mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-03 21:00:08 +06:00
torchcodec in docstrings and testing utils
This commit is contained in:
parent
d20ab64120
commit
986698a6a7
@ -64,15 +64,15 @@ predicted token ids.
|
||||
>>> import torch
|
||||
>>> from transformers import Speech2Text2Processor, SpeechEncoderDecoderModel
|
||||
>>> from datasets import load_dataset
|
||||
>>> import soundfile as sf
|
||||
>>> from torchcodec.decoders import AudioDecoder
|
||||
|
||||
>>> model = SpeechEncoderDecoderModel.from_pretrained("facebook/s2t-wav2vec2-large-en-de")
|
||||
>>> processor = Speech2Text2Processor.from_pretrained("facebook/s2t-wav2vec2-large-en-de")
|
||||
|
||||
|
||||
>>> def map_to_array(batch):
|
||||
... speech, _ = sf.read(batch["file"])
|
||||
... batch["speech"] = speech
|
||||
... decoder = AudioDecoder(batch["file"])
|
||||
... batch["speech"] = decoder.get_all_samples().data
|
||||
... return batch
|
||||
|
||||
|
||||
|
@ -436,9 +436,10 @@ class ASTModel(ASTPreTrainedModel):
|
||||
input_values (`torch.FloatTensor` of shape `(batch_size, max_length, num_mel_bins)`):
|
||||
Float values mel features extracted from the raw audio waveform. Raw audio waveform can be obtained by
|
||||
loading a `.flac` or `.wav` audio file into an array of type `list[float]` or a `numpy.ndarray`, *e.g.* via
|
||||
the soundfile library (`pip install soundfile`). To prepare the array into `input_features`, the
|
||||
[`AutoFeatureExtractor`] should be used for extracting the mel features, padding and conversion into a
|
||||
tensor of type `torch.FloatTensor`. See [`~ASTFeatureExtractor.__call__`]
|
||||
the torchcodec library (`pip install torchcodec`) or the soundfile library (`pip install soundfile`).
|
||||
To prepare the array into `input_features`, the [`AutoFeatureExtractor`] should be used for extracting the
|
||||
mel features, padding and conversion into a tensor of type `torch.FloatTensor`.
|
||||
See [`~ASTFeatureExtractor.__call__`]
|
||||
"""
|
||||
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
||||
output_hidden_states = (
|
||||
@ -526,9 +527,10 @@ class ASTForAudioClassification(ASTPreTrainedModel):
|
||||
input_values (`torch.FloatTensor` of shape `(batch_size, max_length, num_mel_bins)`):
|
||||
Float values mel features extracted from the raw audio waveform. Raw audio waveform can be obtained by
|
||||
loading a `.flac` or `.wav` audio file into an array of type `list[float]` or a `numpy.ndarray`, *e.g.* via
|
||||
the soundfile library (`pip install soundfile`). To prepare the array into `input_features`, the
|
||||
[`AutoFeatureExtractor`] should be used for extracting the mel features, padding and conversion into a
|
||||
tensor of type `torch.FloatTensor`. See [`~ASTFeatureExtractor.__call__`]
|
||||
the torchcodec library (`pip install torchcodec`) or the soundfile library (`pip install soundfile`).
|
||||
To prepare the array into `input_features`, the [`AutoFeatureExtractor`] should be used for extracting the
|
||||
mel features, padding and conversion into a tensor of type `torch.FloatTensor`.
|
||||
See [`~ASTFeatureExtractor.__call__`]
|
||||
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
||||
Labels for computing the audio classification/regression loss. Indices should be in `[0, ...,
|
||||
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
||||
|
@ -1053,9 +1053,10 @@ class Data2VecAudioForSequenceClassification(Data2VecAudioPreTrainedModel):
|
||||
r"""
|
||||
input_values (`torch.FloatTensor` of shape `(batch_size, sequence_length)`):
|
||||
Float values of input raw speech waveform. Values can be obtained by loading a `.flac` or `.wav` audio file
|
||||
into an array of type `list[float]` or a `numpy.ndarray`, *e.g.* via the soundfile library (`pip install
|
||||
soundfile`). To prepare the array into `input_values`, the [`AutoProcessor`] should be used for padding and
|
||||
conversion into a tensor of type `torch.FloatTensor`. See [`Data2VecAudioProcessor.__call__`] for details.
|
||||
into an array of type `list[float]` or a `numpy.ndarray`, *e.g.* via the torchcodec library (`pip install
|
||||
torchcodec`) or the soundfile library (`pip install soundfile`). To prepare the array into `input_values`,
|
||||
the [`AutoProcessor`] should be used for padding and conversion into a tensor of type `torch.FloatTensor`.
|
||||
See [`Data2VecAudioProcessor.__call__`] for details.
|
||||
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
||||
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
||||
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
||||
@ -1167,9 +1168,10 @@ class Data2VecAudioForAudioFrameClassification(Data2VecAudioPreTrainedModel):
|
||||
r"""
|
||||
input_values (`torch.FloatTensor` of shape `(batch_size, sequence_length)`):
|
||||
Float values of input raw speech waveform. Values can be obtained by loading a `.flac` or `.wav` audio file
|
||||
into an array of type `list[float]` or a `numpy.ndarray`, *e.g.* via the soundfile library (`pip install
|
||||
soundfile`). To prepare the array into `input_values`, the [`AutoProcessor`] should be used for padding and
|
||||
conversion into a tensor of type `torch.FloatTensor`. See [`Data2VecAudioProcessor.__call__`] for details.
|
||||
into an array of type `list[float]` or a `numpy.ndarray`, *e.g.* via the torchcodec library (`pip install
|
||||
torchcodec`) or the soundfile library (`pip install soundfile`). To prepare the array into `input_values`,
|
||||
the [`AutoProcessor`] should be used for padding and conversion into a tensor of type `torch.FloatTensor`.
|
||||
See [`Data2VecAudioProcessor.__call__`] for details.
|
||||
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
||||
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
||||
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
||||
@ -1349,9 +1351,10 @@ class Data2VecAudioForXVector(Data2VecAudioPreTrainedModel):
|
||||
r"""
|
||||
input_values (`torch.FloatTensor` of shape `(batch_size, sequence_length)`):
|
||||
Float values of input raw speech waveform. Values can be obtained by loading a `.flac` or `.wav` audio file
|
||||
into an array of type `list[float]` or a `numpy.ndarray`, *e.g.* via the soundfile library (`pip install
|
||||
soundfile`). To prepare the array into `input_values`, the [`AutoProcessor`] should be used for padding and
|
||||
conversion into a tensor of type `torch.FloatTensor`. See [`Data2VecAudioProcessor.__call__`] for details.
|
||||
into an array of type `list[float]` or a `numpy.ndarray`, *e.g.* via the torchcodec library (`pip install
|
||||
torchcodec`) or the soundfile library (`pip install soundfile`). To prepare the array into `input_values`,
|
||||
the [`AutoProcessor`] should be used for padding and conversion into a tensor of type `torch.FloatTensor`.
|
||||
See [`Data2VecAudioProcessor.__call__`] for details.
|
||||
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
||||
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
||||
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
||||
|
@ -985,15 +985,15 @@ class HubertModel(HubertPreTrainedModel):
|
||||
```python
|
||||
>>> from transformers import AutoProcessor, HubertModel
|
||||
>>> from datasets import load_dataset
|
||||
>>> import soundfile as sf
|
||||
>>> from torchcodec.decoders import AudioDecoder
|
||||
|
||||
>>> processor = AutoProcessor.from_pretrained("facebook/hubert-large-ls960-ft")
|
||||
>>> model = HubertModel.from_pretrained("facebook/hubert-large-ls960-ft")
|
||||
|
||||
|
||||
>>> def map_to_array(batch):
|
||||
... speech, _ = sf.read(batch["file"])
|
||||
... batch["speech"] = speech
|
||||
... decoder = AudioDecoder(batch["file"])
|
||||
... batch["speech"] = decoder.get_all_samples().data
|
||||
... return batch
|
||||
|
||||
|
||||
@ -1261,9 +1261,10 @@ class HubertForSequenceClassification(HubertPreTrainedModel):
|
||||
r"""
|
||||
input_values (`torch.FloatTensor` of shape `(batch_size, sequence_length)`):
|
||||
Float values of input raw speech waveform. Values can be obtained by loading a `.flac` or `.wav` audio file
|
||||
into an array of type `list[float]` or a `numpy.ndarray`, *e.g.* via the soundfile library (`pip install
|
||||
soundfile`). To prepare the array into `input_values`, the [`AutoProcessor`] should be used for padding and
|
||||
conversion into a tensor of type `torch.FloatTensor`. See [`HubertProcessor.__call__`] for details.
