This commit is contained in:
Jiang Jiwen 2025-07-02 23:32:46 +02:00 committed by GitHub
commit 9d7240bc3f
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
10 changed files with 2173 additions and 0 deletions

View File

@ -0,0 +1,83 @@
<!--Copyright 2025 The PLM Team and The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# PLM
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
</div>
## Overview
The PLM model was proposed in [PLM: Efficient Peripheral Language Models Hardware-Co-Designed for Ubiquitous Computing](https://arxiv.org/abs/2503.12167) by PLM-Team.
### Summary
The PLM (Peripheral Language Model) series introduces a novel model architecture to peripheral computing by delivering powerful language capabilities within the constraints of resource-limited devices. Through modeling and system co-design strategy, PLM optimizes model performance and fits edge system requirements, PLM employs Multi-head Latent Attention and squared ReLU activation to achieve sparsity, significantly reducing memory footprint and computational demands. Coupled with a meticulously crafted training regimen using curated datasets and a Warmup-Stable-Decay-Constant learning rate scheduler, PLM demonstrates superior performance compared to existing small language models, all while maintaining the lowest activated parameters, making it ideally suited for deployment on diverse peripheral platforms like mobile phones and Raspberry Pis.
## Usage tips
Ensure your Transformers library version is up-to-date. PLM requires Transformers>=4.51.3 for full support.
`PLM-1.8B-Instruct` can be found on the [Huggingface Hub](https://huggingface.co/PLM-Team/PLM-1.8B-Instruct)
In the following, we demonstrate how to use it for inference
```python
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load model and tokenizer
tokenizer = AutoTokenizer.from_pretrained("PLM-Team/PLM-1.8B-Instruct")
model = AutoModelForCausalLM.from_pretrained("PLM-Team/PLM-1.8B-Instruct", torch_dtype=torch.bfloat16)
# Input text
input_text = "Tell me something about reinforcement learning."
inputs = tokenizer(input_text, return_tensors="pt")
# Completion
output = model.generate(inputs["input_ids"], max_new_tokens=100)
print(tokenizer.decode(output[0], skip_special_tokens=True))
```
## PLMConfig
[[autodoc]] PLMConfig
## PLMModel
[[autodoc]] PLMModel
- forward
## PLMForCausalLM
[[autodoc]] PLMForCausalLM
- forward
## PLMForSequenceClassification
[[autodoc]] PLMForSequenceClassification
- forward
## PLMForTokenClassification
[[autodoc]] PLMForTokenClassification
- forward

View File

@ -243,6 +243,7 @@ if TYPE_CHECKING:
from .pix2struct import * from .pix2struct import *
from .pixtral import * from .pixtral import *
from .plbart import * from .plbart import *
from .plm import *
from .poolformer import * from .poolformer import *
from .pop2piano import * from .pop2piano import *
from .prompt_depth_anything import * from .prompt_depth_anything import *

View File

@ -275,6 +275,7 @@ CONFIG_MAPPING_NAMES = OrderedDict[str, str](
("pix2struct", "Pix2StructConfig"), ("pix2struct", "Pix2StructConfig"),
("pixtral", "PixtralVisionConfig"), ("pixtral", "PixtralVisionConfig"),
("plbart", "PLBartConfig"), ("plbart", "PLBartConfig"),
("plm", "PLMConfig"),
("poolformer", "PoolFormerConfig"), ("poolformer", "PoolFormerConfig"),
("pop2piano", "Pop2PianoConfig"), ("pop2piano", "Pop2PianoConfig"),
("prompt_depth_anything", "PromptDepthAnythingConfig"), ("prompt_depth_anything", "PromptDepthAnythingConfig"),
@ -672,6 +673,7 @@ MODEL_NAMES_MAPPING = OrderedDict[str, str](
("pix2struct", "Pix2Struct"), ("pix2struct", "Pix2Struct"),
("pixtral", "Pixtral"), ("pixtral", "Pixtral"),
("plbart", "PLBart"), ("plbart", "PLBart"),
