feat: add benchmarks_entrypoint.py (#34495)

* feat: add `benchmarks_entrypoint.py`

Adding `benchmarks_entrypoint.py` file, which will be run from the
benchmarks CI.

This python script will list all python files from the `benchmark/`
folder and run the included `run_benchmark` function, allowing people to
add new benchmarks scripts.

* feat: add `MetricsRecorder`

* feat: update dashboard

* fix: add missing arguments to `MetricsRecorder`

* feat: update dash & add datasource + `default.yml`

* fix: move responsibility to create `MetricsRecorder` in bench script

* fix: update incorrect datasource UID

* fix: incorrect variable values

* debug: benchmark entrypoint script

* refactor: update log level

* fix: update broken import

* feat: add debug log in `MetricsRecorder`

* debug: set log level to debug

* fix: set connection `autocommit` to `True`
This commit is contained in:
Luc Georges 2024-12-18 18:59:07 +01:00 committed by GitHub
parent 2c47618c1a
commit 9a94dfe123
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
8 changed files with 334 additions and 169 deletions

View File

@ -63,7 +63,7 @@ jobs:
commit_id=$GITHUB_SHA
fi
commit_msg=$(git show -s --format=%s | cut -c1-70)
python3 benchmark/llama.py "${{ github.head_ref || github.ref_name }}" "$commit_id" "$commit_msg"
python3 benchmark/benchmarks_entrypoint.py "${{ github.head_ref || github.ref_name }}" "$commit_id" "$commit_msg"
env:
HF_TOKEN: ${{ secrets.HF_HUB_READ_TOKEN }}
# Enable this to see debug logs

49
benchmark/README.md Normal file
View File

@ -0,0 +1,49 @@
# Benchmarks
You might want to add new benchmarks.
You will need to define a python function named `run_benchmark` in your python file and the file must be located in this `benchmark/` directory.
The expected function signature is the following:
```py
def run_benchmark(logger: Logger, branch: str, commit_id: str, commit_msg: str, num_tokens_to_generate=100):
```
## Writing metrics to the database
`MetricRecorder` is thread-safe, in the sense of the python [`Thread`](https://docs.python.org/3/library/threading.html#threading.Thread). This means you can start a background thread to do the readings on the device measurements while not blocking the main thread to execute the model measurements.
cf [`llama.py`](./llama.py) to see an example of this in practice.
```py
from benchmarks_entrypoint import MetricsRecorder
import psycopg2
def run_benchmark(logger: Logger, branch: str, commit_id: str, commit_msg: str, num_tokens_to_generate=100):
metrics_recorder = MetricsRecorder(psycopg2.connect("dbname=metrics"), logger, branch, commit_id, commit_msg)
benchmark_id = metrics_recorder.initialise_benchmark({"gpu_name": gpu_name, "model_id": model_id})
# To collect device measurements
metrics_recorder.collect_device_measurements(
benchmark_id, cpu_util, mem_megabytes, gpu_util, gpu_mem_megabytes
)
# To collect your model measurements
metrics_recorder.collect_model_measurements(
benchmark_id,
{
"model_load_time": model_load_time,
"first_eager_forward_pass_time_secs": first_eager_fwd_pass_time,
"second_eager_forward_pass_time_secs": second_eager_fwd_pass_time,
"first_eager_generate_time_secs": first_eager_generate_time,
"second_eager_generate_time_secs": second_eager_generate_time,
"time_to_first_token_secs": time_to_first_token,
"time_to_second_token_secs": time_to_second_token,
"time_to_third_token_secs": time_to_third_token,
"time_to_next_token_mean_secs": mean_time_to_next_token,
"first_compile_generate_time_secs": first_compile_generate_time,
"second_compile_generate_time_secs": second_compile_generate_time,
"third_compile_generate_time_secs": third_compile_generate_time,
"fourth_compile_generate_time_secs": fourth_compile_generate_time,
},
)
```