|
||||
into an array of type `list[float]` or a `numpy.ndarray`, *e.g.* via the torchcodec library (`pip install
|
||||
torchcodec`) or the soundfile library (`pip install soundfile`). To prepare the array into `input_values`,
|
||||
the [`AutoProcessor`] should be used for padding and conversion into a tensor of type `torch.FloatTensor`.
|
||||
See [`HubertProcessor.__call__`] for details.
|
||||
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
||||
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
||||
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
||||
|
@ -1459,15 +1459,15 @@ class TFHubertModel(TFHubertPreTrainedModel):
|
||||
```python
|
||||
>>> from transformers import AutoProcessor, TFHubertModel
|
||||
>>> from datasets import load_dataset
|
||||
>>> import soundfile as sf
|
||||
>>> from torchcodec.decoders import AudioDecoder
|
||||
|
||||
>>> processor = AutoProcessor.from_pretrained("facebook/hubert-large-ls960-ft")
|
||||
>>> model = TFHubertModel.from_pretrained("facebook/hubert-large-ls960-ft")
|
||||
|
||||
|
||||
>>> def map_to_array(batch):
|
||||
... speech, _ = sf.read(batch["file"])
|
||||
... batch["speech"] = speech
|
||||
... decoder = AudioDecoder(batch["file"])
|
||||
... batch["speech"] = decoder.get_all_samples().data
|
||||
... return batch
|
||||
|
||||
|
||||
@ -1571,15 +1571,15 @@ class TFHubertForCTC(TFHubertPreTrainedModel):
|
||||
>>> import tensorflow as tf
|
||||
>>> from transformers import AutoProcessor, TFHubertForCTC
|
||||
>>> from datasets import load_dataset
|
||||
>>> import soundfile as sf
|
||||
>>> from torchcodec.decoders import AudioDecoder
|
||||
|
||||
>>> processor = AutoProcessor.from_pretrained("facebook/hubert-large-ls960-ft")
|
||||
>>> model = TFHubertForCTC.from_pretrained("facebook/hubert-large-ls960-ft")
|
||||
|
||||
|
||||
>>> def map_to_array(batch):
|
||||
... speech, _ = sf.read(batch["file"])
|
||||
... batch["speech"] = speech
|
||||
... decoder = AudioDecoder(batch["file"])
|
||||
... batch["speech"] = decoder.get_all_samples().data
|
||||
... return batch
|
||||
|
||||
|
||||
|
@ -239,15 +239,15 @@ class HubertModel(Wav2Vec2Model, HubertPreTrainedModel):
|
||||
```python
|
||||
>>> from transformers import AutoProcessor, HubertModel
|
||||
>>> from datasets import load_dataset
|
||||
>>> import soundfile as sf
|
||||
>>> from torchcodec.decoders import AudioDecoder
|
||||
|
||||
>>> processor = AutoProcessor.from_pretrained("facebook/hubert-large-ls960-ft")
|
||||
>>> model = HubertModel.from_pretrained("facebook/hubert-large-ls960-ft")
|
||||
|
||||
|
||||
>>> def map_to_array(batch):
|
||||
... speech, _ = sf.read(batch["file"])
|
||||
... batch["speech"] = speech
|
||||
... decoder = AudioDecoder(batch["file"])
|
||||
... batch["speech"] = decoder.get_all_samples().data
|
||||
... return batch
|
||||
|
||||
|
||||
|
@ -563,7 +563,8 @@ class MoonshineEncoder(MoonshinePreTrainedModel):
|
||||
input_values (`torch.FloatTensor` of shape `(batch_size, audio_length)`):
|
||||
Float values of the raw speech waveform. Raw speech waveform can be
|
||||
obtained by loading a `.flac` or `.wav` audio file into an array of type `list[float]` or a
|
||||
`numpy.ndarray`, *e.g.* via the soundfile library (`pip install soundfile`). To prepare the array into
|
||||
`numpy.ndarray`, *e.g.* via the torchcodec libary (`pip install torchcodec`) or
|
||||
the soundfile library (`pip install soundfile`). To prepare the array into
|
||||
`input_values`, the [`AutoFeatureExtractor`] should be used for padding
|
||||
and conversion into a tensor of type `torch.FloatTensor`.
|
||||
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
||||
@ -1028,7 +1029,8 @@ class MoonshineModel(MoonshinePreTrainedModel):
|
||||
input_values (`torch.FloatTensor` of shape `(batch_size, audio_length)`):
|
||||
Float values of the raw speech waveform. Raw speech waveform can be
|
||||
obtained by loading a `.flac` or `.wav` audio file into an array of type `list[float]` or a
|
||||
`numpy.ndarray`, *e.g.* via the soundfile library (`pip install soundfile`). To prepare the array into
|
||||
`numpy.ndarray`, *e.g.* via the torchcodec libary (`pip install torchcodec`) or
|
||||
the soundfile library (`pip install soundfile`). To prepare the array into
|
||||
`input_values`, the [`AutoFeatureExtractor`] should be used for padding
|
||||
and conversion into a tensor of type `torch.FloatTensor`.
|
||||
decoder_input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
||||
@ -1204,7 +1206,8 @@ class MoonshineForConditionalGeneration(MoonshinePreTrainedModel, GenerationMixi
|
||||
input_values (`torch.FloatTensor` of shape `(batch_size, audio_length)`):
|
||||
Float values of the raw speech waveform. Raw speech waveform can be
|
||||
obtained by loading a `.flac` or `.wav` audio file into an array of type `list[float]` or a
|
||||
`numpy.ndarray`, *e.g.* via the soundfile library (`pip install soundfile`). To prepare the array into
|
||||
`numpy.ndarray`, *e.g.* via the torchcodec libary (`pip install torchcodec`) or
|
||||
the soundfile library (`pip install soundfile`). To prepare the array into
|
||||
`input_values`, the [`AutoFeatureExtractor`] should be used for padding
|
||||
and conversion into a tensor of type `torch.FloatTensor`.
|
||||
decoder_input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
||||
|
@ -587,7 +587,8 @@ class MoonshineEncoder(MoonshinePreTrainedModel):
|
||||
input_values (`torch.FloatTensor` of shape `(batch_size, audio_length)`):
|
||||
Float values of the raw speech waveform. Raw speech waveform can be
|
||||
obtained by loading a `.flac` or `.wav` audio file into an array of type `list[float]` or a
|
||||
`numpy.ndarray`, *e.g.* via the soundfile library (`pip install soundfile`). To prepare the array into
|
||||
`numpy.ndarray`, *e.g.* via the torchcodec libary (`pip install torchcodec`) or
|
||||
the soundfile library (`pip install soundfile`). To prepare the array into
|
||||
`input_values`, the [`AutoFeatureExtractor`] should be used for padding
|
||||
and conversion into a tensor of type `torch.FloatTensor`.
|
||||
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
||||
@ -844,7 +845,8 @@ class MoonshineModel(WhisperModel):
|
||||
input_values (`torch.FloatTensor` of shape `(batch_size, audio_length)`):
|
||||
Float values of the raw speech waveform. Raw speech waveform can be
|
||||
obtained by loading a `.flac` or `.wav` audio file into an array of type `list[float]` or a
|
||||
`numpy.ndarray`, *e.g.* via the soundfile library (`pip install soundfile`). To prepare the array into
|
||||
`numpy.ndarray`, *e.g.* via the torchcodec libary (`pip install torchcodec`) or
|
||||
the soundfile library (`pip install soundfile`). To prepare the array into
|
||||
`input_values`, the [`AutoFeatureExtractor`] should be used for padding
|
||||
and conversion into a tensor of type `torch.FloatTensor`.
|
||||
decoder_input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
||||
@ -1004,7 +1006,8 @@ class MoonshineForConditionalGeneration(MoonshinePreTrainedModel, GenerationMixi
|
||||
input_values (`torch.FloatTensor` of shape `(batch_size, audio_length)`):
|
||||
Float values of the raw speech waveform. Raw speech waveform can be
|
||||
obtained by loading a `.flac` or `.wav` audio file into an array of type `list[float]` or a
|
||||
`numpy.ndarray`, *e.g.* via the soundfile library (`pip install soundfile`). To prepare the array into
|
||||
`numpy.ndarray`, *e.g.* via the torchcodec libary (`pip install torchcodec`) or
|
||||
the soundfile library (`pip install soundfile`). To prepare the array into
|
||||
`input_values`, the [`AutoFeatureExtractor`] should be used for padding
|
||||
and conversion into a tensor of type `torch.FloatTensor`.
