mirror of
https://github.com/huggingface/transformers.git
synced 2025-08-01 18:51:14 +06:00
transformers.image_transforms.normalize wrong types (#35773)
transformers.image_transforms.normalize documents and checks for the wrong type for std and mean arguments Co-authored-by: Louis Groux <louis.cal.groux@gmail.com>
This commit is contained in:
parent
3998fa8aab
commit
a142f16131
@ -15,7 +15,7 @@
|
|||||||
|
|
||||||
import warnings
|
import warnings
|
||||||
from math import ceil
|
from math import ceil
|
||||||
from typing import Iterable, List, Optional, Tuple, Union
|
from typing import Iterable, List, Optional, Sequence, Tuple, Union
|
||||||
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
|
|
||||||
@ -357,8 +357,8 @@ def resize(
|
|||||||
|
|
||||||
def normalize(
|
def normalize(
|
||||||
image: np.ndarray,
|
image: np.ndarray,
|
||||||
mean: Union[float, Iterable[float]],
|
mean: Union[float, Sequence[float]],
|
||||||
std: Union[float, Iterable[float]],
|
std: Union[float, Sequence[float]],
|
||||||
data_format: Optional[ChannelDimension] = None,
|
data_format: Optional[ChannelDimension] = None,
|
||||||
input_data_format: Optional[Union[str, ChannelDimension]] = None,
|
input_data_format: Optional[Union[str, ChannelDimension]] = None,
|
||||||
) -> np.ndarray:
|
) -> np.ndarray:
|
||||||
@ -370,9 +370,9 @@ def normalize(
|
|||||||
Args:
|
Args:
|
||||||
image (`np.ndarray`):
|
image (`np.ndarray`):
|
||||||
The image to normalize.
|
The image to normalize.
|
||||||
mean (`float` or `Iterable[float]`):
|
mean (`float` or `Sequence[float]`):
|
||||||
The mean to use for normalization.
|
The mean to use for normalization.
|
||||||
std (`float` or `Iterable[float]`):
|
std (`float` or `Sequence[float]`):
|
||||||
The standard deviation to use for normalization.
|
The standard deviation to use for normalization.
|
||||||
data_format (`ChannelDimension`, *optional*):
|
data_format (`ChannelDimension`, *optional*):
|
||||||
The channel dimension format of the output image. If unset, will use the inferred format from the input.
|
The channel dimension format of the output image. If unset, will use the inferred format from the input.
|
||||||
@ -393,14 +393,14 @@ def normalize(
|
|||||||
if not np.issubdtype(image.dtype, np.floating):
|
if not np.issubdtype(image.dtype, np.floating):
|
||||||
image = image.astype(np.float32)
|
image = image.astype(np.float32)
|
||||||
|
|
||||||
if isinstance(mean, Iterable):
|
if isinstance(mean, Sequence):
|
||||||
if len(mean) != num_channels:
|
if len(mean) != num_channels:
|
||||||
raise ValueError(f"mean must have {num_channels} elements if it is an iterable, got {len(mean)}")
|
raise ValueError(f"mean must have {num_channels} elements if it is an iterable, got {len(mean)}")
|
||||||
else:
|
else:
|
||||||
mean = [mean] * num_channels
|
mean = [mean] * num_channels
|
||||||
mean = np.array(mean, dtype=image.dtype)
|
mean = np.array(mean, dtype=image.dtype)
|
||||||
|
|
||||||
if isinstance(std, Iterable):
|
if isinstance(std, Sequence):
|
||||||
if len(std) != num_channels:
|
if len(std) != num_channels:
|
||||||
raise ValueError(f"std must have {num_channels} elements if it is an iterable, got {len(std)}")
|
raise ValueError(f"std must have {num_channels} elements if it is an iterable, got {len(std)}")
|
||||||
else:
|
else:
|
||||||
|
Loading…
Reference in New Issue
Block a user