("plm", "PLM"),
("poolformer", "PoolFormer"), ("poolformer", "PoolFormer"),
("pop2piano", "Pop2Piano"), ("pop2piano", "Pop2Piano"),
("prompt_depth_anything", "PromptDepthAnything"), ("prompt_depth_anything", "PromptDepthAnything"),

View File

@ -262,6 +262,7 @@ MODEL_MAPPING_NAMES = OrderedDict(
("phimoe", "PhimoeModel"), ("phimoe", "PhimoeModel"),
("pixtral", "PixtralVisionModel"), ("pixtral", "PixtralVisionModel"),
("plbart", "PLBartModel"), ("plbart", "PLBartModel"),
("plm", "PLMModel"),
("poolformer", "PoolFormerModel"), ("poolformer", "PoolFormerModel"),
("prophetnet", "ProphetNetModel"), ("prophetnet", "ProphetNetModel"),
("pvt", "PvtModel"), ("pvt", "PvtModel"),
@ -640,6 +641,7 @@ MODEL_FOR_CAUSAL_LM_MAPPING_NAMES = OrderedDict(
("phi4_multimodal", "Phi4MultimodalForCausalLM"), ("phi4_multimodal", "Phi4MultimodalForCausalLM"),
("phimoe", "PhimoeForCausalLM"), ("phimoe", "PhimoeForCausalLM"),
("plbart", "PLBartForCausalLM"), ("plbart", "PLBartForCausalLM"),
("plm", "PLMForCausalLM"),
("prophetnet", "ProphetNetForCausalLM"), ("prophetnet", "ProphetNetForCausalLM"),
("qdqbert", "QDQBertLMHeadModel"), ("qdqbert", "QDQBertLMHeadModel"),
("qwen2", "Qwen2ForCausalLM"), ("qwen2", "Qwen2ForCausalLM"),
@ -1161,6 +1163,7 @@ MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES = OrderedDict(
("phi3", "Phi3ForSequenceClassification"), ("phi3", "Phi3ForSequenceClassification"),
("phimoe", "PhimoeForSequenceClassification"), ("phimoe", "PhimoeForSequenceClassification"),
("plbart", "PLBartForSequenceClassification"), ("plbart", "PLBartForSequenceClassification"),
("plm", "PLMForSequenceClassification"),
("qdqbert", "QDQBertForSequenceClassification"), ("qdqbert", "QDQBertForSequenceClassification"),
("qwen2", "Qwen2ForSequenceClassification"), ("qwen2", "Qwen2ForSequenceClassification"),
("qwen2_moe", "Qwen2MoeForSequenceClassification"), ("qwen2_moe", "Qwen2MoeForSequenceClassification"),
@ -1358,6 +1361,7 @@ MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES = OrderedDict(
("persimmon", "PersimmonForTokenClassification"), ("persimmon", "PersimmonForTokenClassification"),
("phi", "PhiForTokenClassification"), ("phi", "PhiForTokenClassification"),
("phi3", "Phi3ForTokenClassification"), ("phi3", "Phi3ForTokenClassification"),
("plm", "PLMForTokenClassification"),
("qdqbert", "QDQBertForTokenClassification"), ("qdqbert", "QDQBertForTokenClassification"),
("qwen2", "Qwen2ForTokenClassification"), ("qwen2", "Qwen2ForTokenClassification"),
("qwen2_moe", "Qwen2MoeForTokenClassification"), ("qwen2_moe", "Qwen2MoeForTokenClassification"),

View File

@ -0,0 +1,28 @@
# coding=utf-8
# Copyright 2025 The PLM team and the HuggingFace Inc. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import _LazyModule
from ...utils.import_utils import define_import_structure
if TYPE_CHECKING:
from .configuration_plm import *
from .modeling_plm import *
else:
import sys
_file = globals()["__file__"]
sys.modules[__name__] = _LazyModule(__name__, _file, define_import_structure(_file), module_spec=__spec__)

View File

@ -0,0 +1,159 @@
# coding=utf-8
# Copyright 2025 The PLM team and The HuggingFace Inc. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PLM model configuration"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
logger = logging.get_logger(__name__)
class PLMConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`PLMModel`]. It is used to instantiate a
PLM model according to the specified arguments, defining the model architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information. Instantiating a configuration with the
defaults will yield a similar configuration to that of
PLM-1.8B-Base [PLM-Team/PLM-1.8B-Base](https://huggingface.co/PLM-Team/PLM-1.8B-Base).