|
||||
decoder_input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
||||
|
@ -797,7 +797,8 @@ class Qwen2_5OmniAudioEncoder(Qwen2_5OmniPreTrainedModel):
|
||||
input_features (`torch.LongTensor` of shape `(batch_size, feature_size, sequence_length)`):
|
||||
Float values of mel features extracted from the raw speech waveform. Raw speech waveform can be
|
||||
obtained by loading a `.flac` or `.wav` audio file into an array of type `list[float]` or a
|
||||
`numpy.ndarray`, *e.g.* via the soundfile library (`pip install soundfile`). To prepare the array into
|
||||
`numpy.ndarray`, *e.g.* via the torchcodec libary (`pip install torchcodec`) or
|
||||
the soundfile library (`pip install soundfile`). To prepare the array into
|
||||
`input_features`, the [`AutoFeatureExtractor`] should be used for extracting the mel features, padding
|
||||
and conversion into a tensor of type `torch.FloatTensor`. See [`~WhisperFeatureExtractor.__call__`]
|
||||
feature_lens (`torch.LongTensor` of shape `(batch_size,)`):
|
||||
@ -1789,9 +1790,10 @@ class Qwen2_5OmniThinkerForConditionalGeneration(Qwen2_5OmniPreTrainedModelForCo
|
||||
input_features (`torch.FloatTensor` of shape `(batch_size, feature_size, feature_sequence_length)`):
|
||||
Float values mel features extracted from the raw speech waveform. Raw speech waveform can be obtained by
|
||||
loading a `.flac` or `.wav` audio file into an array of type `list[float]` or a `numpy.ndarray`, *e.g.* via
|
||||
the soundfile library (`pip install soundfile`). To prepare the array into `input_features`, the
|
||||
[`AutoFeatureExtractor`] should be used for extracting the mel features, padding and conversion into a
|
||||
tensor of type `torch.FloatTensor`. See [`~WhisperFeatureExtractor.__call__`]
|
||||
the torchcodec library (`pip install torchcodec`) or the soundfile library (`pip install soundfile`).
|
||||
To prepare the array into `input_features`, the [`AutoFeatureExtractor`] should be used for extracting the
|
||||
mel features, padding and conversion into a tensor of type `torch.FloatTensor`.
|
||||
See [`~WhisperFeatureExtractor.__call__`]
|
||||
pixel_values_videos (`torch.FloatTensor` of shape `(batch_size, num_channels, image_size, image_size), *optional*):
|
||||
The tensors corresponding to the input videos. Pixel values can be obtained using
|
||||
[`AutoImageProcessor`]. See [`SiglipImageProcessor.__call__`] for details ([]`NewTaskModelProcessor`] uses
|
||||
|
@ -1782,7 +1782,8 @@ class Qwen2_5OmniAudioEncoder(Qwen2_5OmniPreTrainedModel):
|
||||
input_features (`torch.LongTensor` of shape `(batch_size, feature_size, sequence_length)`):
|
||||
Float values of mel features extracted from the raw speech waveform. Raw speech waveform can be
|
||||
obtained by loading a `.flac` or `.wav` audio file into an array of type `list[float]` or a
|
||||
`numpy.ndarray`, *e.g.* via the soundfile library (`pip install soundfile`). To prepare the array into
|
||||
`numpy.ndarray`, *e.g.* via the torchcodec libary (`pip install torchcodec`) or
|
||||
the soundfile library (`pip install soundfile`). To prepare the array into
|
||||
`input_features`, the [`AutoFeatureExtractor`] should be used for extracting the mel features, padding
|
||||
and conversion into a tensor of type `torch.FloatTensor`. See [`~WhisperFeatureExtractor.__call__`]
|
||||
feature_lens (`torch.LongTensor` of shape `(batch_size,)`):
|
||||
@ -2236,9 +2237,10 @@ class Qwen2_5OmniThinkerForConditionalGeneration(Qwen2_5OmniPreTrainedModelForCo
|
||||
input_features (`torch.FloatTensor` of shape `(batch_size, feature_size, feature_sequence_length)`):
|
||||
Float values mel features extracted from the raw speech waveform. Raw speech waveform can be obtained by
|
||||
loading a `.flac` or `.wav` audio file into an array of type `list[float]` or a `numpy.ndarray`, *e.g.* via
|
||||
the soundfile library (`pip install soundfile`). To prepare the array into `input_features`, the
|
||||
[`AutoFeatureExtractor`] should be used for extracting the mel features, padding and conversion into a
|
||||
tensor of type `torch.FloatTensor`. See [`~WhisperFeatureExtractor.__call__`]
|
||||
the torchcodec library (`pip install torchcodec`) or the soundfile library (`pip install soundfile`).
|
||||
To prepare the array into `input_features`, the [`AutoFeatureExtractor`] should be used for extracting the
|
||||
mel features, padding and conversion into a tensor of type `torch.FloatTensor`.
|
||||
See [`~WhisperFeatureExtractor.__call__`]
|
||||
pixel_values_videos (`torch.FloatTensor` of shape `(batch_size, num_channels, image_size, image_size), *optional*):
|
||||
The tensors corresponding to the input videos. Pixel values can be obtained using
|
||||
[`AutoImageProcessor`]. See [`SiglipImageProcessor.__call__`] for details ([]`NewTaskModelProcessor`] uses
|
||||
|
@ -360,7 +360,8 @@ class Qwen2AudioEncoder(Qwen2AudioPreTrainedModel):
|
||||
input_features (`torch.LongTensor` of shape `(batch_size, feature_size, sequence_length)`):
|
||||
Float values of mel features extracted from the raw speech waveform. Raw speech waveform can be
|
||||
obtained by loading a `.flac` or `.wav` audio file into an array of type `list[float]` or a
|
||||
`numpy.ndarray`, *e.g.* via the soundfile library (`pip install soundfile`). To prepare the array into
|
||||
`numpy.ndarray`, *e.g.* via the torchcodec libary (`pip install torchcodec`) or
|
||||
the soundfile library (`pip install soundfile`). To prepare the array into
|
||||
`input_features`, the [`AutoFeatureExtractor`] should be used for extracting the mel features, padding
|
||||
and conversion into a tensor of type `torch.FloatTensor`. See [`~WhisperFeatureExtractor.__call__`]
|
||||
attention_mask (`torch.Tensor`)`, *optional*):
|
||||
@ -740,9 +741,10 @@ class Qwen2AudioForConditionalGeneration(Qwen2AudioPreTrainedModel, GenerationMi
|
||||
input_features (`torch.FloatTensor` of shape `(batch_size, feature_size, feature_sequence_length)`):
|
||||
Float values mel features extracted from the raw speech waveform. Raw speech waveform can be obtained by
|
||||
loading a `.flac` or `.wav` audio file into an array of type `list[float]` or a `numpy.ndarray`, *e.g.* via
|
||||
the soundfile library (`pip install soundfile`). To prepare the array into `input_features`, the
|
||||
[`AutoFeatureExtractor`] should be used for extracting the mel features, padding and conversion into a
|
||||
tensor of type `torch.FloatTensor`. See [`~WhisperFeatureExtractor.__call__`]
|
||||
the torchcodec library (`pip install torchcodec`) or the soundfile library (`pip install soundfile`).
|
||||
To prepare the array into `input_features`, the [`AutoFeatureExtractor`] should be used for extracting the
|
||||
mel features, padding and conversion into a tensor of type `torch.FloatTensor`.
|
||||
See [`~WhisperFeatureExtractor.__call__`]
|
||||
feature_attention_mask (`torch.Tensor` of shape `(batch_size, feature_sequence_length)`):
|
||||
Mask to avoid performing attention on padding feature indices. Mask values selected in `[0, 1]`:
|
||||
|
||||
|
@ -1077,9 +1077,10 @@ class SEWForSequenceClassification(SEWPreTrainedModel):
|
||||
r"""
|
||||
input_values (`torch.FloatTensor` of shape `(batch_size, sequence_length)`):
|
||||
Float values of input raw speech waveform. Values can be obtained by loading a `.flac` or `.wav` audio file
|
||||
into an array of type `list[float]` or a `numpy.ndarray`, *e.g.* via the soundfile library (`pip install
|
||||
soundfile`). To prepare the array into `input_values`, the [`AutoProcessor`] should be used for padding and
|
||||
conversion into a tensor of type `torch.FloatTensor`. See [`SEWProcessor.__call__`] for details.
|
||||
into an array of type `list[float]` or a `numpy.ndarray`, *e.g.* via the torchcodec library (`pip install
|
||||
torchcodec`) or the soundfile library (`pip install soundfile`). To prepare the array into `input_values`,
|
||||
the [`AutoProcessor`] should be used for padding and conversion into a tensor of type `torch.FloatTensor`.
|
||||
See [`SEWProcessor.__call__`] for details.
|
||||
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
||||
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
||||
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
||||
|
@ -1597,9 +1597,10 @@ class SEWDForSequenceClassification(SEWDPreTrainedModel):
|
||||
r"""
|
||||
input_values (`torch.FloatTensor` of shape `(batch_size, sequence_length)`):
|
||||
Float values of input raw speech waveform. Values can be obtained by loading a `.flac` or `.wav` audio file
|
||||
into an array of type `list[float]` or a `numpy.ndarray`, *e.g.* via the soundfile library (`pip install
|
||||
soundfile`). To prepare the array into `input_values`, the [`AutoProcessor`] should be used for padding and
|
||||
conversion into a tensor of type `torch.FloatTensor`. See [`SEWDProcessor.__call__`] for details.