View File

@ -0,0 +1,144 @@
import argparse
import importlib.util
import logging
import os
from typing import Dict
import psycopg2
import sys
from psycopg2.extras import Json
from psycopg2.extensions import register_adapter
register_adapter(dict, Json)
class ImportModuleException(Exception):
pass
class MetricsRecorder:
def __init__(self, connection, logger: logging.Logger, branch: str, commit_id: str, commit_msg: str):
self.conn = connection
self.conn.autocommit = True
self.logger = logger
self.branch = branch
self.commit_id = commit_id
self.commit_msg = commit_msg
def initialise_benchmark(self, metadata: Dict[str, str]) -> int:
"""
Creates a new benchmark, returns the benchmark id
"""
# gpu_name: str, model_id: str
with self.conn.cursor() as cur:
cur.execute(
"INSERT INTO benchmarks (branch, commit_id, commit_message, metadata) VALUES (%s, %s, %s, %s) RETURNING benchmark_id",
(self.branch, self.commit_id, self.commit_msg, metadata),
)
benchmark_id = cur.fetchone()[0]
logger.debug(f"initialised benchmark #{benchmark_id}")
return benchmark_id
def collect_device_measurements(self, benchmark_id: int, cpu_util, mem_megabytes, gpu_util, gpu_mem_megabytes):
"""
Collect device metrics, such as CPU & GPU usage. These are "static", as in you cannot pass arbitrary arguments to the function.
"""
with self.conn.cursor() as cur:
cur.execute(
"INSERT INTO device_measurements (benchmark_id, cpu_util, mem_megabytes, gpu_util, gpu_mem_megabytes) VALUES (%s, %s, %s, %s, %s)",
(benchmark_id, cpu_util, mem_megabytes, gpu_util, gpu_mem_megabytes),
)
self.logger.debug(
f"inserted device measurements for benchmark #{benchmark_id} [CPU util: {cpu_util}, mem MBs: {mem_megabytes}, GPU util: {gpu_util}, GPU mem MBs: {gpu_mem_megabytes}]"
)
def collect_model_measurements(self, benchmark_id: int, measurements: Dict[str, float]):
with self.conn.cursor() as cur:
cur.execute(
"""
INSERT INTO model_measurements (
benchmark_id,
measurements
) VALUES (%s, %s)
""",
(
benchmark_id,
measurements,
),
)
self.logger.debug(f"inserted model measurements for benchmark #{benchmark_id}: {measurements}")
def close(self):
self.conn.close()
logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)
handler = logging.StreamHandler(sys.stdout)
handler.setLevel(logging.INFO)
formatter = logging.Formatter("[%(levelname)s - %(asctime)s] %(message)s")
handler.setFormatter(formatter)
logger.addHandler(handler)
def parse_arguments():
"""
Parse command line arguments for the benchmarking CLI.
"""
parser = argparse.ArgumentParser(description="CLI for benchmarking the huggingface/transformers.")
parser.add_argument(
"branch",
type=str,
help="The branch name on which the benchmarking is performed.",
)
parser.add_argument(
"commit_id",
type=str,
help="The commit hash on which the benchmarking is performed.",
)
parser.add_argument(
"commit_msg",
type=str,
help="The commit message associated with the commit, truncated to 70 characters.",
)
args = parser.parse_args()
return args.branch, args.commit_id, args.commit_msg
def import_from_path(module_name, file_path):
try:
spec = importlib.util.spec_from_file_location(module_name, file_path)
module = importlib.util.module_from_spec(spec)
sys.modules[module_name] = module
spec.loader.exec_module(module)
return module
except Exception as e:
raise ImportModuleException(f"failed to load python module: {e}")
if __name__ == "__main__":
benchmarks_folder_path = os.path.dirname(os.path.realpath(__file__))
branch, commit_id, commit_msg = parse_arguments()
for entry in os.scandir(benchmarks_folder_path):
try:
if not entry.name.endswith(".py"):
continue
if entry.path == __file__:
continue
logger.debug(f"loading: {entry.name}")
module = import_from_path(entry.name.split(".")[0], entry.path)
logger.info(f"runnning benchmarks in: {entry.name}")
module.run_benchmark(logger, branch, commit_id, commit_msg)
except ImportModuleException as e:
logger.error(e)
except Exception as e:
logger.error(f"error running benchmarks for {entry.name}: {e}")

10
benchmark/default.yml Normal file
View File

@ -0,0 +1,10 @@
apiVersion: 1
providers:
- name: 'Transformers Benchmarks'
orgId: 1
type: file
updateIntervalSeconds: 10
allowUiUpdates: true
options:
path: /etc/grafana/dashboards

