mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-30 17:52:35 +06:00
cleaning up run_glue example
This commit is contained in:
parent
1113f97f33
commit
99b90edab1
@ -20,7 +20,6 @@ from __future__ import absolute_import, division, print_function
|
||||
import argparse
|
||||
import logging
|
||||
import os
|
||||
import sys
|
||||
import random
|
||||
from tqdm import tqdm, trange
|
||||
|
||||
@ -30,7 +29,6 @@ import torch
|
||||
from torch.utils.data import (DataLoader, RandomSampler, SequentialSampler,
|
||||
TensorDataset)
|
||||
from torch.utils.data.distributed import DistributedSampler
|
||||
from torch.nn import CrossEntropyLoss, MSELoss
|
||||
|
||||
from tensorboardX import SummaryWriter
|
||||
|
||||
@ -45,6 +43,186 @@ from utils_glue import processors, output_modes, convert_examples_to_features, c
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
def train(args, train_features, model):
|
||||
""" Train the model """
|
||||
if args.local_rank in [-1, 0]:
|
||||
tb_writer = SummaryWriter()
|
||||
|
||||
# Convert in tensors and build dataloader
|
||||
all_input_ids = torch.tensor([f.input_ids for f in train_features], dtype=torch.long)
|
||||
all_input_mask = torch.tensor([f.input_mask for f in train_features], dtype=torch.long)
|
||||
all_segment_ids = torch.tensor([f.segment_ids for f in train_features], dtype=torch.long)
|
||||
if args.output_mode == "classification":
|
||||
all_label_ids = torch.tensor([f.label_id for f in train_features], dtype=torch.long)
|
||||
elif args.output_mode == "regression":
|
||||
all_label_ids = torch.tensor([f.label_id for f in train_features], dtype=torch.float)
|
||||
|
||||
args.train_batch_size = args.train_batch_size // args.gradient_accumulation_steps
|
||||
|
||||
train_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_label_ids)
|
||||
train_sampler = RandomSampler(train_data) if args.local_rank == -1 else DistributedSampler(train_data)
|
||||
train_dataloader = DataLoader(train_data, sampler=train_sampler, batch_size=args.train_batch_size)
|
||||
|
||||
num_train_optimization_steps = len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs
|
||||
|
||||
# Prepare optimizer
|
||||
param_optimizer = list(model.named_parameters())
|
||||
no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
|
||||
optimizer_grouped_parameters = [
|
||||
{'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], 'weight_decay': 0.01},
|
||||
{'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
|
||||
]
|
||||
if args.fp16:
|
||||
try:
|
||||
from apex.optimizers import FP16_Optimizer, FusedAdam
|
||||
except ImportError:
|
||||
raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
|
||||
optimizer = FusedAdam(optimizer_grouped_parameters, lr=args.learning_rate, bias_correction=False, max_grad_norm=1.0)
|
||||
if args.loss_scale == 0:
|
||||
optimizer = FP16_Optimizer(optimizer, dynamic_loss_scale=True)
|
||||
else:
|
||||
optimizer = FP16_Optimizer(optimizer, static_loss_scale=args.loss_scale)
|
||||
warmup_linear = WarmupLinearSchedule(warmup=args.warmup_proportion, t_total=num_train_optimization_steps)
|
||||
|
||||
else:
|
||||
optimizer = BertAdam(optimizer_grouped_parameters,
|
||||
lr=args.learning_rate,
|
||||
warmup=args.warmup_proportion,
|
||||
t_total=num_train_optimization_steps)