|
||||
into an array of type `list[float]` or a `numpy.ndarray`, *e.g.* via the torchcodec library (`pip install
|
||||
torchcodec`) or the soundfile library (`pip install soundfile`). To prepare the array into `input_values`,
|
||||
the [`AutoProcessor`] should be used for padding and conversion into a tensor of type `torch.FloatTensor`.
|
||||
See [`SEWDProcessor.__call__`] for details.
|
||||
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
||||
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
||||
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
||||
|
@ -86,8 +86,9 @@ SPEECH_ENCODER_DECODER_INPUTS_DOCSTRING = r"""
|
||||
Args:
|
||||
inputs (`jnp.ndarray` of shape `(batch_size, sequence_length)` or `(batch_size, sequence_length, feature_dim)`, *optional*):
|
||||
Float values of input raw speech waveform or speech features. Values can be obtained by loading a `.flac`
|
||||
or `.wav` audio file into an array of type `list[float]` or a `numpy.ndarray`, *e.g.* via the soundfile
|
||||
library (`pip install soundfile`). To prepare the array into `inputs`, either the [`Wav2Vec2Processor`] or
|
||||
or `.wav` audio file into an array of type `list[float]` or a `numpy.ndarray`, *e.g.* via the torchcodec library (`pip
|
||||
install torchcodec`) or the soundfile library (`pip install soundfile`).
|
||||
To prepare the array into `inputs`, either the [`Wav2Vec2Processor`] or
|
||||
[`Speech2TextProcessor`] should be used for padding and conversion into a tensor of type
|
||||
`torch.FloatTensor`.
|
||||
attention_mask (`jnp.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
|
||||
|
@ -339,8 +339,9 @@ class SpeechEncoderDecoderModel(PreTrainedModel, GenerationMixin):
|
||||
r"""
|
||||
inputs (`torch.FloatTensor` of shape `(batch_size, sequence_length)` or `(batch_size, sequence_length, feature_dim)`, *optional*):
|
||||
Float values of input raw speech waveform or speech features. Values can be obtained by loading a `.flac`
|
||||
or `.wav` audio file into an array of type `list[float]` or a `numpy.ndarray`, *e.g.* via the soundfile
|
||||
library (`pip install soundfile`). To prepare the array into `inputs`, either the [`Wav2Vec2Processor`] or
|
||||
or `.wav` audio file into an array of type `list[float]` or a `numpy.ndarray`, *e.g.* via the torchcodec library (`pip
|
||||
install torchcodec`) or the soundfile library (`pip install soundfile`).
|
||||
To prepare the array into `inputs`, either the [`Wav2Vec2Processor`] or
|
||||
[`Speech2TextProcessor`] should be used for padding and conversion into a tensor of type
|
||||
`torch.FloatTensor`.
|
||||
decoder_input_ids (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
|
||||
|
@ -620,7 +620,8 @@ class Speech2TextEncoder(Speech2TextPreTrainedModel):
|
||||
input_features (`torch.LongTensor` of shape `(batch_size, sequence_length, feature_size)`):
|
||||
Float values of fbank features extracted from the raw speech waveform. Raw speech waveform can be
|
||||
obtained by loading a `.flac` or `.wav` audio file into an array of type `list[float]` or a
|
||||
`numpy.ndarray`, *e.g.* via the soundfile library (`pip install soundfile`). To prepare the array into
|
||||
`numpy.ndarray`, *e.g.* via the torchcodec libary (`pip install torchcodec`) or
|
||||
the soundfile library (`pip install soundfile`). To prepare the array into
|
||||
`input_features`, the [`AutoFeatureExtractor`] should be used for extracting the fbank features,
|
||||
padding and conversion into a tensor of type `torch.FloatTensor`. See
|
||||
[`~Speech2TextFeatureExtractor.__call__`]
|
||||
|
@ -848,7 +848,8 @@ class TFSpeech2TextEncoder(keras.layers.Layer):
|
||||
input_features (`tf.Tensor` of shape `(batch_size, sequence_length, feature_size)`):
|
||||
Float values of fbank features extracted from the raw speech waveform. Raw speech waveform can be
|
||||
obtained by loading a `.flac` or `.wav` audio file into an array of type `list[float]` or a
|
||||
`numpy.ndarray`, *e.g.* via the soundfile library (`pip install soundfile`). To prepare the array into
|
||||
`numpy.ndarray`, *e.g.* via the torchcodec libary (`pip install torchcodec`) or
|
||||
the soundfile library (`pip install soundfile`). To prepare the array into
|
||||
`input_features`, the [`AutoFeatureExtractor`] should be used for extracting the fbank features,
|
||||
padding and conversion into a tensor of floats. See [`~Speech2TextFeatureExtractor.__call__`]
|
||||
attention_mask (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
||||
@ -1469,7 +1470,7 @@ class TFSpeech2TextForConditionalGeneration(TFSpeech2TextPreTrainedModel, TFCaus
|
||||
>>> import tensorflow as tf
|
||||
>>> from transformers import Speech2TextProcessor, TFSpeech2TextForConditionalGeneration
|
||||
>>> from datasets import load_dataset
|
||||
>>> import soundfile as sf
|
||||
>>> from torchcodec.decoders import AudioDecoder
|
||||
|
||||
>>> model = TFSpeech2TextForConditionalGeneration.from_pretrained(
|
||||
... "facebook/s2t-small-librispeech-asr", from_pt=True
|
||||
@ -1478,8 +1479,8 @@ class TFSpeech2TextForConditionalGeneration(TFSpeech2TextPreTrainedModel, TFCaus
|
||||
|
||||
|
||||
>>> def map_to_array(batch):
|
||||
... speech, _ = sf.read(batch["file"])
|
||||
... batch["speech"] = speech
|
||||
... decoder = AudioDecoder(batch["file"])
|
||||
... batch["speech"] = decoder.get_all_samples().data
|
||||
... return batch
|
||||
|
||||
|
||||
|
@ -1486,9 +1486,10 @@ class UniSpeechForSequenceClassification(UniSpeechPreTrainedModel):
|
||||
r"""
|
||||
input_values (`torch.FloatTensor` of shape `(batch_size, sequence_length)`):
|
||||
Float values of input raw speech waveform. Values can be obtained by loading a `.flac` or `.wav` audio file
|
||||
into an array of type `list[float]` or a `numpy.ndarray`, *e.g.* via the soundfile library (`pip install
|
||||
soundfile`). To prepare the array into `input_values`, the [`AutoProcessor`] should be used for padding and
|
||||
conversion into a tensor of type `torch.FloatTensor`. See [`UniSpeechProcessor.__call__`] for details.
|
||||
into an array of type `list[float]` or a `numpy.ndarray`, *e.g.* via the torchcodec library (`pip install
|
||||
torchcodec`) or the soundfile library (`pip install soundfile`). To prepare the array into `input_values`,
|
||||
the [`AutoProcessor`] should be used for padding and conversion into a tensor of type `torch.FloatTensor`.
|
||||
See [`UniSpeechProcessor.__call__`] for details.
|
||||
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
||||
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
||||
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
||||
|
@ -1481,9 +1481,10 @@ class UniSpeechSatForSequenceClassification(UniSpeechSatPreTrainedModel):
|
||||
r"""
|
||||
input_values (`torch.FloatTensor` of shape `(batch_size, sequence_length)`):
|
||||
Float values of input raw speech waveform. Values can be obtained by loading a `.flac` or `.wav` audio file
|
||||
into an array of type `list[float]` or a `numpy.ndarray`, *e.g.* via the soundfile library (`pip install
|
||||
soundfile`). To prepare the array into `input_values`, the [`AutoProcessor`] should be used for padding and
|
||||
conversion into a tensor of type `torch.FloatTensor`. See [`UniSpeechSatProcessor.__call__`] for details.
|
||||
into an array of type `list[float]` or a `numpy.ndarray`, *e.g.* via the torchcodec library (`pip install
|
||||
torchcodec`) or the soundfile library (`pip install soundfile`). To prepare the array into `input_values`,
|
||||
the [`AutoProcessor`] should be used for padding and conversion into a tensor of type `torch.FloatTensor`.
|
||||
See [`UniSpeechSatProcessor.__call__`] for details.