Args:
vocab_size (`int`, *optional*, defaults to 151936):
Vocabulary size of the PLM model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`PLMModel`]
hidden_size (`int`, *optional*, defaults to 2048):
Dimension of the hidden representations.
intermediate_size (`int`, *optional*, defaults to 8192):
Dimension of the MLP representations.
num_hidden_layers (`int`, *optional*, defaults to 32):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 16):
Number of attention heads for each attention layer in the Transformer encoder.
num_key_value_heads (`int`, *optional*, defaults to 16):
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
`num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
by meanpooling all the original heads within that group. For more details checkout [this
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `32`.
kv_lora_rank (`int`, *optional*, defaults to 512):
q_lora_rank (`int`, *optional*):
qk_rope_head_dim (`int`, *optional*, defaults to 64):
v_head_dim (`int`, *optional*, defaults to 128):
qk_nope_head_dim (`int`, *optional*, defaults to 128):
hidden_act (`str` or `function`, *optional*, defaults to `"relu2"`):
The non-linear activation function (function or string) in the decoder.
max_position_embeddings (`int`, *optional*, defaults to 4096):
The maximum sequence length that this model might ever be used with.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
rms_norm_eps (`float`, *optional*, defaults to 1e-06):
The epsilon used by the rms normalization layers.
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models). Only
relevant if `config.is_decoder=True`.
pretraining_tp (`int`, *optional*, defaults to 1):
Experimental feature. Tensor parallelism rank used during pretraining. Please refer to [this
document](https://huggingface.co/docs/transformers/parallelism) to understand more about it. This value is
necessary to ensure exact reproducibility of the pretraining results. Please refer to [this
issue](https://github.com/pytorch/pytorch/issues/76232).
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
Whether the model's input and output word embeddings should be tied.
rope_theta (`float`, *optional*, defaults to 100000.0):
The base period of the RoPE embeddings.
rope_scaling (`Dict`, *optional*):
Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports normal rope.
attention_bias (`bool`, defaults to `False`, *optional*, defaults to `False`):
Whether to use a bias in the query, key, value and output projection layers during self-attention.
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
rope_interleave (`bool`, *optional*, defaults to `True`):
```python
>>> from transformers import PLMModel, PLMConfig
>>> # Initializing a PLM style configuration
>>> configuration = PLMConfig()
>>> # Initializing a model from the PLM style configuration
>>> model = PLMModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "plm"
keys_to_ignore_at_inference = ["past_key_values"]
def __init__(
self,
vocab_size=151936,
hidden_size=2048,
intermediate_size=8192,
num_hidden_layers=32,
num_attention_heads=16,
num_key_value_heads=16,
kv_lora_rank=512,
q_lora_rank=None,
qk_rope_head_dim=64,
v_head_dim=128,
qk_nope_head_dim=128,
hidden_act="relu2",
max_position_embeddings=4096,
initializer_range=0.02,
rms_norm_eps=1e-6,
use_cache=True,
pretraining_tp=1,
tie_word_embeddings=False,
rope_theta=100000.0,
rope_scaling=None,
attention_bias=False,
attention_dropout=0.0,
rope_interleave=True,
**kwargs,
):
self.vocab_size = vocab_size
self.max_position_embeddings = max_position_embeddings
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.kv_lora_rank = kv_lora_rank
self.q_lora_rank = q_lora_rank
self.qk_rope_head_dim = qk_rope_head_dim
self.v_head_dim = v_head_dim
self.qk_nope_head_dim = qk_nope_head_dim
self.qk_head_dim = qk_nope_head_dim + qk_rope_head_dim
self.rope_interleave = rope_interleave
self.head_dim = qk_rope_head_dim
# for backward compatibility
if num_key_value_heads is None:
num_key_value_heads = num_attention_heads
self.num_key_value_heads = num_key_value_heads
self.hidden_act = hidden_act
self.initializer_range = initializer_range
self.rms_norm_eps = rms_norm_eps
self.pretraining_tp = pretraining_tp
self.use_cache = use_cache
self.rope_theta = rope_theta
self.rope_scaling = rope_scaling
self.attention_bias = attention_bias
self.attention_dropout = attention_dropout
super().__init__(
tie_word_embeddings=tie_word_embeddings,
**kwargs,
)
__all__ = ["PLMConfig"]

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,268 @@
# coding=utf-8
# Copyright 2025 The PLM team and the HuggingFace Inc. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Callable, Optional, Tuple
import torch
import torch.nn.functional as F
import torch.utils.checkpoint
from torch import nn
from ...cache_utils import Cache
from ..clip.modeling_clip import CLIPMLP
from ...modeling_flash_attention_utils import FlashAttentionKwargs
from ...modeling_utils import ALL_ATTENTION_FUNCTIONS
from ...processing_utils import Unpack
from ...utils import logging
from ..llama.modeling_llama import (
LlamaDecoderLayer,
LlamaForCausalLM,
LlamaForSequenceClassification,
LlamaForTokenClassification,
LlamaModel,
LlamaPreTrainedModel,
LlamaRMSNorm,
LlamaRotaryEmbedding,
apply_rotary_pos_emb,
eager_attention_forward,
rotate_half,
)
from .configuration_plm import PLMConfig
logger = logging.get_logger(__name__)
class PLMRMSNorm(LlamaRMSNorm):
pass
class PLMRotaryEmbedding(LlamaRotaryEmbedding):
pass
def apply_rotary_pos_emb_interleave(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
r"""
TODO let's just use the original freqcis computation to not have the view
transpose + reshape! This is not optimized!