|
||||
|
||||
# Train!
|
||||
logger.info("***** Running training *****")
|
||||
logger.info(" Num examples = %d", len(train_features))
|
||||
logger.info(" Batch size = %d", args.train_batch_size)
|
||||
logger.info(" Num steps = %d", num_train_optimization_steps)
|
||||
|
||||
global_step = 0
|
||||
tr_loss = 0
|
||||
model.train()
|
||||
for _ in trange(int(args.num_train_epochs), desc="Epoch", disable=args.local_rank not in [-1, 0]):
|
||||
for step, batch in enumerate(tqdm(train_dataloader, desc="Iteration", disable=args.local_rank not in [-1, 0])):
|
||||
batch = tuple(t.to(args.device) for t in batch)
|
||||
input_ids, input_mask, segment_ids, label_ids = batch
|
||||
|
||||
ouputs = model(input_ids, token_type_ids=segment_ids, attention_mask=input_mask, labels=label_ids)
|
||||
loss = ouputs[0]
|
||||
|
||||
if args.n_gpu > 1:
|
||||
loss = loss.mean() # mean() to average on multi-gpu parallel training
|
||||
if args.gradient_accumulation_steps > 1:
|
||||
loss = loss / args.gradient_accumulation_steps
|
||||
|
||||
loss.backward() if not args.fp16 else optimizer.backward(loss)
|
||||
|
||||
tr_loss += loss.item()
|
||||
if (step + 1) % args.gradient_accumulation_steps == 0:
|
||||
if args.fp16:
|
||||
# modify learning rate with special warm up BERT uses
|
||||
# if args.fp16 is False, BertAdam is used that handles this automatically
|
||||
lr_this_step = args.learning_rate * warmup_linear.get_lr(global_step, args.warmup_proportion)
|
||||
for param_group in optimizer.param_groups:
|
||||
param_group['lr'] = lr_this_step
|
||||
optimizer.step()
|
||||
optimizer.zero_grad()
|
||||
global_step += 1
|
||||
if args.local_rank in [-1, 0]:
|
||||
if not args.fp16:
|
||||
tb_writer.add_scalar('lr', optimizer.get_lr()[0], global_step)
|
||||
tb_writer.add_scalar('loss', loss.item(), global_step)
|
||||
|
||||
return global_step, tr_loss / global_step
|
||||
|
||||
|
||||
def evalutate(args, eval_task, eval_output_dir, eval_features, model):
|
||||
""" Evaluate the model """
|
||||
if os.path.exists(eval_output_dir) and os.listdir(eval_output_dir) and args.do_train and not args.overwrite_output_dir:
|
||||
raise ValueError("Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome.".format(eval_output_dir))
|
||||
if not os.path.exists(eval_output_dir) and args.local_rank in [-1, 0]:
|
||||
os.makedirs(eval_output_dir)
|
||||
|
||||
# Convert in tensors and build dataloader
|
||||
all_input_ids = torch.tensor([f.input_ids for f in eval_features], dtype=torch.long)
|
||||
all_input_mask = torch.tensor([f.input_mask for f in eval_features], dtype=torch.long)
|
||||
all_segment_ids = torch.tensor([f.segment_ids for f in eval_features], dtype=torch.long)
|
||||
if args.output_mode == "classification":
|
||||
all_label_ids = torch.tensor([f.label_id for f in eval_features], dtype=torch.long)
|
||||
elif args.output_mode == "regression":
|
||||
all_label_ids = torch.tensor([f.label_id for f in eval_features], dtype=torch.float)
|
||||
|
||||
eval_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_label_ids)
|
||||
# Note that DistributedSampler samples randomly
|
||||
eval_sampler = SequentialSampler(eval_data) if args.local_rank == -1 else DistributedSampler(eval_data)
|
||||
eval_dataloader = DataLoader(eval_data, sampler=eval_sampler, batch_size=args.eval_batch_size)
|
||||
|
||||
# Eval!
|
||||
logger.info("***** Running evaluation *****")
|
||||
logger.info(" Num examples = %d", len(eval_examples))
|
||||
logger.info(" Batch size = %d", args.eval_batch_size)
|
||||
model.eval()
|
||||
eval_loss = 0
|
||||
nb_eval_steps = 0
|
||||
preds = None
|
||||
out_label_ids = None
|
||||
for batch in tqdm(eval_dataloader, desc="Evaluating"):
|
||||
batch = tuple(t.to(args.device) for t in batch)