|
||||
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
||||
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
||||
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
||||
@ -1595,9 +1596,10 @@ class UniSpeechSatForAudioFrameClassification(UniSpeechSatPreTrainedModel):
|
||||
r"""
|
||||
input_values (`torch.FloatTensor` of shape `(batch_size, sequence_length)`):
|
||||
Float values of input raw speech waveform. Values can be obtained by loading a `.flac` or `.wav` audio file
|
||||
into an array of type `list[float]` or a `numpy.ndarray`, *e.g.* via the soundfile library (`pip install
|
||||
soundfile`). To prepare the array into `input_values`, the [`AutoProcessor`] should be used for padding and
|
||||
conversion into a tensor of type `torch.FloatTensor`. See [`UniSpeechSatProcessor.__call__`] for details.
|
||||
into an array of type `list[float]` or a `numpy.ndarray`, *e.g.* via the torchcodec library (`pip install
|
||||
torchcodec`) or the soundfile library (`pip install soundfile`). To prepare the array into `input_values`,
|
||||
the [`AutoProcessor`] should be used for padding and conversion into a tensor of type `torch.FloatTensor`.
|
||||
See [`UniSpeechSatProcessor.__call__`] for details.
|
||||
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
||||
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
||||
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
||||
@ -1777,9 +1779,10 @@ class UniSpeechSatForXVector(UniSpeechSatPreTrainedModel):
|
||||
r"""
|
||||
input_values (`torch.FloatTensor` of shape `(batch_size, sequence_length)`):
|
||||
Float values of input raw speech waveform. Values can be obtained by loading a `.flac` or `.wav` audio file
|
||||
into an array of type `list[float]` or a `numpy.ndarray`, *e.g.* via the soundfile library (`pip install
|
||||
soundfile`). To prepare the array into `input_values`, the [`AutoProcessor`] should be used for padding and
|
||||
conversion into a tensor of type `torch.FloatTensor`. See [`UniSpeechSatProcessor.__call__`] for details.
|
||||
into an array of type `list[float]` or a `numpy.ndarray`, *e.g.* via the torchcodec library (`pip install
|
||||
torchcodec`) or the soundfile library (`pip install soundfile`). To prepare the array into `input_values`,
|
||||
the [`AutoProcessor`] should be used for padding and conversion into a tensor of type `torch.FloatTensor`.
|
||||
See [`UniSpeechSatProcessor.__call__`] for details.
|
||||
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
||||
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
||||
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
||||
|
@ -1064,15 +1064,15 @@ FLAX_WAV2VEC2_MODEL_DOCSTRING = """
|
||||
```python
|
||||
>>> from transformers import AutoProcessor, FlaxWav2Vec2Model
|
||||
>>> from datasets import load_dataset
|
||||
>>> import soundfile as sf
|
||||
>>> from torchcodec.decoders import AudioDecoder
|
||||
|
||||
>>> processor = AutoProcessor.from_pretrained("facebook/wav2vec2-large-lv60")
|
||||
>>> model = FlaxWav2Vec2Model.from_pretrained("facebook/wav2vec2-large-lv60")
|
||||
|
||||
|
||||
>>> def map_to_array(batch):
|
||||
... speech, _ = sf.read(batch["file"])
|
||||
... batch["speech"] = speech
|
||||
... decoder = AudioDecoder(batch["file"])
|
||||
... batch["speech"] = decoder.get_all_samples().data
|
||||
... return batch
|
||||
|
||||
|
||||
@ -1183,15 +1183,15 @@ FLAX_WAV2VEC2_FOR_CTC_DOCSTRING = """
|
||||
>>> import jax.numpy as jnp
|
||||
>>> from transformers import AutoProcessor, FlaxWav2Vec2ForCTC
|
||||
>>> from datasets import load_dataset
|
||||
>>> import soundfile as sf
|
||||
>>> from torchcodec.decoders import AudioDecoder
|
||||
|
||||
>>> processor = AutoProcessor.from_pretrained("facebook/wav2vec2-large-960h-lv60")
|
||||
>>> model = FlaxWav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-large-960h-lv60")
|
||||
|
||||
|
||||
>>> def map_to_array(batch):
|
||||
... speech, _ = sf.read(batch["file"])
|
||||
... batch["speech"] = speech
|
||||
... decoder = AudioDecoder(batch["file"])
|
||||
... batch["speech"] = decoder.get_all_samples().data
|
||||
... return batch
|
||||
|
||||
|
||||
@ -1384,15 +1384,15 @@ FLAX_WAV2VEC2_FOR_PRETRAINING_DOCSTRING = """
|
||||
>>> from transformers import AutoFeatureExtractor, FlaxWav2Vec2ForPreTraining
|
||||
>>> from transformers.models.wav2vec2.modeling_flax_wav2vec2 import _compute_mask_indices
|
||||
>>> from datasets import load_dataset
|
||||
>>> import soundfile as sf
|
||||
>>> from torchcodec.decoders import AudioDecoder
|
||||
|
||||
>>> feature_extractor = AutoFeatureExtractor.from_pretrained("facebook/wav2vec2-large-lv60")
|
||||
>>> model = FlaxWav2Vec2ForPreTraining.from_pretrained("facebook/wav2vec2-large-lv60")
|
||||
|
||||
|
||||
>>> def map_to_array(batch):
|
||||
... speech, _ = sf.read(batch["file"])
|
||||
... batch["speech"] = speech
|
||||
... decoder = AudioDecoder(batch["file"])
|
||||
... batch["speech"] = decoder.get_all_samples().data
|
||||
... return batch
|
||||
|
||||
|
||||
|
@ -1530,15 +1530,15 @@ class TFWav2Vec2Model(TFWav2Vec2PreTrainedModel):
|
||||
```python
|
||||
>>> from transformers import AutoProcessor, TFWav2Vec2Model
|
||||
>>> from datasets import load_dataset
|
||||
>>> import soundfile as sf
|
||||
>>> from torchcodec.decoders import AudioDecoder
|
||||
|
||||
>>> processor = AutoProcessor.from_pretrained("facebook/wav2vec2-base-960h")
|
||||
>>> model = TFWav2Vec2Model.from_pretrained("facebook/wav2vec2-base-960h")
|
||||
|
||||
|
||||
>>> def map_to_array(batch):
|
||||
... speech, _ = sf.read(batch["file"])
|
||||
... batch["speech"] = speech
|
||||
... decoder = AudioDecoder(batch["file"])
|
||||
... batch["speech"] = decoder.get_all_samples().data
|
||||
... return batch
|
||||
|
||||
|
||||
@ -1642,15 +1642,15 @@ class TFWav2Vec2ForCTC(TFWav2Vec2PreTrainedModel):
|
||||
>>> import tensorflow as tf
|
||||
>>> from transformers import AutoProcessor, TFWav2Vec2ForCTC
|
||||
>>> from datasets import load_dataset
|
||||
>>> import soundfile as sf
|
||||
>>> from torchcodec.decoders import AudioDecoder
|
||||
|
||||
>>> processor = AutoProcessor.from_pretrained("facebook/wav2vec2-base-960h")
|
||||
>>> model = TFWav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-base-960h")
|
||||
|
||||
|
||||
>>> def map_to_array(batch):
|
||||
... speech, _ = sf.read(batch["file"])
|
||||
... batch["speech"] = speech
|
||||
... decoder = AudioDecoder(batch["file"])
|
||||
... batch["speech"] = decoder.get_all_samples().data
|
||||
... return batch
|
||||
|
||||
|
||||
|
@ -2012,9 +2012,10 @@ class Wav2Vec2ForSequenceClassification(Wav2Vec2PreTrainedModel):
|
||||
r"""
|
||||
input_values (`torch.FloatTensor` of shape `(batch_size, sequence_length)`):
|
||||
Float values of input raw speech waveform. Values can be obtained by loading a `.flac` or `.wav` audio file
|
||||
into an array of type `list[float]` or a `numpy.ndarray`, *e.g.* via the soundfile library (`pip install
|
||||
soundfile`). To prepare the array into `input_values`, the [`AutoProcessor`] should be used for padding and
|
||||
conversion into a tensor of type `torch.FloatTensor`. See [`Wav2Vec2Processor.__call__`] for details.
|
||||
into an array of type `list[float]` or a `numpy.ndarray`, *e.g.* via the torchcodec library (`pip install
|
||||
torchcodec`) or the soundfile library (`pip install soundfile`). To prepare the array into `input_values`,
|
||||
the [`AutoProcessor`] should be used for padding and conversion into a tensor of type `torch.FloatTensor`.
|
||||
See [`Wav2Vec2Processor.__call__`] for details.
|
||||
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
||||
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
||||
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
||||
@ -2126,9 +2127,10 @@ class Wav2Vec2ForAudioFrameClassification(Wav2Vec2PreTrainedModel):
|
||||
r"""
|
||||
input_values (`torch.FloatTensor` of shape `(batch_size, sequence_length)`):
|
||||
Float values of input raw speech waveform. Values can be obtained by loading a `.flac` or `.wav` audio file
|
||||
into an array of type `list[float]` or a `numpy.ndarray`, *e.g.* via the soundfile library (`pip install
|
||||
soundfile`). To prepare the array into `input_values`, the [`AutoProcessor`] should be used for padding and
|
||||
conversion into a tensor of type `torch.FloatTensor`. See [`Wav2Vec2Processor.__call__`] for details.
