: torch.Tensor, image_size: Tuple[int, int]) -> torch.Tensor:
|
||||
def convert_bbox_yolo_to_pascal(boxes: torch.Tensor, image_size: tuple[int, int]) -> torch.Tensor:
|
||||
"""
|
||||
Convert bounding boxes from YOLO format (x_center, y_center, width, height) in range [0, 1]
|
||||
to Pascal VOC format (x_min, y_min, x_max, y_max) in absolute coordinates.
|
||||
@ -148,7 +148,7 @@ def augment_and_transform_batch(
|
||||
return result
|
||||
|
||||
|
||||
def collate_fn(batch: List[BatchFeature]) -> Mapping[str, Union[torch.Tensor, List[Any]]]:
|
||||
def collate_fn(batch: list[BatchFeature]) -> Mapping[str, Union[torch.Tensor, list[Any]]]:
|
||||
data = {}
|
||||
data["pixel_values"] = torch.stack([x["pixel_values"] for x in batch])
|
||||
data["labels"] = [x["labels"] for x in batch]
|
||||
|
@ -1,4 +1,3 @@
|
||||
# coding=utf-8
|
||||
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
@ -19,9 +18,10 @@ import json
|
||||
import logging
|
||||
import math
|
||||
import os
|
||||
from collections.abc import Mapping
|
||||
from functools import partial
|
||||
from pathlib import Path
|
||||
from typing import Any, List, Mapping, Tuple, Union
|
||||
from typing import Any, Union
|
||||
|
||||
import albumentations as A
|
||||
import datasets
|
||||
@ -61,7 +61,7 @@ require_version("datasets>=2.0.0", "To fix: pip install -r examples/pytorch/sema
|
||||
|
||||
# Copied from examples/pytorch/object-detection/run_object_detection.format_image_annotations_as_coco
|
||||
def format_image_annotations_as_coco(
|
||||
image_id: str, categories: List[int], areas: List[float], bboxes: List[Tuple[float]]
|
||||
image_id: str, categories: list[int], areas: list[float], bboxes: list[tuple[float]]
|
||||
) -> dict:
|
||||
"""Format one set of image annotations to the COCO format
|
||||
|
||||
@ -96,7 +96,7 @@ def format_image_annotations_as_coco(
|
||||
|
||||
|
||||
# Copied from examples/pytorch/object-detection/run_object_detection.convert_bbox_yolo_to_pascal
|
||||
def convert_bbox_yolo_to_pascal(boxes: torch.Tensor, image_size: Tuple[int, int]) -> torch.Tensor:
|
||||
def convert_bbox_yolo_to_pascal(boxes: torch.Tensor, image_size: tuple[int, int]) -> torch.Tensor:
|
||||
"""
|
||||
Convert bounding boxes from YOLO format (x_center, y_center, width, height) in range [0, 1]
|
||||
to Pascal VOC format (x_min, y_min, x_max, y_max) in absolute coordinates.
|
||||
@ -152,7 +152,7 @@ def augment_and_transform_batch(
|
||||
|
||||
|
||||
# Copied from examples/pytorch/object-detection/run_object_detection.collate_fn
|
||||
def collate_fn(batch: List[BatchFeature]) -> Mapping[str, Union[torch.Tensor, List[Any]]]:
|
||||
def collate_fn(batch: list[BatchFeature]) -> Mapping[str, Union[torch.Tensor, list[Any]]]:
|
||||
data = {}
|
||||
data["pixel_values"] = torch.stack([x["pixel_values"] for x in batch])
|
||||
data["labels"] = [x["labels"] for x in batch]