|
||||
input_ids, input_mask, segment_ids, label_ids = batch
|
||||
|
||||
with torch.no_grad():
|
||||
outputs = model(input_ids,
|
||||
token_type_ids=segment_ids,
|
||||
attention_mask=input_mask,
|
||||
labels=label_ids)
|
||||
tmp_eval_loss, logits = outputs[:2]
|
||||
|
||||
eval_loss += tmp_eval_loss.mean().item()
|
||||
nb_eval_steps += 1
|
||||
if preds is None:
|
||||
preds = logits.detach().cpu().numpy()
|
||||
out_label_ids = label_ids.detach().cpu().numpy()
|
||||
else:
|
||||
preds = np.append(preds, logits.detach().cpu().numpy(), axis=0)
|
||||
out_label_ids = np.append(out_label_ids, label_ids.detach().cpu().numpy(), axis=0)
|
||||
|
||||
eval_loss = eval_loss / nb_eval_steps
|
||||
if args.output_mode == "classification":
|
||||
preds = np.argmax(preds, axis=1)
|
||||
elif args.output_mode == "regression":
|
||||
preds = np.squeeze(preds)
|
||||
result = compute_metrics(eval_task, preds, out_label_ids)
|
||||
|
||||
output_eval_file = os.path.join(eval_output_dir, "eval_results.txt")
|
||||
with open(output_eval_file, "w") as writer:
|
||||
logger.info("***** Eval results *****")
|
||||
for key in sorted(result.keys()):
|
||||
logger.info(" %s = %s", key, str(result[key]))
|
||||
writer.write("%s = %s\n" % (key, str(result[key])))
|
||||
|
||||
|
||||
def load_and_cache_examples(args, task, tokenizer, eval=False):
|
||||
processor = processors[task]()
|
||||
output_mode = output_modes[task]
|
||||
label_list = processor.get_labels()
|
||||
|
||||
# Load and cache data
|
||||
processor = processors[task]()
|
||||
examples = processor.get_dev_examples(args.data_dir)
|
||||
cached_features_file = os.path.join(args.data_dir, '{}_{}_{}_{}'.format(
|
||||
'dev' if eval else 'train',
|
||||
list(filter(None, args.bert_model.split('/'))).pop(),
|
||||
str(args.max_seq_length),
|
||||
str(task)))
|
||||
|
||||
if os.path.exists(cached_features_file):
|
||||
features = torch.load(cached_features_file)
|
||||
else:
|
||||
features = convert_examples_to_features(examples, label_list, args.max_seq_length, tokenizer, output_mode)
|
||||
if args.local_rank == -1 or torch.distributed.get_rank() == 0:
|
||||
logger.info(" Saving eval features into cached file %s", cached_features_file)
|
||||
torch.save(features, cached_features_file)
|
||||
|
||||
return features
|
||||
|
||||
|
||||
def main():
|
||||
parser = argparse.ArgumentParser()
|
||||
|
||||
@ -118,40 +296,32 @@ def main():
|
||||
# Setup CUDA, GPU & distributed training
|
||||
if args.local_rank == -1 or args.no_cuda:
|
||||
device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
|
||||
n_gpu = torch.cuda.device_count()
|
||||
args.n_gpu = torch.cuda.device_count()
|
||||
else: # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
|
||||
torch.cuda.set_device(args.local_rank)
|
||||
device = torch.device("cuda", args.local_rank)
|
||||
torch.distributed.init_process_group(backend='nccl')
|
||||
n_gpu = 1
|
||||
args.n_gpu = 1
|
||||
args.device = device
|
||||
|
||||
# Setup logging
|
||||
logging.basicConfig(level = logging.INFO if args.local_rank in [-1, 0] else logging.WARN)
|
||||
logger.info("device: {} n_gpu: {}, distributed training: {}, 16-bits training: {}".format(
|
||||
device, n_gpu, bool(args.local_rank != -1), args.fp16))
|
||||
device, args.n_gpu, bool(args.local_rank != -1), args.fp16))
|
||||
|
||||
# Setup seeds
|
||||
random.seed(args.seed)
|
||||
np.random.seed(args.seed)
|
||||
torch.manual_seed(args.seed)
|
||||
if n_gpu > 0:
|
||||
if args.n_gpu > 0:
|
||||
torch.cuda.manual_seed_all(args.seed)
|
||||
|
||||
# Safety checks and create output directory
|
||||
if not args.do_train and not args.do_eval:
|
||||
raise ValueError("At least one of `do_train` or `do_eval` must be True.")