Applies Rotary Position Embedding to the query and key tensors.
Args:
q (`torch.Tensor`): The query tensor.
k (`torch.Tensor`): The key tensor.
cos (`torch.Tensor`): The cosine part of the rotary embedding.
sin (`torch.Tensor`): The sine part of the rotary embedding.
position_ids (`torch.Tensor`):
The position indices of the tokens corresponding to the query and key tensors. For example, this can be
used to pass offsetted position ids when working with a KV-cache.
unsqueeze_dim (`int`, *optional*, defaults to 1):
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
Returns:
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
"""
cos = cos.unsqueeze(unsqueeze_dim)
sin = sin.unsqueeze(unsqueeze_dim)
b, h, s, d = q.shape
q = q.view(b, h, s, d // 2, 2).transpose(4, 3).reshape(b, h, s, d)
b, h, s, d = k.shape
k = k.view(b, h, s, d // 2, 2).transpose(4, 3).reshape(b, h, s, d)
q_embed = (q * cos) + (rotate_half(q) * sin)
k_embed = (k * cos) + (rotate_half(k) * sin)
return q_embed, k_embed
class PLMMLP(CLIPMLP):
pass
class PLMAttention(nn.Module):
"""Multi-headed attention from 'Attention Is All You Need' paper"""
def __init__(self, config: PLMConfig, layer_idx: int):
super().__init__()
self.config = config
self.layer_idx = layer_idx
self.num_key_value_groups = config.num_attention_heads // config.num_key_value_heads
self.attention_dropout = config.attention_dropout
self.num_heads = config.num_attention_heads
self.rope_theta = config.rope_theta
self.q_lora_rank = config.q_lora_rank
self.qk_rope_head_dim = config.qk_rope_head_dim
self.kv_lora_rank = config.kv_lora_rank
self.v_head_dim = config.v_head_dim
self.qk_nope_head_dim = config.qk_nope_head_dim
self.qk_head_dim = config.qk_head_dim
self.is_causal = True
if config.q_lora_rank is not None:
self.q_a_proj = nn.Linear(config.hidden_size, config.q_lora_rank, bias=config.attention_bias)
self.q_a_layernorm = PLMRMSNorm(config.q_lora_rank)
self.q_b_proj = nn.Linear(config.q_lora_rank, self.num_heads * self.qk_head_dim, bias=False)
else:
self.q_proj = nn.Linear(config.hidden_size, self.num_heads * self.qk_head_dim, bias=False)
self.kv_a_proj_with_mqa = nn.Linear(
config.hidden_size,
self.kv_lora_rank + self.qk_rope_head_dim,
bias=config.attention_bias,
)
self.kv_a_layernorm = PLMRMSNorm(self.kv_lora_rank)
self.kv_b_proj = nn.Linear(
self.kv_lora_rank,
self.num_heads * (self.qk_nope_head_dim + self.v_head_dim),
bias=False,
)
self.o_proj = nn.Linear(
self.num_heads * self.v_head_dim,
config.hidden_size,
bias=config.attention_bias,
)
self.scaling = self.qk_head_dim ** (-0.5)
def forward(
self,
hidden_states: torch.Tensor,
position_embeddings: Tuple[torch.Tensor, torch.Tensor],
attention_mask: Optional[torch.Tensor],
past_key_value: Optional[Cache] = None,
cache_position: Optional[torch.LongTensor] = None,
**kwargs: Unpack[FlashAttentionKwargs],
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
batch_size, seq_length = hidden_states.shape[:-1]
query_shape = (batch_size, seq_length, -1, self.qk_head_dim)
key_shape = (
batch_size,
seq_length,
-1,
self.qk_nope_head_dim + self.v_head_dim,
)
if self.q_lora_rank is not None:
q_states = (
