fix deepspeed load best model at end when the model gets sharded (#25057)

This commit is contained in:
Sourab Mangrulkar 2023-07-27 07:11:43 +05:30 committed by GitHub
parent 1689aea733
commit a004237926
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

View File

@ -2093,71 +2093,70 @@ class Trainer:
best_safe_adapter_model_path = os.path.join(self.state.best_model_checkpoint, ADAPTER_SAFE_WEIGHTS_NAME)
model = self.model_wrapped if is_sagemaker_mp_enabled() else self.model
if (
if self.is_deepspeed_enabled:
deepspeed_load_checkpoint(self.model_wrapped, self.state.best_model_checkpoint)
elif (
os.path.exists(best_model_path)
or os.path.exists(best_safe_model_path)
or os.path.exists(best_adapter_model_path)
or os.path.exists(best_safe_adapter_model_path)
):
if self.is_deepspeed_enabled:
deepspeed_load_checkpoint(self.model_wrapped, self.state.best_model_checkpoint)
else:
has_been_loaded = True
if is_sagemaker_mp_enabled():
if os.path.isfile(os.path.join(self.state.best_model_checkpoint, "user_content.pt")):
# If the 'user_content.pt' file exists, load with the new smp api.
# Checkpoint must have been saved with the new smp api.
smp.resume_from_checkpoint(
path=self.state.best_model_checkpoint,
tag=WEIGHTS_NAME,
partial=False,
load_optimizer=False,
)
else:
# If the 'user_content.pt' file does NOT exist, load with the old smp api.
# Checkpoint must have been saved with the old smp api.
if self.args.save_safetensors and os.path.isfile(best_safe_model_path):
state_dict = safetensors.torch.load_file(best_safe_model_path, device="cpu")
else:
state_dict = torch.load(best_model_path, map_location="cpu")
state_dict["_smp_is_partial"] = False
load_result = model.load_state_dict(state_dict, strict=True)
elif self.is_fsdp_enabled:
load_result = load_fsdp_model(
self.accelerator.state.fsdp_plugin, self.accelerator, model, self.state.best_model_checkpoint
has_been_loaded = True
if is_sagemaker_mp_enabled():
if os.path.isfile(os.path.join(self.state.best_model_checkpoint, "user_content.pt")):
# If the 'user_content.pt' file exists, load with the new smp api.
# Checkpoint must have been saved with the new smp api.
smp.resume_from_checkpoint(
path=self.state.best_model_checkpoint,
tag=WEIGHTS_NAME,
partial=False,
load_optimizer=False,
)
else:
if is_peft_available() and isinstance(model, PeftModel):
# If train a model using PEFT & LoRA, assume that adapter have been saved properly.
if hasattr(model, "active_adapter") and hasattr(model, "load_adapter"):
if os.path.exists(best_adapter_model_path) or os.path.exists(best_safe_adapter_model_path):
model.load_adapter(self.state.best_model_checkpoint, model.active_adapter)
# Load_adapter has no return value present, modify it when appropriate.
from torch.nn.modules.module import _IncompatibleKeys
# If the 'user_content.pt' file does NOT exist, load with the old smp api.
# Checkpoint must have been saved with the old smp api.
if self.args.save_safetensors and os.path.isfile(best_safe_model_path):
state_dict = safetensors.torch.load_file(best_safe_model_path, device="cpu")
else:
state_dict = torch.load(best_model_path, map_location="cpu")
load_result = _IncompatibleKeys([], [])
else:
logger.warning(
"The intermediate checkpoints of PEFT may not be saved correctly, "
f"consider using a custom callback to save {ADAPTER_WEIGHTS_NAME} in corresponding saving folders. "
"Check some examples here: https://github.com/huggingface/peft/issues/96"
)
has_been_loaded = False
state_dict["_smp_is_partial"] = False
load_result = model.load_state_dict(state_dict, strict=True)
elif self.is_fsdp_enabled:
load_result = load_fsdp_model(
self.accelerator.state.fsdp_plugin, self.accelerator, model, self.state.best_model_checkpoint
)
else:
if is_peft_available() and isinstance(model, PeftModel):
# If train a model using PEFT & LoRA, assume that adapter have been saved properly.
if hasattr(model, "active_adapter") and hasattr(model, "load_adapter"):
if os.path.exists(best_adapter_model_path) or os.path.exists(best_safe_adapter_model_path):
model.load_adapter(self.state.best_model_checkpoint, model.active_adapter)
# Load_adapter has no return value present, modify it when appropriate.
from torch.nn.modules.module import _IncompatibleKeys
load_result = _IncompatibleKeys([], [])
else:
logger.warning("Could not load adapter model, make sure to have `peft>=0.3.0` installed")
logger.warning(
"The intermediate checkpoints of PEFT may not be saved correctly, "
f"consider using a custom callback to save {ADAPTER_WEIGHTS_NAME} in corresponding saving folders. "
"Check some examples here: https://github.com/huggingface/peft/issues/96"
)
has_been_loaded = False
else:
# We load the model state dict on the CPU to avoid an OOM error.
if self.args.save_safetensors and os.path.isfile(best_safe_model_path):
state_dict = safetensors.torch.load_file(best_safe_model_path, device="cpu")
else:
state_dict = torch.load(best_model_path, map_location="cpu")
logger.warning("Could not load adapter model, make sure to have `peft>=0.3.0` installed")
has_been_loaded = False
else:
# We load the model state dict on the CPU to avoid an OOM error.
if self.args.save_safetensors and os.path.isfile(best_safe_model_path):
state_dict = safetensors.torch.load_file(best_safe_model_path, device="cpu")
else:
state_dict = torch.load(best_model_path, map_location="cpu")
# If the model is on the GPU, it still works!
# workaround for FSDP bug https://github.com/pytorch/pytorch/issues/82963
# which takes *args instead of **kwargs
load_result = model.load_state_dict(state_dict, False)
# If the model is on the GPU, it still works!
# workaround for FSDP bug https://github.com/pytorch/pytorch/issues/82963
# which takes *args instead of **kwargs
load_result = model.load_state_dict(state_dict, False)
if not is_sagemaker_mp_enabled() and has_been_loaded:
self._issue_warnings_after_load(load_result)
elif os.path.exists(os.path.join(self.state.best_model_checkpoint, WEIGHTS_INDEX_NAME)):