|
||||
if os.path.exists(args.output_dir) and os.listdir(args.output_dir) and args.do_train and not args.overwrite_output_dir:
|
||||
raise ValueError("Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome.".format(args.output_dir))
|
||||
if not os.path.exists(args.output_dir) and args.local_rank in [-1, 0]:
|
||||
os.makedirs(args.output_dir)
|
||||
|
||||
# Prepare GLUE task
|
||||
task_name = args.task_name.lower()
|
||||
if task_name not in processors:
|
||||
raise ValueError("Task not found: %s" % (task_name))
|
||||
processor = processors[task_name]()
|
||||
output_mode = output_modes[task_name]
|
||||
args.task_name = args.task_name.lower()
|
||||
if args.task_name not in processors:
|
||||
raise ValueError("Task not found: %s" % (args.task_name))
|
||||
processor = processors[args.task_name]()
|
||||
args.output_mode = output_modes[args.task_name]
|
||||
label_list = processor.get_labels()
|
||||
num_labels = len(label_list)
|
||||
|
||||
@ -169,122 +339,23 @@ def main():
|
||||
# Distributed, parrallel and fp16 model
|
||||
if args.fp16:
|
||||
model.half()
|
||||
model.to(device)
|
||||
model.to(args.device)
|
||||
if args.local_rank != -1:
|
||||
model = torch.nn.parallel.DistributedDataParallel(model,
|
||||
device_ids=[args.local_rank],
|
||||
output_device=args.local_rank,
|
||||
find_unused_parameters=True)
|
||||
elif n_gpu > 1:
|
||||
elif args.n_gpu > 1:
|
||||
model = torch.nn.DataParallel(model)
|
||||
|
||||
global_step = 0
|
||||
tr_loss = 0
|
||||
# Training
|
||||
if args.do_train:
|
||||
if args.local_rank in [-1, 0]:
|
||||
tb_writer = SummaryWriter()
|
||||
train_features = load_and_cache_examples(args, args.task_name, tokenizer, eval=False)
|
||||
global_step, tr_loss = train(args, train_features, model)
|
||||
logger.info(" global_step = %s, average loss = %s", global_step, tr_loss)
|
||||
|
||||
# Load and cache data
|
||||
train_examples = processor.get_train_examples(args.data_dir)
|
||||
cached_train_features_file = os.path.join(args.data_dir, 'train_{0}_{1}_{2}'.format(
|
||||
list(filter(None, args.bert_model.split('/'))).pop(), str(args.max_seq_length), str(task_name)))
|
||||
if os.path.exists(cached_train_features_file):
|
||||
train_features = torch.load(cached_train_features_file)
|
||||
else:
|
||||
train_features = convert_examples_to_features(
|
||||
train_examples, label_list, args.max_seq_length, tokenizer, output_mode)
|
||||
if args.local_rank == -1 or torch.distributed.get_rank() == 0:
|
||||
logger.info(" Saving train features into cached file %s", cached_train_features_file)
|
||||
torch.save(train_features, cached_train_features_file)
|
||||
|
||||
# Convert in tensors and build dataloader
|
||||
all_input_ids = torch.tensor([f.input_ids for f in train_features], dtype=torch.long)
|
||||
all_input_mask = torch.tensor([f.input_mask for f in train_features], dtype=torch.long)
|
||||
all_segment_ids = torch.tensor([f.segment_ids for f in train_features], dtype=torch.long)
|
||||
if output_mode == "classification":
|
||||
all_label_ids = torch.tensor([f.label_id for f in train_features], dtype=torch.long)
|
||||
elif output_mode == "regression":
|
||||
all_label_ids = torch.tensor([f.label_id for f in train_features], dtype=torch.float)
|
||||
|
||||
args.train_batch_size = args.train_batch_size // args.gradient_accumulation_steps
|
||||
|
||||
train_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_label_ids)
|
||||
train_sampler = RandomSampler(train_data) if args.local_rank == -1 else DistributedSampler(train_data)
|
||||
train_dataloader = DataLoader(train_data, sampler=train_sampler, batch_size=args.train_batch_size)
|
||||
|
||||
num_train_optimization_steps = len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs
|
||||
|
||||
# Prepare optimizer
|
||||
param_optimizer = list(model.named_parameters())
|
||||
no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
|
||||
optimizer_grouped_parameters = [
|
||||
{'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], 'weight_decay': 0.01},
|
||||
{'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
|
||||
]
|
||||
if args.fp16:
|
||||
try:
|
||||
from apex.optimizers import FP16_Optimizer, FusedAdam
|
||||
except ImportError:
|
||||
raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
|
||||
optimizer = FusedAdam(optimizer_grouped_parameters,
|
||||
lr=args.learning_rate,
|
||||
bias_correction=False,
|
||||
max_grad_norm=1.0)
|
||||
if args.loss_scale == 0:
|
||||
optimizer = FP16_Optimizer(optimizer, dynamic_loss_scale=True)
|
||||
else:
|
||||
optimizer = FP16_Optimizer(optimizer, static_loss_scale=args.loss_scale)
|
||||
warmup_linear = WarmupLinearSchedule(warmup=args.warmup_proportion,
|
||||
t_total=num_train_optimization_steps)
|
||||
|
||||
else:
|
||||
optimizer = BertAdam(optimizer_grouped_parameters,
|
||||
lr=args.learning_rate,
|
||||
warmup=args.warmup_proportion,
|
||||
t_total=num_train_optimization_steps)