|
||||
|
@ -1,4 +1,3 @@
|
||||
# coding=utf-8
|
||||
# Copyright 2018 HuggingFace Inc..
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
@ -33,7 +32,7 @@ def get_results(output_dir):
|
||||
results = {}
|
||||
path = os.path.join(output_dir, "all_results.json")
|
||||
if os.path.exists(path):
|
||||
with open(path, "r") as f:
|
||||
with open(path) as f:
|
||||
results = json.load(f)
|
||||
else:
|
||||
raise ValueError(f"can't find {path}")
|
||||
|
@ -1,5 +1,4 @@
|
||||
#!/usr/bin/env python
|
||||
# coding=utf-8
|
||||
# Copyright 2020 The HuggingFace Team All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
|
@ -1,5 +1,4 @@
|
||||
#!/usr/bin/env python
|
||||
# coding=utf-8
|
||||
# Copyright 2020 The HuggingFace Team All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
|
@ -1,5 +1,4 @@
|
||||
#!/usr/bin/env python
|
||||
# coding=utf-8
|
||||
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
|
@ -1,5 +1,4 @@
|
||||
#!/usr/bin/env python
|
||||
# coding=utf-8
|
||||
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
|
@ -1,5 +1,4 @@
|
||||
#!/usr/bin/env python
|
||||
# coding=utf-8
|
||||
# Copyright 2021 The HuggingFace Team All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
@ -22,7 +21,7 @@ import logging
|
||||
import os
|
||||
import sys
|
||||
from dataclasses import dataclass, field
|
||||
from typing import List, Optional, Tuple
|
||||
from typing import Optional
|
||||
|
||||
import datasets
|
||||
import evaluate
|
||||
@ -469,7 +468,7 @@ def main():
|
||||
question_column: str,
|
||||
context_column: str,
|
||||
answer_column: str,
|
||||
) -> Tuple[List[str], List[str]]:
|
||||
) -> tuple[list[str], list[str]]:
|
||||
questions = examples[question_column]
|
||||
contexts = examples[context_column]
|
||||
answers = examples[answer_column]
|
||||
|
@ -1,4 +1,3 @@
|
||||
# coding=utf-8
|
||||
# Copyright 2020 The HuggingFace Team All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
|
@ -1,4 +1,3 @@
|
||||
# coding=utf-8
|
||||
# Copyright 2021 The HuggingFace Team All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
@ -18,7 +17,7 @@ A subclass of `Trainer` specific to Question-Answering tasks
|
||||
|
||||
import math
|
||||
import time
|
||||
from typing import Dict, List, Optional
|
||||
from typing import Optional
|
||||
|
||||
from torch.utils.data import Dataset
|
||||
|
||||
@ -42,10 +41,10 @@ class QuestionAnsweringSeq2SeqTrainer(Seq2SeqTrainer):
|
||||
self,
|
||||
eval_dataset: Optional[Dataset] = None,
|
||||
eval_examples=None,
|
||||
ignore_keys: Optional[List[str]] = None,
|
||||
ignore_keys: Optional[list[str]] = None,
|
||||
metric_key_prefix: str = "eval",
|
||||
**gen_kwargs,
|
||||
) -> Dict[str, float]:
|
||||
) -> dict[str, float]:
|
||||
gen_kwargs = gen_kwargs.copy()
|
||||
|
||||
# Use legacy argument setting if a) the option is not explicitly passed; and b) the argument is set in the
|
||||
|
@ -1,4 +1,3 @@
|
||||
# coding=utf-8
|
||||
# Copyright 2020 The HuggingFace Team All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
@ -20,7 +19,7 @@ import collections
|
||||
import json
|
||||
import logging
|
||||
import os
|
||||
from typing import Optional, Tuple
|
||||
from typing import Optional
|
||||
|
||||
import numpy as np
|
||||
from tqdm.auto import tqdm
|
||||
@ -32,7 +31,7 @@ logger = logging.getLogger(__name__)
|
||||
def postprocess_qa_predictions(
|
||||
examples,
|
||||
features,
|
||||
predictions: Tuple[np.ndarray, np.ndarray],
|
||||
predictions: tuple[np.ndarray, np.ndarray],
|
||||
version_2_with_negative: bool = False,
|
||||
n_best_size: int = 20,
|
||||
max_answer_length: int = 30,
|
||||
@ -223,7 +222,7 @@ def postprocess_qa_predictions(
|
||||
# If we have an output_dir, let's save all those dicts.
|
||||
if output_dir is not None:
|
||||
if not os.path.isdir(output_dir):
|
||||
raise EnvironmentError(f"{output_dir} is not a directory.")
|
||||
raise OSError(f"{output_dir} is not a directory.")
|
||||
|
||||
prediction_file = os.path.join(
|
||||
output_dir, "predictions.json" if prefix is None else f"{prefix}_predictions.json"
|
||||
@ -253,7 +252,7 @@ def postprocess_qa_predictions(
|
||||
def postprocess_qa_predictions_with_beam_search(
|
||||
examples,
|
||||
features,
|
||||
predictions: Tuple[np.ndarray, np.ndarray],
|
||||
predictions: tuple[np.ndarray, np.ndarray],
|
||||
version_2_with_negative: bool = False,
|
||||
n_best_size: int = 20,
|
||||
max_answer_length: int = 30,
|
||||
@ -417,7 +416,7 @@ def postprocess_qa_predictions_with_beam_search(
|
||||
# If we have an output_dir, let's save all those dicts.
|
||||
if output_dir is not None:
|
||||
if not os.path.isdir(output_dir):
|
||||
raise EnvironmentError(f"{output_dir} is not a directory.")
