mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-31 02:02:21 +06:00
push fix to training
This commit is contained in:
parent
5def3302f4
commit
a049c8043b
@ -154,8 +154,8 @@ def train(args, train_dataset, model, tokenizer):
|
||||
|
||||
tr_loss += loss.item()
|
||||
if (step + 1) % args.gradient_accumulation_steps == 0:
|
||||
scheduler.step() # Update learning rate schedule
|
||||
optimizer.step()
|
||||
scheduler.step() # Update learning rate schedule
|
||||
model.zero_grad()
|
||||
global_step += 1
|
||||
|
||||
|
69
examples/run_tf_glue.py
Normal file
69
examples/run_tf_glue.py
Normal file
@ -0,0 +1,69 @@
|
||||
import tensorflow as tf
|
||||
import tensorflow_datasets
|
||||
from pytorch_transformers import BertTokenizer, BertForSequenceClassification, TFBertForSequenceClassification, glue_convert_examples_to_features
|
||||
|
||||
# Load tokenizer, model, dataset
|
||||
tokenizer = BertTokenizer.from_pretrained('bert-base-cased')
|
||||
tf_model = TFBertForSequenceClassification.from_pretrained('bert-base-cased')
|
||||
dataset = tensorflow_datasets.load("glue/mrpc")
|
||||
|
||||
# Prepare dataset for GLUE
|
||||
train_dataset = glue_convert_examples_to_features(dataset['train'], tokenizer, task='mrpc', max_length=128)
|
||||
valid_dataset = glue_convert_examples_to_features(dataset['validation'], tokenizer, task='mrpc', max_length=128)
|
||||
train_dataset = train_dataset.shuffle(100).batch(32).repeat(3)
|
||||
valid_dataset = valid_dataset.batch(64)
|
||||
|
||||
# Compile tf.keras model for training
|
||||
learning_rate = tf.keras.optimizers.schedules.PolynomialDecay(2e-5, 345, end_learning_rate=0)
|
||||
loss = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)
|
||||
tf_model.compile(optimizer=tf.keras.optimizers.Adam(learning_rate=learning_rate, epsilon=1e-08, clipnorm=1.0),
|
||||
loss=loss, metrics=['sparse_categorical_accuracy'])
|
||||
|
||||
# Train and evaluate using tf.keras.Model.fit()
|
||||
tf_model.fit(train_dataset, epochs=3, steps_per_epoch=115, validation_data=valid_dataset, validation_steps=7)
|
||||
|
||||
# Save the model and load it in PyTorch
|
||||
tf_model.save_pretrained('./runs/')
|
||||
pt_model = BertForSequenceClassification.from_pretrained('./runs/')
|
||||
|
||||
# Quickly inspect a few predictions
|
||||
|
||||
|
||||
# Divers
|
||||
import torch
|
||||
|
||||
import tensorflow as tf
|
||||
import tensorflow_datasets
|
||||
from pytorch_transformers import BertTokenizer, BertForSequenceClassification, TFBertForSequenceClassification, glue_convert_examples_to_features
|
||||
|
||||
# Load tokenizer, model, dataset
|
||||
tokenizer = BertTokenizer.from_pretrained('bert-base-cased')
|
||||
model = TFBertForSequenceClassification.from_pretrained('bert-base-cased')
|
||||
|
||||
pt_train_dataset = torch.load('../../data/glue_data//MRPC/cached_train_bert-base-cased_128_mrpc')
|
||||
|
||||
def gen():
|
||||
for el in pt_train_dataset:
|
||||
yield ((el.input_ids, el.attention_mask, el.token_type_ids), (el.label,))
|
||||
|
||||
dataset = tf.data.Dataset.from_generator(gen,
|
||||
((tf.int32, tf.int32, tf.int32), (tf.int64,)),
|
||||
((tf.TensorShape([None]), tf.TensorShape([None]), tf.TensorShape([None])),
|
||||
(tf.TensorShape([]),)))
|
||||
|
||||
dataset = dataset.shuffle(100).batch(32)
|
||||
next(iter(dataset))
|
||||
|
||||
learning_rate = tf.keras.optimizers.schedules.PolynomialDecay(2e-5, 345, 0)
|
||||
loss = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)
|
||||
model.compile(optimizer=tf.keras.optimizers.Adam(
|
||||
learning_rate=learning_rate,
|
||||
epsilon=1e-08,
|
||||
clipnorm=1.0),
|
||||
loss=loss,
|
||||
metrics=[['sparse_categorical_accuracy']])
|
||||
|
||||
tensorboard_cbk = tf.keras.callbacks.TensorBoard(log_dir='./runs/', update_freq=10, histogram_freq=1)
|
||||
|
||||
# Train model
|
||||
model.fit(dataset, epochs=3, callbacks=[tensorboard_cbk])
|
@ -67,6 +67,7 @@ class PretrainedConfig(object):
|
||||
output_config_file = os.path.join(save_directory, CONFIG_NAME)
|
||||
|
||||
self.to_json_file(output_config_file)
|
||||
logger.info("Configuration saved in {}".format(output_config_file))
|
||||
|
||||
@classmethod
|
||||
def from_pretrained(cls, pretrained_model_name_or_path, **kwargs):
|
||||
|
@ -17,6 +17,7 @@
|
||||
import csv
|
||||
import sys
|
||||
import copy
|
||||
import json
|
||||
|
||||
class InputExample(object):
|
||||
"""A single training/test example for simple sequence classification."""
|
||||
|
@ -132,8 +132,8 @@ class TFPreTrainedModel(tf.keras.Model):
|
||||
|
||||
# If we save using the predefined names, we can load using `from_pretrained`
|
||||
output_model_file = os.path.join(save_directory, TF2_WEIGHTS_NAME)
|
||||
|
||||
self.save_weights(output_model_file)
|
||||
logger.info("Model weights saved in {}".format(output_model_file))
|
||||
|
||||
@classmethod
|
||||
def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs):
|
||||
|
@ -201,8 +201,8 @@ class PreTrainedModel(nn.Module):
|
||||
|
||||
# If we save using the predefined names, we can load using `from_pretrained`
|
||||
output_model_file = os.path.join(save_directory, WEIGHTS_NAME)
|
||||
|
||||
torch.save(model_to_save.state_dict(), output_model_file)
|
||||
logger.info("Model weights saved in {}".format(output_model_file))
|
||||
|
||||
@classmethod
|
||||
def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs):
|
||||
@ -305,7 +305,7 @@ class PreTrainedModel(nn.Module):
|
||||
archive_file = os.path.join(pretrained_model_name_or_path, WEIGHTS_NAME)
|
||||
else:
|
||||
raise EnvironmentError("Error no file named {} found in directory {}".format(
|
||||
tuple(WEIGHTS_NAME, TF2_WEIGHTS_NAME, TF_WEIGHTS_NAME + ".index"),
|
||||
[WEIGHTS_NAME, TF2_WEIGHTS_NAME, TF_WEIGHTS_NAME + ".index"],
|
||||
pretrained_model_name_or_path))
|
||||
elif os.path.isfile(pretrained_model_name_or_path):
|
||||
archive_file = pretrained_model_name_or_path
|
||||
|
Loading…
Reference in New Issue
Block a user