mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-31 02:02:21 +06:00
parent
bde41d69b4
commit
9c0c323e12
@ -156,7 +156,7 @@ class DonutSwinImageClassifierOutput(ModelOutput):
|
||||
"""
|
||||
|
||||
loss: Optional[torch.FloatTensor] = None
|
||||
logits: torch.FloatTensor = None
|
||||
logits: Optional[torch.FloatTensor] = None
|
||||
hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
|
||||
attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
|
||||
reshaped_hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
|
||||
|
@ -57,7 +57,6 @@ class QuarkTest(unittest.TestCase):
|
||||
EXPECTED_RELATIVE_DIFFERENCE = 1.66
|
||||
device_map = None
|
||||
|
||||
@require_read_token
|
||||
@classmethod
|
||||
def setUpClass(cls):
|
||||
"""
|
||||
@ -76,15 +75,17 @@ class QuarkTest(unittest.TestCase):
|
||||
device_map=cls.device_map,
|
||||
)
|
||||
|
||||
@require_read_token
|
||||
def test_memory_footprint(self):
|
||||
mem_quantized = self.quantized_model.get_memory_footprint()
|
||||
|
||||
self.assertTrue(self.mem_fp16 / mem_quantized > self.EXPECTED_RELATIVE_DIFFERENCE)
|
||||
|
||||
@require_read_token
|
||||
def test_device_and_dtype_assignment(self):
|
||||
r"""
|
||||
Test whether trying to cast (or assigning a device to) a model after quantization will throw an error.
|
||||
Checks also if other models are casted correctly.
|
||||
Checks also if other models are casted correctly .
|
||||
"""
|
||||
# This should work
|
||||
if self.device_map is None:
|
||||
@ -94,6 +95,7 @@ class QuarkTest(unittest.TestCase):
|
||||
# Tries with a `dtype``
|
||||
self.quantized_model.to(torch.float16)
|
||||
|
||||
@require_read_token
|
||||
def test_original_dtype(self):
|
||||
r"""
|
||||
A simple test to check if the model succesfully stores the original dtype
|
||||
@ -104,6 +106,7 @@ class QuarkTest(unittest.TestCase):
|
||||
|
||||
self.assertTrue(isinstance(self.quantized_model.model.layers[0].mlp.gate_proj, QParamsLinear))
|
||||
|
||||
@require_read_token
|
||||
def check_inference_correctness(self, model):
|
||||
r"""
|
||||
Test the generation quality of the quantized model and see that we are matching the expected output.
|
||||
@ -127,6 +130,7 @@ class QuarkTest(unittest.TestCase):
|
||||
# Get the generation
|
||||
self.assertIn(self.tokenizer.decode(output_sequences[0], skip_special_tokens=True), self.EXPECTED_OUTPUTS)
|
||||
|
||||
@require_read_token
|
||||
def test_generate_quality(self):
|
||||
"""
|
||||
Simple test to check the quality of the model by comparing the generated tokens with the expected tokens
|
||||
|
Loading…
Reference in New Issue
Block a user