View File

@ -30,7 +30,7 @@
"title": "Go to data",
"tooltip": "Go to data",
"type": "link",
"url": "http://transformers-benchmarks.huggingface.co/d/fdz33iyzln9c0a/transformers-benchmarks?orgId=1&from=${StartTime}&to=${EndTime}"
"url": "http://transformers-benchmarks.hf.co/d/fdz33iyzln9c0a/transformers-benchmarks?orgId=1&from=${StartTime}&to=${EndTime}"
}
],
"liveNow": true,
@ -77,7 +77,7 @@
"properties": [
{
"id": "custom.width",
"value": 196
"value": 202
}
]
},
@ -101,7 +101,7 @@
"properties": [
{
"id": "custom.width",
"value": 581
"value": 524
}
]
},
@ -113,7 +113,19 @@
"properties": [
{
"id": "custom.width",
"value": 379
"value": 353
}
]
},
{
"matcher": {
"id": "byName",
"options": "model_id"
},
"properties": [
{
"id": "custom.width",
"value": 216
}
]
}
@ -143,12 +155,14 @@
"targets": [
{
"datasource": {
"type": "grafana-postgresql-datasource"
"default": true,
"type": "grafana-postgresql-datasource",
"uid": "be28nkzirtb0gd"
},
"editorMode": "code",
"format": "table",
"rawQuery": true,
"rawSql": "SELECT commit_id as commit_id, commit_message, gpu_name, created_at AS date FROM benchmarks WHERE branch = '${branch}' ORDER BY benchmark_id DESC LIMIT ${last_n_commits};",
"rawSql": "SELECT commit_id, commit_message, metadata->>'gpu_name' as gpu_name, metadata->>'model_id' as model_id, created_at AS date FROM benchmarks WHERE branch = '${branch}' AND metadata->>'gpu_name' = '${gpu_name}' ORDER BY benchmark_id DESC LIMIT ${last_n_commits};",
"refId": "A",
"sql": {
"columns": [
@ -306,13 +320,14 @@
"targets": [
{
"datasource": {
"default": true,
"type": "grafana-postgresql-datasource",
"uid": "bdz2yss7sxo1sc"
"uid": "be28nkzirtb0gd"
},
"editorMode": "code",
"format": "table",
"rawQuery": true,
"rawSql": "SELECT CAST(m.measurements->'first_eager_forward_pass_time_secs' AS double precision) AS first_eager_forward_pass_time_secs, left(b.commit_id, 7), m.time FROM benchmarks as b JOIN model_measurements AS m ON b.benchmark_id = m.benchmark_id WHERE b.branch = '${branch}' AND gpu_name = '${gpu_name}' ORDER BY b.benchmark_id DESC LIMIT ${last_n_commits};",
"rawSql": "SELECT CAST(m.measurements->'first_eager_forward_pass_time_secs' AS double precision) AS first_eager_forward_pass_time_secs, left(b.commit_id, 7), m.time FROM benchmarks as b JOIN model_measurements AS m ON b.benchmark_id = m.benchmark_id WHERE b.branch = '${branch}' AND b.metadata->>'gpu_name' = '${gpu_name}' ORDER BY b.benchmark_id DESC LIMIT ${last_n_commits};",
"refId": "A",
"sql": {
"columns": [
@ -431,13 +446,14 @@
"targets": [
{
"datasource": {
"default": true,
"type": "grafana-postgresql-datasource",
"uid": "bdz2yss7sxo1sc"
"uid": "be28nkzirtb0gd"
},
"editorMode": "code",
"format": "table",
"rawQuery": true,
"rawSql": "SELECT CAST(m.measurements->'second_eager_forward_pass_time_secs' AS double precision) AS second_eager_forward_pass_time_secs, left(b.commit_id, 7), m.time FROM benchmarks as b JOIN model_measurements AS m ON b.benchmark_id = m.benchmark_id WHERE b.branch = '${branch}' AND gpu_name = '${gpu_name}' ORDER BY b.benchmark_id DESC LIMIT ${last_n_commits};",
"rawSql": "SELECT CAST(m.measurements->'second_eager_forward_pass_time_secs' AS double precision) AS second_eager_forward_pass_time_secs, left(b.commit_id, 7), m.time FROM benchmarks as b JOIN model_measurements AS m ON b.benchmark_id = m.benchmark_id WHERE b.branch = '${branch}' AND b.metadata->>'gpu_name' = '${gpu_name}' ORDER BY b.benchmark_id DESC LIMIT ${last_n_commits};",
"refId": "A",
"sql": {
"columns": [
@ -565,13 +581,14 @@
"targets": [
{
"datasource": {
"default": true,
"type": "grafana-postgresql-datasource",
"uid": "bdz2yss7sxo1sc"
"uid": "be28nkzirtb0gd"
},
"editorMode": "code",
"format": "table",
"rawQuery": true,