self.q_b_proj(self.q_a_layernorm(self.q_a_proj(hidden_states))).view(query_shape).transpose(1, 2)
)
else:
q_states = self.q_proj(hidden_states).view(query_shape).transpose(1, 2)
q_pass, q_rot = torch.split(q_states, [self.qk_nope_head_dim, self.qk_rope_head_dim], dim=-1)
compressed_kv = self.kv_a_proj_with_mqa(hidden_states)
k_pass, k_rot = torch.split(compressed_kv, [self.kv_lora_rank, self.qk_rope_head_dim], dim=-1)
k_pass = self.kv_b_proj(self.kv_a_layernorm(k_pass)).view(key_shape).transpose(1, 2)
k_pass, value_states = torch.split(k_pass, [self.qk_nope_head_dim, self.v_head_dim], dim=-1)
k_rot = k_rot.view(batch_size, 1, seq_length, self.qk_rope_head_dim)
cos, sin = position_embeddings
if self.config.rope_interleave: # support using interleaved weights for efficiency
q_rot, k_rot = apply_rotary_pos_emb_interleave(q_rot, k_rot, cos, sin)
else:
q_rot, k_rot = apply_rotary_pos_emb(q_rot, k_rot, cos, sin)
k_rot = k_rot.expand(*k_pass.shape[:-1], -1)
query_states = torch.cat((q_pass, q_rot), dim=-1)
key_states = torch.cat((k_pass, k_rot), dim=-1)
if past_key_value is not None:
# sin and cos are specific to RoPE models; cache_position needed for the static cache
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
if self.config._attn_implementation == "flash_attention_2" and self.qk_head_dim != self.v_head_dim:
value_states = F.pad(value_states, [0, self.qk_head_dim - self.v_head_dim])
attention_interface: Callable = eager_attention_forward
if self.config._attn_implementation != "eager":
if self.config._attn_implementation == "sdpa" and kwargs.get("output_attentions", False):
logger.warning_once(
"`torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to "
'eager attention. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
)
else:
attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
attn_output, attn_weights = attention_interface(
self,
query_states,
key_states,
value_states,
attention_mask,
dropout=0.0 if not self.training else self.attention_dropout,
scaling=self.scaling,
**kwargs,
)
if self.config._attn_implementation == "flash_attention_2" and self.qk_head_dim != self.v_head_dim:
attn_output = attn_output[:, :, :, : self.v_head_dim]
attn_output = attn_output.reshape(batch_size, seq_length, -1).contiguous()
attn_output = self.o_proj(attn_output)
return attn_output, attn_weights
class PLMDecoderLayer(LlamaDecoderLayer):
def __init__(self, config: PLMConfig, layer_idx: int):
super().__init__(config, layer_idx)
self.self_attn = PLMAttention(config=config, layer_idx=layer_idx)
self.mlp = PLMMLP(config)
class PLMPreTrainedModel(LlamaPreTrainedModel):
def _init_weights(self, module):
std = self.config.initializer_range
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
elif isinstance(module, nn.Parameter):
module.weight.data.normal_(mean=0.0, std=std)
class PLMForTokenClassification(LlamaForTokenClassification):
pass
class PLMForCausalLM(LlamaForCausalLM):
pass
class PLMModel(LlamaModel):
pass
class PLMForSequenceClassification(LlamaForSequenceClassification):
pass
__all__ = [
"PLMPreTrainedModel",
"PLMModel",
"PLMForCausalLM",
"PLMForSequenceClassification",
"PLMForTokenClassification",
]

View File

View File