|
||||
into an array of type `list[float]` or a `numpy.ndarray`, *e.g.* via the torchcodec library (`pip install
|
||||
torchcodec`) or the soundfile library (`pip install soundfile`). To prepare the array into `input_values`,
|
||||
the [`AutoProcessor`] should be used for padding and conversion into a tensor of type `torch.FloatTensor`.
|
||||
See [`Wav2Vec2Processor.__call__`] for details.
|
||||
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
||||
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
||||
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
||||
@ -2308,9 +2310,10 @@ class Wav2Vec2ForXVector(Wav2Vec2PreTrainedModel):
|
||||
r"""
|
||||
input_values (`torch.FloatTensor` of shape `(batch_size, sequence_length)`):
|
||||
Float values of input raw speech waveform. Values can be obtained by loading a `.flac` or `.wav` audio file
|
||||
into an array of type `list[float]` or a `numpy.ndarray`, *e.g.* via the soundfile library (`pip install
|
||||
soundfile`). To prepare the array into `input_values`, the [`AutoProcessor`] should be used for padding and
|
||||
conversion into a tensor of type `torch.FloatTensor`. See [`Wav2Vec2Processor.__call__`] for details.
|
||||
into an array of type `list[float]` or a `numpy.ndarray`, *e.g.* via the torchcodec library (`pip install
|
||||
torchcodec`) or the soundfile library (`pip install soundfile`). To prepare the array into `input_values`,
|
||||
the [`AutoProcessor`] should be used for padding and conversion into a tensor of type `torch.FloatTensor`.
|
||||
See [`Wav2Vec2Processor.__call__`] for details.
|
||||
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
||||
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
||||
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
||||
|
@ -1579,9 +1579,10 @@ class Wav2Vec2ConformerForSequenceClassification(Wav2Vec2ConformerPreTrainedMode
|
||||
r"""
|
||||
input_values (`torch.FloatTensor` of shape `(batch_size, sequence_length)`):
|
||||
Float values of input raw speech waveform. Values can be obtained by loading a `.flac` or `.wav` audio file
|
||||
into an array of type `list[float]` or a `numpy.ndarray`, *e.g.* via the soundfile library (`pip install
|
||||
soundfile`). To prepare the array into `input_values`, the [`AutoProcessor`] should be used for padding and
|
||||
conversion into a tensor of type `torch.FloatTensor`. See [`Wav2Vec2ConformerProcessor.__call__`] for details.
|
||||
into an array of type `list[float]` or a `numpy.ndarray`, *e.g.* via the torchcodec library (`pip install
|
||||
torchcodec`) or the soundfile library (`pip install soundfile`). To prepare the array into `input_values`,
|
||||
the [`AutoProcessor`] should be used for padding and conversion into a tensor of type `torch.FloatTensor`.
|
||||
See [`Wav2Vec2ConformerProcessor.__call__`] for details.
|
||||
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
||||
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
||||
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
||||
@ -1681,9 +1682,10 @@ class Wav2Vec2ConformerForAudioFrameClassification(Wav2Vec2ConformerPreTrainedMo
|
||||
r"""
|
||||
input_values (`torch.FloatTensor` of shape `(batch_size, sequence_length)`):
|
||||
Float values of input raw speech waveform. Values can be obtained by loading a `.flac` or `.wav` audio file
|
||||
into an array of type `list[float]` or a `numpy.ndarray`, *e.g.* via the soundfile library (`pip install
|
||||
soundfile`). To prepare the array into `input_values`, the [`AutoProcessor`] should be used for padding and
|
||||
conversion into a tensor of type `torch.FloatTensor`. See [`Wav2Vec2ConformerProcessor.__call__`] for details.
|
||||
into an array of type `list[float]` or a `numpy.ndarray`, *e.g.* via the torchcodec library (`pip install
|
||||
torchcodec`) or the soundfile library (`pip install soundfile`). To prepare the array into `input_values`,
|
||||
the [`AutoProcessor`] should be used for padding and conversion into a tensor of type `torch.FloatTensor`.
|
||||
See [`Wav2Vec2ConformerProcessor.__call__`] for details.
|
||||
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
||||
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
||||
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
||||
@ -1851,9 +1853,10 @@ class Wav2Vec2ConformerForXVector(Wav2Vec2ConformerPreTrainedModel):
|
||||
r"""
|
||||
input_values (`torch.FloatTensor` of shape `(batch_size, sequence_length)`):
|
||||
Float values of input raw speech waveform. Values can be obtained by loading a `.flac` or `.wav` audio file
|
||||
into an array of type `list[float]` or a `numpy.ndarray`, *e.g.* via the soundfile library (`pip install
|
||||
soundfile`). To prepare the array into `input_values`, the [`AutoProcessor`] should be used for padding and
|
||||
conversion into a tensor of type `torch.FloatTensor`. See [`Wav2Vec2ConformerProcessor.__call__`] for details.
|
||||
into an array of type `list[float]` or a `numpy.ndarray`, *e.g.* via the torchcodec library (`pip install
|
||||
torchcodec`) or the soundfile library (`pip install soundfile`). To prepare the array into `input_values`,
|
||||
the [`AutoProcessor`] should be used for padding and conversion into a tensor of type `torch.FloatTensor`.
|
||||
See [`Wav2Vec2ConformerProcessor.__call__`] for details.
|
||||
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
||||
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
||||
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
||||
|
@ -1328,9 +1328,10 @@ class WavLMForSequenceClassification(WavLMPreTrainedModel):
|
||||
r"""
|
||||
input_values (`torch.FloatTensor` of shape `(batch_size, sequence_length)`):
|
||||
Float values of input raw speech waveform. Values can be obtained by loading a `.flac` or `.wav` audio file
|
||||
into an array of type `list[float]` or a `numpy.ndarray`, *e.g.* via the soundfile library (`pip install
|
||||
soundfile`). To prepare the array into `input_values`, the [`AutoProcessor`] should be used for padding and
|
||||
conversion into a tensor of type `torch.FloatTensor`. See [`WavLMProcessor.__call__`] for details.
|
||||
into an array of type `list[float]` or a `numpy.ndarray`, *e.g.* via the torchcodec library (`pip install
|
||||
torchcodec`) or the soundfile library (`pip install soundfile`). To prepare the array into `input_values`,
|
||||
the [`AutoProcessor`] should be used for padding and conversion into a tensor of type `torch.FloatTensor`.
|
||||
See [`WavLMProcessor.__call__`] for details.
|
||||
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
||||
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
||||
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
||||
@ -1442,9 +1443,10 @@ class WavLMForAudioFrameClassification(WavLMPreTrainedModel):
|
||||
r"""
|
||||
input_values (`torch.FloatTensor` of shape `(batch_size, sequence_length)`):
|
||||
Float values of input raw speech waveform. Values can be obtained by loading a `.flac` or `.wav` audio file
|
||||
into an array of type `list[float]` or a `numpy.ndarray`, *e.g.* via the soundfile library (`pip install
|
||||
soundfile`). To prepare the array into `input_values`, the [`AutoProcessor`] should be used for padding and
|
||||
conversion into a tensor of type `torch.FloatTensor`. See [`WavLMProcessor.__call__`] for details.
|
||||
into an array of type `list[float]` or a `numpy.ndarray`, *e.g.* via the torchcodec library (`pip install
|
||||
torchcodec`) or the soundfile library (`pip install soundfile`). To prepare the array into `input_values`,
|
||||
the [`AutoProcessor`] should be used for padding and conversion into a tensor of type `torch.FloatTensor`.
|
||||
See [`WavLMProcessor.__call__`] for details.
|
||||
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
||||
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
||||
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
||||
@ -1624,9 +1626,10 @@ class WavLMForXVector(WavLMPreTrainedModel):
|
||||
r"""
|
||||
input_values (`torch.FloatTensor` of shape `(batch_size, sequence_length)`):
|
||||
Float values of input raw speech waveform. Values can be obtained by loading a `.flac` or `.wav` audio file
|
||||
into an array of type `list[float]` or a `numpy.ndarray`, *e.g.* via the soundfile library (`pip install
|
||||
soundfile`). To prepare the array into `input_values`, the [`AutoProcessor`] should be used for padding and
|
||||
conversion into a tensor of type `torch.FloatTensor`. See [`WavLMProcessor.__call__`] for details.
|
||||
into an array of type `list[float]` or a `numpy.ndarray`, *e.g.* via the torchcodec library (`pip install
|
||||
torchcodec`) or the soundfile library (`pip install soundfile`). To prepare the array into `input_values`,
|
||||
the [`AutoProcessor`] should be used for padding and conversion into a tensor of type `torch.FloatTensor`.