"rawSql": "SELECT CAST(m.measurements->'time_to_first_token_secs' AS double precision) AS time_to_first_token_secs, left(b.commit_id, 7), m.time FROM benchmarks as b JOIN model_measurements AS m ON b.benchmark_id = m.benchmark_id WHERE b.branch = '${branch}' AND gpu_name = '${gpu_name}' ORDER BY b.benchmark_id DESC LIMIT ${last_n_commits};",
"rawSql": "SELECT CAST(m.measurements->'time_to_first_token_secs' AS double precision) AS time_to_first_token_secs, left(b.commit_id, 7), m.time FROM benchmarks as b JOIN model_measurements AS m ON b.benchmark_id = m.benchmark_id WHERE b.branch = '${branch}' AND b.metadata->>'gpu_name' = '${gpu_name}' ORDER BY b.benchmark_id DESC LIMIT ${last_n_commits};",
"refId": "A",
"sql": {
"columns": [
@ -686,13 +703,14 @@
"targets": [
{
"datasource": {
"default": true,
"type": "grafana-postgresql-datasource",
"uid": "bdz2yss7sxo1sc"
"uid": "be28nkzirtb0gd"
},
"editorMode": "code",
"format": "table",
"rawQuery": true,
"rawSql": "SELECT CAST(m.measurements->'time_to_second_token_secs' AS double precision) AS time_to_second_token_secs, left(b.commit_id, 7), m.time FROM benchmarks as b JOIN model_measurements AS m ON b.benchmark_id = m.benchmark_id WHERE b.branch = '${branch}' AND gpu_name = '${gpu_name}' ORDER BY b.benchmark_id DESC LIMIT ${last_n_commits};",
"rawSql": "SELECT CAST(m.measurements->'time_to_second_token_secs' AS double precision) AS time_to_second_token_secs, left(b.commit_id, 7), m.time FROM benchmarks as b JOIN model_measurements AS m ON b.benchmark_id = m.benchmark_id WHERE b.branch = '${branch}' AND b.metadata->>'gpu_name' = '${gpu_name}' ORDER BY b.benchmark_id DESC LIMIT ${last_n_commits};",
"refId": "A",
"sql": {
"columns": [
@ -807,13 +825,14 @@
"targets": [
{
"datasource": {
"default": true,
"type": "grafana-postgresql-datasource",
"uid": "bdz2yss7sxo1sc"
"uid": "be28nkzirtb0gd"
},
"editorMode": "code",
"format": "table",
"rawQuery": true,
"rawSql": "SELECT CAST(m.measurements->'time_to_third_token_secs' AS double precision) AS time_to_third_token_secs, left(b.commit_id, 7), m.time FROM benchmarks as b JOIN model_measurements AS m ON b.benchmark_id = m.benchmark_id WHERE b.branch = '${branch}' AND gpu_name = '${gpu_name}' ORDER BY b.benchmark_id DESC LIMIT ${last_n_commits};",
"rawSql": "SELECT CAST(m.measurements->'time_to_third_token_secs' AS double precision) AS time_to_third_token_secs, left(b.commit_id, 7), m.time FROM benchmarks as b JOIN model_measurements AS m ON b.benchmark_id = m.benchmark_id WHERE b.branch = '${branch}' AND b.metadata->>'gpu_name' = '${gpu_name}' ORDER BY b.benchmark_id DESC LIMIT ${last_n_commits};",
"refId": "A",
"sql": {
"columns": [
@ -928,13 +947,14 @@
"targets": [
{
"datasource": {
"default": true,
"type": "grafana-postgresql-datasource",
"uid": "bdz2yss7sxo1sc"
"uid": "be28nkzirtb0gd"
},
"editorMode": "code",
"format": "table",
"rawQuery": true,
"rawSql": "SELECT CAST(m.measurements->'time_to_next_token_mean_secs' AS double precision) AS time_to_next_token_mean_secs, left(b.commit_id, 7), m.time FROM benchmarks as b JOIN model_measurements AS m ON b.benchmark_id = m.benchmark_id WHERE b.branch = '${branch}' AND gpu_name = '${gpu_name}' ORDER BY b.benchmark_id DESC LIMIT ${last_n_commits};",
"rawSql": "SELECT CAST(m.measurements->'time_to_next_token_mean_secs' AS double precision) AS time_to_next_token_mean_secs, left(b.commit_id, 7), m.time FROM benchmarks as b JOIN model_measurements AS m ON b.benchmark_id = m.benchmark_id WHERE b.branch = '${branch}' AND b.metadata->>'gpu_name' = '${gpu_name}' ORDER BY b.benchmark_id DESC LIMIT ${last_n_commits};",
"refId": "A",
"sql": {
"columns": [
@ -1062,13 +1082,14 @@
"targets": [
{
"datasource": {
"default": true,
"type": "grafana-postgresql-datasource",
"uid": "bdz2yss7sxo1sc"
"uid": "be28nkzirtb0gd"
},
"editorMode": "code",
"format": "table",