@ -0,0 +1,516 @@
# coding=utf-8
# Copyright 2025 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Testing suite for the PyTorch PLM model."""
import unittest
from packaging import version
from parameterized import parameterized
from transformers import AutoTokenizer, PLMConfig, is_torch_available
from transformers.testing_utils import (
require_read_token,
require_torch,
require_torch_accelerator,
slow,
torch_device,
)
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
PLMForCausalLM,
PLMForSequenceClassification,
PLMForTokenClassification,
PLMModel,
)
class PLMModelTester:
def __init__(
self,
parent,
batch_size=13,
seq_length=7,
is_training=True,
use_input_mask=True,
use_token_type_ids=False,
use_labels=True,
vocab_size=99,
hidden_size=32,
intermediate_size=37,
num_hidden_layers=5,
num_attention_heads=4,
num_key_value_heads=4,
kv_lora_rank=16,
q_lora_rank=32,
qk_rope_head_dim=16,
v_head_dim=32,
qk_nope_head_dim=32,
n_group=2,
first_k_dense_replace=2,
norm_topk_prob=True,
hidden_act="relu2",
max_position_embeddings=512,
initializer_range=0.02,
attention_probs_dropout_prob=0.1,
type_vocab_size=16,
type_sequence_label_size=2,
num_labels=3,
num_choices=4,
pad_token_id=0,
scope=None,
):
self.parent = parent
self.batch_size = batch_size
self.seq_length = seq_length
self.is_training = is_training
self.use_input_mask = use_input_mask
self.use_token_type_ids = use_token_type_ids
self.use_labels = use_labels
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.num_key_value_heads = num_key_value_heads
self.kv_lora_rank = kv_lora_rank
self.q_lora_rank = q_lora_rank
self.qk_rope_head_dim = qk_rope_head_dim
self.v_head_dim = v_head_dim
self.qk_nope_head_dim = qk_nope_head_dim
self.hidden_act = hidden_act
self.max_position_embeddings = max_position_embeddings
self.initializer_range = initializer_range
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.type_vocab_size = type_vocab_size
self.type_sequence_label_size = type_sequence_label_size
self.num_labels = num_labels
self.num_choices = num_choices
self.pad_token_id = pad_token_id
self.scope = scope
def prepare_config_and_inputs(self):
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
input_mask = None
if self.use_input_mask:
input_mask = torch.tril(torch.ones_like(input_ids).to(torch_device))
token_type_ids = None
if self.use_token_type_ids:
token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)
sequence_labels = None
token_labels = None
choice_labels = None
if self.use_labels:
sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
choice_labels = ids_tensor([self.batch_size], self.num_choices)
config = self.get_config()
return (
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
)
def get_config(self):
return PLMConfig(
vocab_size=self.vocab_size,
hidden_size=self.hidden_size,
intermediate_size=self.intermediate_size,
num_hidden_layers=self.num_hidden_layers,
num_attention_heads=self.num_attention_heads,
num_key_value_heads=self.num_key_value_heads,
kv_lora_rank=self.kv_lora_rank,
q_lora_rank=self.q_lora_rank,
qk_rope_head_dim=self.qk_rope_head_dim,
v_head_dim=self.v_head_dim,
qk_nope_head_dim=self.qk_nope_head_dim,
hidden_act=self.hidden_act,
max_position_embeddings=self.max_position_embeddings,
initializer_range=self.initializer_range,
use_cache=True,
pad_token_id=self.pad_token_id,
attention_dropout=self.attention_probs_dropout_prob,
)
def create_and_check_model(
self,
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
):
model = PLMModel(config=config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=input_mask)
result = model(input_ids)
self.parent.assertEqual(
result.last_hidden_state.shape,
(self.batch_size, self.seq_length, self.hidden_size),
)
def create_and_check_model_as_decoder(
self,
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
encoder_hidden_states,
encoder_attention_mask,
):
config.add_cross_attention = True
model = PLMModel(config)
model.to(torch_device)
model.eval()
result = model(
input_ids,
attention_mask=input_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
)
result = model(
input_ids,
attention_mask=input_mask,
encoder_hidden_states=encoder_hidden_states,
)
result = model(input_ids, attention_mask=input_mask)
self.parent.assertEqual(
result.last_hidden_state.shape,
(self.batch_size, self.seq_length, self.hidden_size),
)
def create_and_check_for_causal_lm(
self,
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
encoder_hidden_states,
encoder_attention_mask,
):
model = PLMForCausalLM(config=config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=input_mask, labels=token_labels)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
def create_and_check_decoder_model_past_large_inputs(