|
||||
See [`WavLMProcessor.__call__`] for details.
|
||||
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
||||
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
||||
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
||||
|
@ -102,9 +102,10 @@ WHISPER_INPUTS_DOCSTRING = r"""
|
||||
input_features (`numpy.ndarray` of shape `(batch_size, feature_size, sequence_length)`):
|
||||
Float values mel features extracted from the raw speech waveform. Raw speech waveform can be obtained by
|
||||
loading a `.flac` or `.wav` audio file into an array of type `list[float]` or a `numpy.ndarray`, *e.g.* via
|
||||
the soundfile library (`pip install soundfile`). To prepare the array into `input_features`, the
|
||||
[`WhisperFeatureExtractor`] should be used for extracting the features, padding and conversion into a
|
||||
tensor of type `numpy.ndarray`. See [`~WhisperFeatureExtractor.__call__`]
|
||||
the torchcodec library (`pip install torchcodec`) or the soundfile library (`pip install soundfile`).
|
||||
To prepare the array into `input_features`, the [`WhisperFeatureExtractor`] should be used for extracting
|
||||
the features, padding and conversion into a tensor of type `numpy.ndarray`.
|
||||
See [`~WhisperFeatureExtractor.__call__`]
|
||||
attention_mask (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
|
||||
Whisper does not support masking of the `input_features`, this argument is preserved for compatibility, but
|
||||
is not used. By default the silence in the input log mel spectrogram are ignored.
|
||||
@ -139,9 +140,10 @@ WHISPER_ENCODE_INPUTS_DOCSTRING = r"""
|
||||
input_features (`numpy.ndarray` of shape `(batch_size, feature_size, sequence_length)`):
|
||||
Float values mel features extracted from the raw speech waveform. Raw speech waveform can be obtained by
|
||||
loading a `.flac` or `.wav` audio file into an array of type `list[float]` or a `numpy.ndarray`, *e.g.* via
|
||||
the soundfile library (`pip install soundfile`). To prepare the array into `input_features`, the
|
||||
[`WhisperFeatureExtractor`] should be used for extracting the mel features, padding and conversion into a
|
||||
tensor of type `numpy.ndarray`. See [`~WhisperFeatureExtractor.__call__`].
|
||||
the torchcodec library (`pip install torchcodec`) or the soundfile library (`pip install soundfile`).
|
||||
To prepare the array into `input_features`, the [`WhisperFeatureExtractor`] should be used for extracting
|
||||
the mel features, padding and conversion into a tensor of type `numpy.ndarray`.
|
||||
See [`~WhisperFeatureExtractor.__call__`].
|
||||
attention_mask (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
|
||||
Whisper does not support masking of the `input_features`, this argument is preserved for compatibility, but
|
||||
is not used. By default the silence in the input log mel spectrogram are ignored.
|
||||
|
@ -601,9 +601,10 @@ WHISPER_INPUTS_DOCSTRING = r"""
|
||||
input_features (`tf.Tensor` of shape `(batch_size, feature_size, sequence_length)`):
|
||||
Float values of fbank features extracted from the raw speech waveform. Raw speech waveform can be obtained
|
||||
by loading a `.flac` or `.wav` audio file into an array of type `list[float]` or a `numpy.ndarray`, *e.g.*
|
||||
via the soundfile library (`pip install soundfile`). To prepare the array into `input_features`, the
|
||||
[`AutoFeatureExtractor`] should be used for extracting the fbank features, padding and conversion into a
|
||||
tensor of type `tf.Tensor`. See [`~WhisperFeatureExtractor.__call__`]
|
||||
via the torchcodec library (`pip install torchcodec`) or the soundfile library (`pip install soundfile`).
|
||||
To prepare the array into `input_features`, the [`AutoFeatureExtractor`] should be used for extracting the
|
||||
fbank features, padding and conversion into a tensor of type `tf.Tensor`.
|
||||
See [`~WhisperFeatureExtractor.__call__`]
|
||||
decoder_input_ids (`tf.Tensor` of shape `(batch_size, target_sequence_length)`, *optional*):
|
||||
Indices of decoder input sequence tokens in the vocabulary.
|
||||
|
||||
@ -729,7 +730,8 @@ class TFWhisperEncoder(keras.layers.Layer):
|
||||
input_features (`tf.Tensor` of shape `(batch_size, feature_size, sequence_length)`):
|
||||
Float values of fbank features extracted from the raw speech waveform. Raw speech waveform can be
|
||||
obtained by loading a `.flac` or `.wav` audio file into an array of type `list[float]` or a
|
||||
`numpy.ndarray`, *e.g.* via the soundfile library (`pip install soundfile`). To prepare the array into
|
||||
`numpy.ndarray`, *e.g.* via the torchcodec libary (`pip install torchcodec`) or
|
||||
the soundfile library (`pip install soundfile`). To prepare the array into
|
||||
`input_features`, the [`AutoFeatureExtractor`] should be used for extracting the fbank features,
|
||||
padding and conversion into a tensor of type `tf.Tensor`. See [`~WhisperFeatureExtractor.__call__`]
|
||||
head_mask (`tf.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*):
|
||||
|
@ -651,7 +651,8 @@ class WhisperEncoder(WhisperPreTrainedModel):
|
||||
input_features (`torch.LongTensor` of shape `(batch_size, feature_size, sequence_length)`):
|
||||
Float values of mel features extracted from the raw speech waveform. Raw speech waveform can be
|
||||
obtained by loading a `.flac` or `.wav` audio file into an array of type `list[float]` or a
|
||||
`numpy.ndarray`, *e.g.* via the soundfile library (`pip install soundfile`). To prepare the array into
|
||||
`numpy.ndarray`, *e.g.* via the torchcodec libary (`pip install torchcodec`) or
|
||||
the soundfile library (`pip install soundfile`). To prepare the array into
|
||||
`input_features`, the [`AutoFeatureExtractor`] should be used for extracting the mel features, padding
|
||||
and conversion into a tensor of type `torch.FloatTensor`. See [`~WhisperFeatureExtractor.__call__`]
|
||||
attention_mask (`torch.Tensor`)`, *optional*):
|
||||
@ -1096,9 +1097,10 @@ class WhisperModel(WhisperPreTrainedModel):
|
||||
input_features (`torch.FloatTensor` of shape `(batch_size, feature_size, sequence_length)`):
|
||||
Float values mel features extracted from the raw speech waveform. Raw speech waveform can be obtained by
|
||||
loading a `.flac` or `.wav` audio file into an array of type `list[float]` or a `numpy.ndarray`, *e.g.* via
|
||||
the soundfile library (`pip install soundfile`). To prepare the array into `input_features`, the
|
||||
[`AutoFeatureExtractor`] should be used for extracting the mel features, padding and conversion into a
|
||||
tensor of type `torch.FloatTensor`. See [`~WhisperFeatureExtractor.__call__`]
|
||||
the torchcodec library (`pip install torchcodec`) or the soundfile library (`pip install soundfile`).
|
||||
To prepare the array into `input_features`, the [`AutoFeatureExtractor`] should be used for extracting the
|
||||
mel features, padding and conversion into a tensor of type `torch.FloatTensor`.
|
||||
See [`~WhisperFeatureExtractor.__call__`]
|
||||
decoder_input_ids (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
|
||||
Indices of decoder input sequence tokens in the vocabulary.
|
||||
|
||||
@ -1266,9 +1268,10 @@ class WhisperForConditionalGeneration(WhisperGenerationMixin, WhisperPreTrainedM
|
||||
input_features (`torch.FloatTensor` of shape `(batch_size, feature_size, sequence_length)`):
|
||||
Float values mel features extracted from the raw speech waveform. Raw speech waveform can be obtained by
|
||||
loading a `.flac` or `.wav` audio file into an array of type `list[float]` or a `numpy.ndarray`, *e.g.* via
|
||||
the soundfile library (`pip install soundfile`). To prepare the array into `input_features`, the
|
||||
[`AutoFeatureExtractor`] should be used for extracting the mel features, padding and conversion into a
|
||||
tensor of type `torch.FloatTensor`. See [`~WhisperFeatureExtractor.__call__`]
|
||||
the torchcodec library (`pip install torchcodec`) or the soundfile library (`pip install soundfile`).
|
||||
To prepare the array into `input_features`, the [`AutoFeatureExtractor`] should be used for extracting the
|
||||
mel features, padding and conversion into a tensor of type `torch.FloatTensor`.
|
||||
See [`~WhisperFeatureExtractor.__call__`]
|
||||
decoder_input_ids (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
|
||||
Indices of decoder input sequence tokens in the vocabulary.