"rawQuery": true,
"rawSql": "SELECT CAST(m.measurements->'first_compile_generate_time_secs' AS double precision) AS first_compile_generate_time_secs, left(b.commit_id, 7), m.time FROM benchmarks as b JOIN model_measurements AS m ON b.benchmark_id = m.benchmark_id WHERE b.branch = '${branch}' AND gpu_name = '${gpu_name}' ORDER BY b.benchmark_id DESC LIMIT ${last_n_commits};",
"rawSql": "SELECT CAST(m.measurements->'first_compile_generate_time_secs' AS double precision) AS first_compile_generate_time_secs, left(b.commit_id, 7), m.time FROM benchmarks as b JOIN model_measurements AS m ON b.benchmark_id = m.benchmark_id WHERE b.branch = '${branch}' AND b.metadata->>'gpu_name' = '${gpu_name}' ORDER BY b.benchmark_id DESC LIMIT ${last_n_commits};",
"refId": "A",
"sql": {
"columns": [
@ -1183,13 +1204,14 @@
"targets": [
{
"datasource": {
"default": true,
"type": "grafana-postgresql-datasource",
"uid": "bdz2yss7sxo1sc"
"uid": "be28nkzirtb0gd"
},
"editorMode": "code",
"format": "table",
"rawQuery": true,
"rawSql": "SELECT CAST(m.measurements->'second_compile_generate_time_secs' AS double precision) AS second_compile_generate_time_secs, left(b.commit_id, 7), m.time FROM benchmarks as b JOIN model_measurements AS m ON b.benchmark_id = m.benchmark_id WHERE b.branch = '${branch}' AND gpu_name = '${gpu_name}' ORDER BY b.benchmark_id DESC LIMIT ${last_n_commits};",
"rawSql": "SELECT CAST(m.measurements->'second_compile_generate_time_secs' AS double precision) AS second_compile_generate_time_secs, left(b.commit_id, 7), m.time FROM benchmarks as b JOIN model_measurements AS m ON b.benchmark_id = m.benchmark_id WHERE b.branch = '${branch}' AND b.metadata->>'gpu_name' = '${gpu_name}' ORDER BY b.benchmark_id DESC LIMIT ${last_n_commits};",
"refId": "A",
"sql": {
"columns": [
@ -1304,13 +1326,14 @@
"targets": [
{
"datasource": {
"default": true,
"type": "grafana-postgresql-datasource",
"uid": "bdz2yss7sxo1sc"
"uid": "be28nkzirtb0gd"
},
"editorMode": "code",
"format": "table",
"rawQuery": true,
"rawSql": "SELECT CAST(m.measurements->'third_compile_generate_time_secs' AS double precision) AS third_compile_generate_time_secs, left(b.commit_id, 7), m.time FROM benchmarks as b JOIN model_measurements AS m ON b.benchmark_id = m.benchmark_id WHERE b.branch = '${branch}' AND gpu_name = '${gpu_name}' ORDER BY b.benchmark_id DESC LIMIT ${last_n_commits};",
"rawSql": "SELECT CAST(m.measurements->'third_compile_generate_time_secs' AS double precision) AS third_compile_generate_time_secs, left(b.commit_id, 7), m.time FROM benchmarks as b JOIN model_measurements AS m ON b.benchmark_id = m.benchmark_id WHERE b.branch = '${branch}' AND b.metadata->>'gpu_name' = '${gpu_name}' ORDER BY b.benchmark_id DESC LIMIT ${last_n_commits};",
"refId": "A",
"sql": {
"columns": [
@ -1425,13 +1448,14 @@
"targets": [
{
"datasource": {
"default": true,
"type": "grafana-postgresql-datasource",
"uid": "bdz2yss7sxo1sc"
"uid": "be28nkzirtb0gd"
},
"editorMode": "code",
"format": "table",
"rawQuery": true,
"rawSql": "SELECT CAST(m.measurements->'fourth_compile_generate_time_secs' AS double precision) AS fourth_compile_generate_time_secs, left(b.commit_id, 7), m.time FROM benchmarks as b JOIN model_measurements AS m ON b.benchmark_id = m.benchmark_id WHERE b.branch = '${branch}' AND gpu_name = '${gpu_name}' ORDER BY b.benchmark_id DESC LIMIT ${last_n_commits};",
"rawSql": "SELECT CAST(m.measurements->'fourth_compile_generate_time_secs' AS double precision) AS fourth_compile_generate_time_secs, left(b.commit_id, 7), m.time FROM benchmarks as b JOIN model_measurements AS m ON b.benchmark_id = m.benchmark_id WHERE b.branch = '${branch}' AND b.metadata->>'gpu_name' = '${gpu_name}' ORDER BY b.benchmark_id DESC LIMIT ${last_n_commits};",
"refId": "A",
"sql": {