|
||||
|
||||
# Train!
|
||||
logger.info("***** Running training *****")
|
||||
logger.info(" Num examples = %d", len(train_examples))
|
||||
logger.info(" Batch size = %d", args.train_batch_size)
|
||||
logger.info(" Num steps = %d", num_train_optimization_steps)
|
||||
model.train()
|
||||
for _ in trange(int(args.num_train_epochs), desc="Epoch", disable=args.local_rank not in [-1, 0]):
|
||||
for step, batch in enumerate(tqdm(train_dataloader, desc="Iteration", disable=args.local_rank not in [-1, 0])):
|
||||
batch = tuple(t.to(device) for t in batch)
|
||||
input_ids, input_mask, segment_ids, label_ids = batch
|
||||
|
||||
ouputs = model(input_ids, token_type_ids=segment_ids, attention_mask=input_mask, labels=label_ids)
|
||||
loss = ouputs[0]
|
||||
|
||||
if n_gpu > 1:
|
||||
loss = loss.mean() # mean() to average on multi-gpu parallel training
|
||||
if args.gradient_accumulation_steps > 1:
|
||||
loss = loss / args.gradient_accumulation_steps
|
||||
|
||||
if args.fp16:
|
||||
optimizer.backward(loss)
|
||||
else:
|
||||
loss.backward()
|
||||
|
||||
tr_loss += loss.item()
|
||||
if (step + 1) % args.gradient_accumulation_steps == 0:
|
||||
if args.fp16:
|
||||
# modify learning rate with special warm up BERT uses
|
||||
# if args.fp16 is False, BertAdam is used that handles this automatically
|
||||
lr_this_step = args.learning_rate * warmup_linear.get_lr(global_step, args.warmup_proportion)
|
||||
for param_group in optimizer.param_groups:
|
||||
param_group['lr'] = lr_this_step
|
||||
optimizer.step()
|
||||
optimizer.zero_grad()
|
||||
global_step += 1
|
||||
if args.local_rank in [-1, 0]:
|
||||
if not args.fp16:
|
||||
tb_writer.add_scalar('lr', optimizer.get_lr()[0], global_step)
|
||||
tb_writer.add_scalar('loss', loss.item(), global_step)
|
||||
|
||||
### Saving best-practices: if you use defaults names for the model, you can reload it using from_pretrained()
|
||||
### Example:
|
||||
# Saving best-practices: if you use defaults names for the model, you can reload it using from_pretrained()
|
||||
if args.do_train and (args.local_rank == -1 or torch.distributed.get_rank() == 0):
|
||||
# Save a trained model, configuration and tokenizer
|
||||
model_to_save = model.module if hasattr(model, 'module') else model # Only save the model it-self
|
||||
@ -307,94 +378,18 @@ def main():
|
||||
else:
|
||||
model = BertForSequenceClassification.from_pretrained(args.bert_model)
|
||||
|
||||
model.to(device)
|
||||
model.to(args.device)
|
||||
|
||||
### Evaluation
|
||||
# Evaluation
|
||||
if args.do_eval and (args.local_rank == -1 or torch.distributed.get_rank() == 0):
|
||||
eval_task_names = ("mnli", "mnli-mm") if task_name == "mnli" else (task_name,)
|
||||
eval_outputs_dirs = (args.output_dir, args.output_dir + '-MM') if task_name == "mnli" else (args.output_dir,)
|
||||
for eval_task, output_dir in zip(eval_task_names, eval_outputs_dirs):
|
||||
if os.path.exists(output_dir) and os.listdir(output_dir) and args.do_train:
|
||||
raise ValueError("Output directory ({}) already exists and is not empty.".format(args.output_dir))
|
||||
if not os.path.exists(output_dir):
|
||||
os.makedirs(output_dir)
|
||||
# Handle MNLI double evaluation
|
||||
eval_task_names = ("mnli", "mnli-mm") if args.task_name == "mnli" else (args.task_name,)
|
||||
eval_outputs_dirs = (args.output_dir, args.output_dir + '-MM') if args.task_name == "mnli" else (args.output_dir,)
|
||||
|
||||
# Load and cache data
|
||||
processor = processors[eval_task]()
|
||||
eval_examples = processor.get_dev_examples(args.data_dir)
|
||||
cached_eval_features_file = os.path.join(args.data_dir, 'dev_{0}_{1}_{2}'.format(
|
||||