self,
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
encoder_hidden_states,
encoder_attention_mask,
):
config.is_decoder = True
config.add_cross_attention = True
model = PLMForCausalLM(config=config)
model.to(torch_device)
model.eval()
# first forward pass
outputs = model(
input_ids,
attention_mask=input_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
use_cache=True,
)
past_key_values = outputs.past_key_values
# create hypothetical multiple next token and extent to next_input_ids
next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size)
next_mask = ids_tensor((self.batch_size, 3), vocab_size=2)
# append to next input_ids and
next_input_ids = torch.cat([input_ids, next_tokens], dim=-1)
next_attention_mask = torch.cat([input_mask, next_mask], dim=-1)
output_from_no_past = model(
next_input_ids,
attention_mask=next_attention_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
output_hidden_states=True,
)["hidden_states"][0]
output_from_past = model(
next_tokens,
attention_mask=next_attention_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
past_key_values=past_key_values,
output_hidden_states=True,
)["hidden_states"][0]
# select random slice
random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach()
output_from_past_slice = output_from_past[:, :, random_slice_idx].detach()
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1])
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3))
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
(
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
) = config_and_inputs
inputs_dict = {"input_ids": input_ids, "attention_mask": input_mask}
return config, inputs_dict
@require_torch
class PLMModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase):
# breakpoint()
all_model_classes = (
(
PLMModel,
PLMForCausalLM,
PLMForSequenceClassification,
PLMForTokenClassification,
)
if is_torch_available()
else ()
)
all_generative_model_classes = (PLMForCausalLM,) if is_torch_available() else ()
pipeline_model_mapping = (
{
"feature-extraction": PLMModel,
"text-classification": PLMForSequenceClassification,
"token-classification": PLMForTokenClassification,
"text-generation": PLMForCausalLM,
"zero-shot": PLMForSequenceClassification,
}
if is_torch_available()
else {}
)
test_headmasking = False
test_pruning = False
fx_compatible = False
# Need to use `0.8` instead of `0.9` for `test_cpu_offload`
# This is because we are hitting edge cases with the causal_mask buffer
model_split_percents = [0.5, 0.7, 0.8]
# used in `test_torch_compile_for_training`
_torch_compile_train_cls = PLMForCausalLM if is_torch_available() else None
def setUp(self):
self.model_tester = PLMModelTester(self)
self.config_tester = ConfigTester(self, config_class=PLMConfig, hidden_size=37)
@unittest.skip("Failing because of unique cache (HybridCache)")
def test_model_outputs_equivalence(self, **kwargs):
pass
@parameterized.expand([("random",), ("same",)])
@unittest.skip("PLM has HybridCache which is not compatible with assisted decoding")
def test_assisted_decoding_matches_greedy_search(self, assistant_type):
pass
@unittest.skip("PLM has HybridCache which is not compatible with assisted decoding")
def test_prompt_lookup_decoding_matches_greedy_search(self, assistant_type):
pass
@unittest.skip("PLM has HybridCache which is not compatible with assisted decoding")
def test_assisted_decoding_sample(self):
pass
@unittest.skip("PLM has HybridCache which is not compatible with dola decoding")
def test_dola_decoding_sample(self):
pass
@unittest.skip("PLM has HybridCache and doesn't support continue from past kv")
def test_generate_continue_from_past_key_values(self):
pass
@unittest.skip("PLM has HybridCache and doesn't support low_memory generation")
def test_beam_search_low_memory(self):
pass
@unittest.skip("PLM has HybridCache and doesn't support contrastive generation")
def test_contrastive_generate(self):
pass
@unittest.skip("PLM has HybridCache and doesn't support contrastive generation")
def test_contrastive_generate_dict_outputs_use_cache(self):
pass
@unittest.skip("PLM has HybridCache and doesn't support contrastive generation")
def test_contrastive_generate_low_memory(self):
pass
@unittest.skip("PLM has HybridCache and doesn't support StaticCache. Though it could, it shouldn't support.")
def test_generate_with_static_cache(self):
pass
@unittest.skip("PLM has HybridCache and doesn't support StaticCache. Though it could, it shouldn't support.")
def test_generate_from_inputs_embeds_with_static_cache(self):
pass
@unittest.skip("PLM has HybridCache and doesn't support StaticCache. Though it could, it shouldn't support.")