"columns": [
@ -1480,11 +1504,7 @@
"id": 15,
"panels": [
{
"datasource": {
"default": true,
"type": "grafana-postgresql-datasource",
"uid": "be28nkzirtb0gd"
},
"datasource": {},
"fieldConfig": {
"defaults": {
"color": {
@ -1528,8 +1548,7 @@
"mode": "absolute",
"steps": [
{
"color": "green",
"value": null
"color": "green"
},
{
"color": "red",
@ -1563,8 +1582,9 @@
"targets": [
{
"datasource": {
"default": true,
"type": "grafana-postgresql-datasource",
"uid": "bdz2yss7sxo1sc"
"uid": "be28nkzirtb0gd"
},
"editorMode": "code",
"format": "table",
@ -1665,11 +1685,7 @@
"type": "timeseries"
},
{
"datasource": {
"default": true,
"type": "grafana-postgresql-datasource",
"uid": "be28nkzirtb0gd"
},
"datasource": {},
"fieldConfig": {
"defaults": {
"color": {
@ -1713,8 +1729,7 @@
"mode": "absolute",
"steps": [
{
"color": "green",
"value": null
"color": "green"
},
{
"color": "red",
@ -1748,8 +1763,9 @@
"targets": [
{
"datasource": {
"default": true,
"type": "grafana-postgresql-datasource",
"uid": "bdz2yss7sxo1sc"
"uid": "be28nkzirtb0gd"
},
"editorMode": "code",
"format": "table",
@ -1850,11 +1866,7 @@
"type": "timeseries"
},
{
"datasource": {
"default": true,
"type": "grafana-postgresql-datasource",
"uid": "be28nkzirtb0gd"
},
"datasource": {},
"fieldConfig": {
"defaults": {
"color": {
@ -1898,8 +1910,7 @@
"mode": "absolute",
"steps": [
{
"color": "green",
"value": null
"color": "green"
},
{
"color": "red",
@ -1933,8 +1944,9 @@
"targets": [
{
"datasource": {
"default": true,
"type": "grafana-postgresql-datasource",
"uid": "bdz2yss7sxo1sc"
"uid": "be28nkzirtb0gd"
},
"editorMode": "code",
"format": "table",
@ -2035,11 +2047,7 @@
"type": "timeseries"
},
{
"datasource": {
"default": true,
"type": "grafana-postgresql-datasource",
"uid": "be28nkzirtb0gd"
},
"datasource": {},
"fieldConfig": {
"defaults": {
"color": {
@ -2083,8 +2091,7 @@
"mode": "absolute",
"steps": [
{
"color": "green",
"value": null
"color": "green"
},
{
"color": "red",
@ -2118,8 +2125,9 @@
"targets": [
{
"datasource": {
"default": true,
"type": "grafana-postgresql-datasource",
"uid": "bdz2yss7sxo1sc"
"uid": "be28nkzirtb0gd"
},
"editorMode": "code",
"format": "table",
@ -2224,7 +2232,6 @@
"type": "row"
}
],
"refresh": "",
"schemaVersion": 39,
"tags": [],
"templating": {
@ -2236,6 +2243,7 @@
"value": "main"
},
"datasource": {
"default": true,
"type": "grafana-postgresql-datasource",
"uid": "be28nkzirtb0gd"
},
@ -2248,7 +2256,7 @@
"name": "branch",
"options": [],
"query": "SELECT DISTINCT branch FROM benchmarks;",
"refresh": 2,
"refresh": 1,
"regex": "",
"skipUrlSync": false,
"sort": 0,
@ -2261,6 +2269,7 @@
"value": "1729701492845"
},
"datasource": {
"default": true,
"type": "grafana-postgresql-datasource",
"uid": "be28nkzirtb0gd"
},
@ -2281,10 +2290,11 @@
{
"current": {
"selected": false,
"text": "1730120430069",
"value": "1730120430069"
"text": "1730393397577",
"value": "1730393397577"
},
"datasource": {
"default": true,
"type": "grafana-postgresql-datasource",
"uid": "be28nkzirtb0gd"
},
@ -2312,15 +2322,16 @@
"type": "grafana-postgresql-datasource",
"uid": "be28nkzirtb0gd"
},
"definition": "SELECT DISTINCT gpu_name FROM benchmarks;",
"definition": "SELECT DISTINCT metadata->>'gpu_name' FROM benchmarks;",
"description": "",
"hide": 0,
"includeAll": false,
"label": "GPU",
"multi": false,
"name": "gpu_name",
"options": [],
"query": "SELECT DISTINCT gpu_name FROM benchmarks;",
"refresh": 2,
"query": "SELECT DISTINCT metadata->>'gpu_name' FROM benchmarks;",
"refresh": 1,
"regex": "",
"skipUrlSync": false,
"sort": 0,
@ -2328,7 +2339,7 @@
},
{
"current": {
"selected": false,
"selected": true,
"text": "10",
"value": "10"
},
@ -2359,6 +2370,6 @@
"timezone": "browser",
"title": "Transformers benchmarks",
"uid": "fdz33iyzln9c0a",
"version": 4,
"version": 10,
"weekStart": ""
}