list(filter(None, args.bert_model.split('/'))).pop(), str(args.max_seq_length), str(eval_task)))
|
||||
if os.path.exists(cached_eval_features_file):
|
||||
eval_features = torch.load(cached_eval_features_file)
|
||||
else:
|
||||
eval_features = convert_examples_to_features(
|
||||
eval_examples, label_list, args.max_seq_length, tokenizer, output_mode)
|
||||
if args.local_rank == -1 or torch.distributed.get_rank() == 0:
|
||||
logger.info(" Saving eval features into cached file %s", cached_eval_features_file)
|
||||
torch.save(eval_features, cached_eval_features_file)
|
||||
for eval_task, eval_output_dir in zip(eval_task_names, eval_outputs_dirs):
|
||||
eval_features = load_and_cache_examples(args, eval_task, tokenizer, eval=True)
|
||||
|
||||
# Convert in tensors and build dataloader
|
||||
all_input_ids = torch.tensor([f.input_ids for f in eval_features], dtype=torch.long)
|
||||
all_input_mask = torch.tensor([f.input_mask for f in eval_features], dtype=torch.long)
|
||||
all_segment_ids = torch.tensor([f.segment_ids for f in eval_features], dtype=torch.long)
|
||||
if output_mode == "classification":
|
||||
all_label_ids = torch.tensor([f.label_id for f in eval_features], dtype=torch.long)
|
||||
elif output_mode == "regression":
|
||||
all_label_ids = torch.tensor([f.label_id for f in eval_features], dtype=torch.float)
|
||||
|
||||
eval_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_label_ids)
|
||||
# Note that DistributedSampler samples randomly
|
||||
eval_sampler = SequentialSampler(eval_data) if args.local_rank == -1 else DistributedSampler(eval_data)
|
||||
eval_dataloader = DataLoader(eval_data, sampler=eval_sampler, batch_size=args.eval_batch_size)
|
||||
|
||||
# Eval!
|
||||
logger.info("***** Running evaluation *****")
|
||||
logger.info(" Num examples = %d", len(eval_examples))
|
||||
logger.info(" Batch size = %d", args.eval_batch_size)
|
||||
model.eval()
|
||||
eval_loss = 0
|
||||
nb_eval_steps = 0
|
||||
preds = None
|
||||
out_label_ids = None
|
||||
for batch in tqdm(eval_dataloader, desc="Evaluating"):
|
||||
batch = tuple(t.to(device) for t in batch)
|
||||
input_ids, input_mask, segment_ids, label_ids = batch
|
||||
|
||||
with torch.no_grad():
|
||||
outputs = model(input_ids,
|
||||
token_type_ids=segment_ids,
|
||||
attention_mask=input_mask,
|
||||
labels=label_ids)
|
||||
tmp_eval_loss, logits = outputs[:2]
|
||||
|
||||
eval_loss += tmp_eval_loss.mean().item()
|
||||
nb_eval_steps += 1
|
||||
if preds is None:
|
||||
preds = logits.detach().cpu().numpy()
|
||||
out_label_ids = label_ids.detach().cpu().numpy()
|
||||
else:
|
||||
preds = np.append(preds, logits.detach().cpu().numpy(), axis=0)
|
||||
out_label_ids = np.append(out_label_ids, label_ids.detach().cpu().numpy(), axis=0)
|
||||
|
||||
eval_loss = eval_loss / nb_eval_steps
|
||||
if output_mode == "classification":
|
||||
preds = np.argmax(preds, axis=1)
|
||||
elif output_mode == "regression":
|
||||
preds = np.squeeze(preds)
|
||||
result = compute_metrics(eval_task, preds, out_label_ids)
|
||||
|
||||
loss = tr_loss/global_step if args.do_train else None
|
||||
|
||||
result['eval_loss'] = eval_loss
|
||||
result['global_step'] = global_step
|
||||
result['loss'] = loss
|
||||
|
||||
output_eval_file = os.path.join(output_dir, "eval_results.txt")
|
||||
with open(output_eval_file, "w") as writer:
|
||||
logger.info("***** Eval results *****")
|
||||
for key in sorted(result.keys()):
|
||||
logger.info(" %s = %s", key, str(result[key]))
|
||||
writer.write("%s = %s\n" % (key, str(result[key])))
|
||||
evalutate(args, eval_task, eval_output_dir, eval_features, model)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
Loading…
Reference in New Issue
Block a user