|
||||
raise OSError(f"{output_dir} is not a directory.")
|
||||
|
||||
prediction_file = os.path.join(
|
||||
output_dir, "predictions.json" if prefix is None else f"{prefix}_predictions.json"
|
||||
|
@ -1,5 +1,4 @@
|
||||
#!/usr/bin/env python
|
||||
# coding=utf-8
|
||||
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
@ -258,7 +257,7 @@ def main():
|
||||
else:
|
||||
repo_id = data_args.dataset_name
|
||||
filename = "id2label.json"
|
||||
id2label = json.load(open(hf_hub_download(repo_id, filename, repo_type="dataset"), "r"))
|
||||
id2label = json.load(open(hf_hub_download(repo_id, filename, repo_type="dataset")))
|
||||
id2label = {int(k): v for k, v in id2label.items()}
|
||||
label2id = {v: str(k) for k, v in id2label.items()}
|
||||
|
||||
|
@ -1,4 +1,3 @@
|
||||
# coding=utf-8
|
||||
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
@ -316,7 +315,7 @@ def main():
|
||||
else:
|
||||
repo_id = args.dataset_name
|
||||
filename = "id2label.json"
|
||||
id2label = json.load(open(hf_hub_download(repo_id, filename, repo_type="dataset"), "r"))
|
||||
id2label = json.load(open(hf_hub_download(repo_id, filename, repo_type="dataset")))
|
||||
id2label = {int(k): v for k, v in id2label.items()}
|
||||
label2id = {v: k for k, v in id2label.items()}
|
||||
|
||||
|
@ -1,5 +1,4 @@
|
||||
#!/usr/bin/env python
|
||||
# coding=utf-8
|
||||
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
@ -20,7 +19,7 @@ import math
|
||||
import os
|
||||
from dataclasses import dataclass
|
||||
from pathlib import Path
|
||||
from typing import Dict, List, Optional, Union
|
||||
from typing import Optional, Union
|
||||
|
||||
import datasets
|
||||
import torch
|
||||
@ -328,7 +327,7 @@ class DataCollatorForWav2Vec2Pretraining:
|
||||
mask_time_prob: Optional[float] = 0.65
|
||||
mask_time_length: Optional[int] = 10
|
||||
|
||||
def __call__(self, features: List[Dict[str, Union[List[int], torch.Tensor]]]) -> Dict[str, torch.Tensor]:
|
||||
def __call__(self, features: list[dict[str, Union[list[int], torch.Tensor]]]) -> dict[str, torch.Tensor]:
|
||||
# reformat list to dict and set to pytorch format
|
||||
batch = self.feature_extractor.pad(
|
||||
features,
|
||||
@ -716,7 +715,7 @@ def main():
|
||||
}
|
||||
log_str = ""
|
||||
for k, v in train_logs.items():
|
||||
log_str += "| {}: {:.3e}".format(k, v.item())
|
||||
log_str += f"| {k}: {v.item():.3e}"
|
||||
|
||||
if accelerator.is_local_main_process:
|
||||
progress_bar.write(log_str)
|
||||
@ -773,7 +772,7 @@ def main():
|
||||
|
||||
log_str = ""
|
||||
for k, v in val_logs.items():
|
||||
log_str += "| {}: {:.3e}".format(k, v.item())
|
||||
log_str += f"| {k}: {v.item():.3e}"
|
||||
|
||||
if accelerator.is_local_main_process:
|
||||
progress_bar.write(log_str)
|
||||
|
@ -1,5 +1,4 @@
|
||||
#!/usr/bin/env python
|
||||
# coding=utf-8
|
||||
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
@ -24,7 +23,7 @@ import re
|
||||
import sys
|
||||
import warnings
|
||||
from dataclasses import dataclass, field
|
||||
from typing import Dict, List, Optional, Union
|
||||
from typing import Optional, Union
|
||||
|
||||
import datasets
|
||||
import evaluate
|
||||
@ -211,11 +210,11 @@ class DataTrainingArguments:
|
||||
)
|
||||
},
|
||||
)
|
||||
chars_to_ignore: Optional[List[str]] = list_field(
|
||||
chars_to_ignore: Optional[list[str]] = list_field(
|
||||
default=None,
|
||||
metadata={"help": "A list of characters to remove from the transcripts."},
|
||||
)
|
||||
eval_metrics: List[str] = list_field(
|
||||
eval_metrics: list[str] = list_field(
|
||||
default=["wer"],
|
||||
metadata={"help": "A list of metrics the model should be evaluated on. E.g. `'wer cer'`"},
|
||||
)
|
||||
@ -318,7 +317,7 @@ class DataCollatorCTCWithPadding:
|
||||
pad_to_multiple_of_labels: Optional[int] = None
|
||||