View File

@ -0,0 +1,17 @@
apiVersion: 1
datasources:
- name: grafana-postgresql-datasource
uid: be28nkzirtb0gd
type: postgres
url: $GRAFANA_POSTGRES_DATASOURCE_URL
user: $GRAFANA_POSTGRES_DATASOURCE_USER
secureJsonData:
password: $GRAFANA_POSTGRES_DATASOURCE_PWD
jsonData:
database: metrics
maxOpenConns: 100
maxIdleConns: 100
maxIdleConnsAuto: true
connMaxLifetime: 14400
postgresVersion: 1000
timescaledb: false

View File

@ -3,7 +3,7 @@ CREATE TABLE IF NOT EXISTS benchmarks (
branch VARCHAR(255),
commit_id VARCHAR(72),
commit_message VARCHAR(70),
gpu_name VARCHAR(255),
metadata jsonb,
created_at timestamp without time zone NOT NULL DEFAULT (current_timestamp AT TIME ZONE 'UTC')
);

View File

@ -1,71 +1,25 @@
import argparse
import json
import logging
from logging import Logger
import os
import sys
from statistics import mean
from threading import Event, Thread
from time import perf_counter, sleep
from typing import Optional
from benchmarks_entrypoint import MetricsRecorder
import gpustat
import psutil
import psycopg2
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, GenerationConfig, StaticCache
from psycopg2.extras import Json
from psycopg2.extensions import register_adapter
os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1"
logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)
handler = logging.StreamHandler(sys.stdout)
handler.setLevel(logging.INFO)
formatter = logging.Formatter("[%(levelname)s - %(asctime)s] %(message)s")
handler.setFormatter(formatter)
logger.addHandler(handler)
os.environ["TOKENIZERS_PARALLELISM"] = "1"
torch.set_float32_matmul_precision("high")
register_adapter(dict, Json)
def parse_arguments():
"""
Parse command line arguments for the benchmarking CLI.
"""
parser = argparse.ArgumentParser(description="CLI for benchmarking the huggingface/transformers.")
parser.add_argument(
"branch",
type=str,
help="The branch name on which the benchmarking is performed.",
)
parser.add_argument(
"commit_id",
type=str,
help="The commit hash on which the benchmarking is performed.",
)
parser.add_argument(
"commit_msg",
type=str,
help="The commit message associated with the commit, truncated to 70 characters.",
)
args = parser.parse_args()
return args.branch, args.commit_id, args.commit_msg
def collect_metrics(benchmark_id, continue_metric_collection):
def collect_metrics(benchmark_id, continue_metric_collection, metrics_recorder):
p = psutil.Process(os.getpid())
conn = psycopg2.connect("dbname=metrics")
cur = conn.cursor()
while not continue_metric_collection.is_set():
with p.oneshot():
cpu_util = p.cpu_percent()
@ -73,47 +27,41 @@ def collect_metrics(benchmark_id, continue_metric_collection):
gpu_stats = gpustat.GPUStatCollection.new_query()
gpu_util = gpu_stats[0]["utilization.gpu"]
gpu_mem_megabytes = gpu_stats[0]["memory.used"]
cur.execute(
"INSERT INTO device_measurements (benchmark_id, cpu_util, mem_megabytes, gpu_util, gpu_mem_megabytes) VALUES (%s, %s, %s, %s, %s)",
(benchmark_id, cpu_util, mem_megabytes, gpu_util, gpu_mem_megabytes),
metrics_recorder.collect_device_measurements(
benchmark_id, cpu_util, mem_megabytes, gpu_util, gpu_mem_megabytes
)
sleep(0.01)
conn.commit()
conn.close()
def run_benchmark(branch: str, commit_id: str, commit_msg: str, num_tokens_to_generate=100):
def run_benchmark(logger: Logger, branch: str, commit_id: str, commit_msg: str, num_tokens_to_generate=100):
continue_metric_collection = Event()
metrics_thread = None
model_id = "meta-llama/Llama-2-7b-hf"
metrics_recorder = MetricsRecorder(psycopg2.connect("dbname=metrics"), logger, branch, commit_id, commit_msg)
try:
gpu_stats = gpustat.GPUStatCollection.new_query()
gpu_name = gpu_stats[0]["name"]
conn = psycopg2.connect("dbname=metrics")
cur = conn.cursor()
cur.execute(
"INSERT INTO benchmarks (branch, commit_id, commit_message, gpu_name) VALUES (%s, %s, %s, %s) RETURNING benchmark_id",
(branch, commit_id, commit_msg, gpu_name),
benchmark_id = metrics_recorder.initialise_benchmark({"gpu_name": gpu_name, "model_id": model_id})