def test_generate_continue_from_inputs_embeds(self):
pass
@unittest.skip("PLM's eager attn/sdpa attn outputs are expected to be different")
def test_sdpa_equivalence(self):
pass
@unittest.skip("PLM uses MLA so it is not compatible with the standard cache format")
def test_beam_search_generate_dict_outputs_use_cache(self):
pass
@unittest.skip("PLM uses MLA so it is not compatible with the standard cache format")
def test_generate_compilation_all_outputs(self):
pass
@unittest.skip("PLM uses MLA so it is not compatible with the standard cache format")
def test_generate_compile_model_forward(self):
pass
@unittest.skip("PLM uses MLA so it is not compatible with the standard cache format")
def test_greedy_generate_dict_outputs_use_cache(self):
pass
def test_config(self):
self.config_tester.run_common_tests()
def test_PLM_token_classification_model(self):
config, input_dict = self.model_tester.prepare_config_and_inputs_for_common()
config.num_labels = 3
input_ids = input_dict["input_ids"]
attention_mask = input_ids.ne(1).to(torch_device)
token_labels = ids_tensor([self.model_tester.batch_size, self.model_tester.seq_length], config.num_labels)
model = PLMForTokenClassification(config=config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=attention_mask, labels=token_labels)
self.assertEqual(
result.logits.shape,
(self.model_tester.batch_size, self.model_tester.seq_length, self.model_tester.num_labels),
)
def test_PLM_sequence_classification_model(self):
config, input_dict = self.model_tester.prepare_config_and_inputs_for_common()
config.num_labels = 3
input_ids = input_dict["input_ids"]
attention_mask = input_ids.ne(1).to(torch_device)
sequence_labels = ids_tensor([self.model_tester.batch_size], self.model_tester.type_sequence_label_size)
model = PLMForSequenceClassification(config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=attention_mask, labels=sequence_labels)
self.assertEqual(result.logits.shape, (self.model_tester.batch_size, self.model_tester.num_labels))
@require_torch_accelerator
class PLMIntegrationTest(unittest.TestCase):
# This variable is used to determine which CUDA device are we using for our runners (A10 or T4)
# Depending on the hardware we get different logits / generations
cuda_compute_capability_major_version = None
@classmethod
def setUpClass(cls):
if is_torch_available() and torch.cuda.is_available():
cls.cuda_compute_capability_major_version = torch.cuda.get_device_capability()[0]
@slow
@require_torch_accelerator
@require_read_token
def test_compile_static_cache(self):
# `torch==2.2` will throw an error on this test (as in other compilation tests), but torch==2.1.2 and torch>2.2
# work as intended. See https://github.com/pytorch/pytorch/issues/121943
if version.parse(torch.__version__) < version.parse("2.3.0"):
self.skipTest(reason="This test requires torch >= 2.3 to run.")
NUM_TOKENS_TO_GENERATE = 40
# Note on `EXPECTED_TEXT_COMPLETION`'s diff: the current value matches the original test if the original test
# was changed to have a cache of 53 tokens (as opposed to 4096), on Ampere GPUs.
EXPECTED_TEXT_COMPLETION = [
"Simply put, the theory of relativity states that 1) the speed of light is constant in all inertial "
"reference frames, and 2) the laws of physics are the same for all inertial reference frames.\nThe "
"theory of relativ",
"My favorite all time favorite condiment is ketchup. I love it on everything. I love it on my eggs, "
"my fries, my chicken, my burgers, my hot dogs, my sandwiches, my salads, my p",
]
prompts = [
"Simply put, the theory of relativity states that ",
"My favorite all time favorite condiment is ketchup.",
]
tokenizer = AutoTokenizer.from_pretrained("PLM-Team/PLM-1.8B-Base", use_fast=False)
model = PLMForCausalLM.from_pretrained(
"PLM-Team/PLM-1.8B-Base", device_map=torch_device, torch_dtype=torch.float16
)
inputs = tokenizer(prompts, return_tensors="pt", padding=True).to(model.device)
# Dynamic Cache
generated_ids = model.generate(**inputs, max_new_tokens=NUM_TOKENS_TO_GENERATE, do_sample=False)
dynamic_text = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)
self.assertEqual(EXPECTED_TEXT_COMPLETION, dynamic_text)
# Static Cache
generated_ids = model.generate(
**inputs, max_new_tokens=NUM_TOKENS_TO_GENERATE, do_sample=False, cache_implementation="static"
)
static_text = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)
self.assertEqual(EXPECTED_TEXT_COMPLETION, static_text)
# Static Cache + compile
model._cache = None # clear cache object, initialized when we pass `cache_implementation="static"`
model.forward = torch.compile(model.forward, mode="reduce-overhead", fullgraph=True)
generated_ids = model.generate(
**inputs, max_new_tokens=NUM_TOKENS_TO_GENERATE, do_sample=False, cache_implementation="static"
)
static_compiled_text = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)
self.assertEqual(EXPECTED_TEXT_COMPLETION, static_compiled_text)