feature_extractor_input_name: Optional[str] = "input_values"
|
||||
|
||||
def __call__(self, features: List[Dict[str, Union[List[int], torch.Tensor]]]) -> Dict[str, torch.Tensor]:
|
||||
def __call__(self, features: list[dict[str, Union[list[int], torch.Tensor]]]) -> dict[str, torch.Tensor]:
|
||||
# split inputs and labels since they have to be of different lengths and need
|
||||
# different padding methods
|
||||
input_features = [
|
||||
|
@ -1,5 +1,4 @@
|
||||
#!/usr/bin/env python
|
||||
# coding=utf-8
|
||||
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
@ -24,7 +23,7 @@ import re
|
||||
import sys
|
||||
import warnings
|
||||
from dataclasses import dataclass, field
|
||||
from typing import Dict, List, Optional, Union
|
||||
from typing import Optional, Union
|
||||
|
||||
import datasets
|
||||
import evaluate
|
||||
@ -201,11 +200,11 @@ class DataTrainingArguments:
|
||||
)
|
||||
},
|
||||
)
|
||||
chars_to_ignore: Optional[List[str]] = list_field(
|
||||
chars_to_ignore: Optional[list[str]] = list_field(
|
||||
default=None,
|
||||
metadata={"help": "A list of characters to remove from the transcripts."},
|
||||
)
|
||||
eval_metrics: List[str] = list_field(
|
||||
eval_metrics: list[str] = list_field(
|
||||
default=["wer"],
|
||||
metadata={"help": "A list of metrics the model should be evaluated on. E.g. `'wer cer'`"},
|
||||
)
|
||||
@ -300,7 +299,7 @@ class DataCollatorCTCWithPadding:
|
||||
pad_to_multiple_of: Optional[int] = None
|
||||
pad_to_multiple_of_labels: Optional[int] = None
|
||||
|
||||
def __call__(self, features: List[Dict[str, Union[List[int], torch.Tensor]]]) -> Dict[str, torch.Tensor]:
|
||||
def __call__(self, features: list[dict[str, Union[list[int], torch.Tensor]]]) -> dict[str, torch.Tensor]:
|
||||
# split inputs and labels since they have to be of different lengths and need
|
||||
# different padding methods
|
||||
input_features = [{"input_values": feature["input_values"]} for feature in features]
|
||||
|
@ -1,5 +1,4 @@
|
||||
#!/usr/bin/env python
|
||||
# coding=utf-8
|
||||
# Copyright 2021 The HuggingFace Team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
@ -23,7 +22,7 @@ import logging
|
||||
import os
|
||||
import sys
|
||||
from dataclasses import dataclass, field
|
||||
from typing import Any, Dict, List, Optional, Union
|
||||
from typing import Any, Optional, Union
|
||||
|
||||
import datasets
|
||||
import evaluate
|
||||
@ -110,11 +109,11 @@ class ModelArguments:
|
||||
freeze_encoder: bool = field(
|
||||
default=False, metadata={"help": "Whether to freeze the entire encoder of the seq2seq model."}
|
||||
)
|
||||
forced_decoder_ids: List[List[int]] = field(
|
||||
forced_decoder_ids: list[list[int]] = field(
|
||||
default=None,
|
||||
metadata={"help": "Deprecated. Please use the `language` and `task` arguments instead."},
|
||||
)
|
||||
suppress_tokens: List[int] = field(
|
||||
suppress_tokens: list[int] = field(
|
||||
default=None,
|
||||
metadata={
|
||||
"help": (
|
||||
@ -247,7 +246,7 @@ class DataCollatorSpeechSeq2SeqWithPadding:
|
||||
decoder_start_token_id: int
|
||||
forward_attention_mask: bool
|
||||
|
||||
def __call__(self, features: List[Dict[str, Union[List[int], torch.Tensor]]]) -> Dict[str, torch.Tensor]:
|
||||
def __call__(self, features: list[dict[str, Union[list[int], torch.Tensor]]]) -> dict[str, torch.Tensor]:
|
||||
# split inputs and labels since they have to be of different lengths and need
|
||||
# different padding methods
|
||||
model_input_name = self.processor.model_input_names[0]
|
||||
|
@ -1,5 +1,4 @@
|
||||
#!/usr/bin/env python
|
||||
# coding=utf-8
|
||||
# Copyright 2021 The HuggingFace Team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
|
Some files were not shown because too many files have changed in this diff Show More
Loading…
Reference in New Issue
Block a user