logger.info(f"running benchmark #{benchmark_id} on {gpu_name} for {model_id}")
metrics_thread = Thread(
target=collect_metrics,
args=[benchmark_id, continue_metric_collection, metrics_recorder],
)
conn.commit()
benchmark_id = cur.fetchone()[0]
logger.info(f"running benchmark #{benchmark_id} on {gpu_name}")
metrics_thread = Thread(target=collect_metrics, args=[benchmark_id, continue_metric_collection])
metrics_thread.start()
logger.info("started background thread to fetch device metrics")
os.environ["TOKENIZERS_PARALLELISM"] = "false" # silence warnings when compiling
device = "cuda"
ckpt = "meta-llama/Llama-2-7b-hf"
logger.info("downloading weights")
# This is to avoid counting download in model load time measurement
model = AutoModelForCausalLM.from_pretrained(ckpt, torch_dtype=torch.float16)
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.float16)
gen_config = GenerationConfig(do_sample=False, top_p=1, temperature=1)
logger.info("loading model")
start = perf_counter()
model = AutoModelForCausalLM.from_pretrained(
ckpt, torch_dtype=torch.float16, generation_config=gen_config
model_id, torch_dtype=torch.float16, generation_config=gen_config
).eval()
model.to(device)
torch.cuda.synchronize()
@ -121,7 +69,7 @@ def run_benchmark(branch: str, commit_id: str, commit_msg: str, num_tokens_to_ge
model_load_time = end - start
logger.info(f"loaded model in: {model_load_time}s")
tokenizer = AutoTokenizer.from_pretrained(ckpt)
tokenizer = AutoTokenizer.from_pretrained(model_id)
prompt = "Why dogs are so cute?"
inputs = tokenizer(prompt, return_tensors="pt").to(device)
@ -368,41 +316,27 @@ def run_benchmark(branch: str, commit_id: str, commit_msg: str, num_tokens_to_ge
logger.info(f"completed second compile generation in: {fourth_compile_generate_time}s")
logger.info(f"generated: {tokenizer.batch_decode(output.cpu().tolist())}")
cur.execute(
"""
INSERT INTO model_measurements (
benchmark_id,
measurements
) VALUES (%s, %s)
""",
(
benchmark_id,
{
"model_load_time": model_load_time,
"first_eager_forward_pass_time_secs": first_eager_fwd_pass_time,
"second_eager_forward_pass_time_secs": second_eager_fwd_pass_time,
"first_eager_generate_time_secs": first_eager_generate_time,
"second_eager_generate_time_secs": second_eager_generate_time,
"time_to_first_token_secs": time_to_first_token,
"time_to_second_token_secs": time_to_second_token,
"time_to_third_token_secs": time_to_third_token,
"time_to_next_token_mean_secs": mean_time_to_next_token,
"first_compile_generate_time_secs": first_compile_generate_time,
"second_compile_generate_time_secs": second_compile_generate_time,
"third_compile_generate_time_secs": third_compile_generate_time,
"fourth_compile_generate_time_secs": fourth_compile_generate_time,
},
),
metrics_recorder.collect_model_measurements(
benchmark_id,
{
"model_load_time": model_load_time,
"first_eager_forward_pass_time_secs": first_eager_fwd_pass_time,
"second_eager_forward_pass_time_secs": second_eager_fwd_pass_time,
"first_eager_generate_time_secs": first_eager_generate_time,
"second_eager_generate_time_secs": second_eager_generate_time,
"time_to_first_token_secs": time_to_first_token,
"time_to_second_token_secs": time_to_second_token,
"time_to_third_token_secs": time_to_third_token,
"time_to_next_token_mean_secs": mean_time_to_next_token,
"first_compile_generate_time_secs": first_compile_generate_time,
"second_compile_generate_time_secs": second_compile_generate_time,
"third_compile_generate_time_secs": third_compile_generate_time,
"fourth_compile_generate_time_secs": fourth_compile_generate_time,
},
)
conn.commit()
conn.close()
except Exception as e:
logger.error(f"Caught exception: {e}")
continue_metric_collection.set()
if metrics_thread is not None:
metrics_thread.join()
if __name__ == "__main__":
branch, commit_id, commit_msg = parse_arguments()
run_benchmark(branch, commit_id, commit_msg, num_tokens_to_generate=20)
metrics_recorder.close()