|
||||
|
||||
@ -1600,9 +1603,10 @@ class WhisperForAudioClassification(WhisperPreTrainedModel):
|
||||
input_features (`torch.FloatTensor` of shape `(batch_size, feature_size, sequence_length)`):
|
||||
Float values mel features extracted from the raw speech waveform. Raw speech waveform can be obtained by
|
||||
loading a `.flac` or `.wav` audio file into an array of type `list[float]` or a `numpy.ndarray`, *e.g.* via
|
||||
the soundfile library (`pip install soundfile`). To prepare the array into `input_features`, the
|
||||
[`AutoFeatureExtractor`] should be used for extracting the mel features, padding and conversion into a
|
||||
tensor of type `torch.FloatTensor`. See [`~WhisperFeatureExtractor.__call__`]
|
||||
the torchcodec library (`pip install torchcodec`) or the soundfile library (`pip install soundfile`).
|
||||
To prepare the array into `input_features`, the [`AutoFeatureExtractor`] should be used for extracting the
|
||||
mel features, padding and conversion into a tensor of type `torch.FloatTensor`.
|
||||
See [`~WhisperFeatureExtractor.__call__`]
|
||||
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
||||
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
||||
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
||||
|
@ -130,7 +130,6 @@ from .utils import (
|
||||
is_scipy_available,
|
||||
is_sentencepiece_available,
|
||||
is_seqio_available,
|
||||
is_soundfile_available,
|
||||
is_spacy_available,
|
||||
is_speech_available,
|
||||
is_spqr_available,
|
||||
@ -656,7 +655,7 @@ def require_torchcodec(test_case):
|
||||
These tests are skipped when Torchcodec isn't installed.
|
||||
|
||||
"""
|
||||
return unittest.skipUnless(is_torchcodec_available(), "test requires Torchvision")(test_case)
|
||||
return unittest.skipUnless(is_torchcodec_available(), "test requires Torchcodec")(test_case)
|
||||
|
||||
|
||||
def require_torch_or_tf(test_case):
|
||||
@ -1268,16 +1267,6 @@ def require_clearml(test_case):
|
||||
return unittest.skipUnless(is_clearml_available(), "test requires clearml")(test_case)
|
||||
|
||||
|
||||
def require_soundfile(test_case):
|
||||
"""
|
||||
Decorator marking a test that requires soundfile
|
||||
|
||||
These tests are skipped when soundfile isn't installed.
|
||||
|
||||
"""
|
||||
return unittest.skipUnless(is_soundfile_available(), "test requires soundfile")(test_case)
|
||||
|
||||
|
||||
def require_deepspeed(test_case):
|
||||
"""
|
||||
Decorator marking a test that requires deepspeed
|
||||
|
@ -248,9 +248,10 @@ class ModelArgs:
|
||||
input_values = {
|
||||
"description": """
|
||||
Float values of input raw speech waveform. Values can be obtained by loading a `.flac` or `.wav` audio file
|
||||
into an array of type `list[float]` or a `numpy.ndarray`, *e.g.* via the soundfile library (`pip install
|
||||
soundfile`). To prepare the array into `input_values`, the [`AutoProcessor`] should be used for padding and
|
||||
conversion into a tensor of type `torch.FloatTensor`. See [`{processor_class}.__call__`] for details.
|
||||
into an array of type `list[float]` or a `numpy.ndarray`, *e.g.* via the torchcodec library (`pip install
|
||||
torchcodec`) or the soundfile library (`pip install soundfile`). To prepare the array into `input_values`,
|
||||
the [`AutoProcessor`] should be used for padding and conversion into a tensor of type `torch.FloatTensor`.
|
||||
See [`{processor_class}.__call__`] for details.
|
||||
""",
|
||||
"shape": "of shape `(batch_size, sequence_length)`",
|
||||
}
|
||||
|
@ -216,6 +216,7 @@ _torchaudio_available = _is_package_available("torchaudio")
|
||||
_torchao_available, _torchao_version = _is_package_available("torchao", return_version=True)
|
||||
_torchdistx_available = _is_package_available("torchdistx")
|
||||
_torchvision_available, _torchvision_version = _is_package_available("torchvision", return_version=True)
|
||||
_torchcodec_available, _torchcodec_version = _is_package_available("torchcodec", return_version=True)
|
||||
_mlx_available = _is_package_available("mlx")
|
||||
_num2words_available = _is_package_available("num2words")
|
||||
_hqq_available, _hqq_version = _is_package_available("hqq", return_version=True)
|
||||
@ -457,6 +458,10 @@ def is_torchvision_available():
|
||||
return _torchvision_available
|
||||
|
||||
|
||||
def is_torchcodec_available():
|
||||
return _torchcodec_available
|
||||
|
||||
|
||||
def is_torchvision_v2_available():
|
||||
if not is_torchvision_available():
|
||||
return False
|
||||
|
@ -21,7 +21,7 @@ from datasets import load_dataset
|
||||
|
||||
from tests.test_modeling_common import floats_tensor, ids_tensor, random_attention_mask
|
||||
from transformers import Data2VecAudioConfig, is_torch_available
|
||||
from transformers.testing_utils import require_soundfile, require_torch, slow, torch_device
|
||||
from transformers.testing_utils import require_torch, require_torchcodec, slow, torch_device
|
||||
|
||||
from ...test_configuration_common import ConfigTester
|
||||
from ...test_modeling_common import ModelTesterMixin, _config_zero_init
|
||||
@ -656,7 +656,7 @@ class Data2VecAudioUtilsTest(unittest.TestCase):
|
||||
|
||||
|
||||
@require_torch
|
||||
@require_soundfile
|
||||
@require_torchcodec
|
||||
@slow
|
||||
class Data2VecAudioModelIntegrationTest(unittest.TestCase):
|
||||
def _load_datasamples(self, num_samples):
|
||||
|
@ -22,7 +22,7 @@ import unittest
|
||||
import pytest
|
||||
|
||||
from transformers import HubertConfig, is_torch_available
|
||||
from transformers.testing_utils import require_soundfile, require_torch, slow, torch_device
|
||||
from transformers.testing_utils import require_torch, require_torchcodec, slow, torch_device
|
||||
|
||||
from ...test_configuration_common import ConfigTester
|
||||
from ...test_modeling_common import (
|
||||
@ -750,7 +750,7 @@ class HubertUtilsTest(unittest.TestCase):
|
||||
|
||||
|
||||
@require_torch
|
||||
@require_soundfile
|
||||
@require_torchcodec
|
||||
@slow
|
||||
class HubertModelIntegrationTest(unittest.TestCase):
|
||||
def _load_datasamples(self, num_samples):
|
||||
|
@ -33,13 +33,13 @@ from transformers import (
|
||||
from transformers.testing_utils import (
|
||||
Expectations,
|
||||
cleanup,
|
||||
require_soundfile,
|
||||
require_torch,
|
||||
require_torch_large_accelerator,
|
||||
require_torchcodec,
|
||||
slow,
|
||||
torch_device,
|
||||
)
|
||||
from transformers.utils import is_soundfile_available
|
||||
from transformers.utils import is_torchcodec_available
|
||||
|
||||
from ...generation.test_utils import GenerationTesterMixin
|
||||
from ...test_configuration_common import ConfigTester
|
||||
@ -54,8 +54,8 @@ if is_vision_available():
|
||||
from PIL import Image
|
||||
|
||||
|
||||
if is_soundfile_available():
|
||||
import soundfile
|
||||
if is_torchcodec_available():
|
||||
import torchcodec
|
||||
|
||||
|
||||
class Phi4MultimodalModelTester:
|
||||
@ -300,7 +300,8 @@ class Phi4MultimodalIntegrationTest(unittest.TestCase):
|
||||
tmp.write(requests.get(self.audio_url, stream=True).raw.data)
|
||||
tmp.flush()
|
||||
tmp.seek(0)
|
||||
self.audio, self.sampling_rate = soundfile.read(tmp.name)
|
||||
samples = torchcodec.decoders.AudioDecoder(tmp.name).get_all_samples()
|
||||
self.audio, self.sampling_rate = samples.data, samples.sample_rate
|
||||
|
||||
cleanup(torch_device, gc_collect=True)
|
||||
|
||||
@ -378,7 +379,7 @@ class Phi4MultimodalIntegrationTest(unittest.TestCase):
|
||||
|
||||
self.assertEqual(response, EXPECTED_RESPONSE)
|
||||
|
||||
@require_soundfile
|
||||
@require_torchcodec
|
||||
def test_audio_text_generation(self):
|
||||
model = AutoModelForCausalLM.from_pretrained(
|
||||
self.checkpoint_path, revision=self.revision, torch_dtype=torch.float16, device_map=torch_device
|
||||
|
@ -19,7 +19,7 @@ import unittest
|
||||
import pytest
|
||||
|
||||
from transformers import SEWConfig, is_torch_available
|
||||
from transformers.testing_utils import require_soundfile, require_torch, slow, torch_device
|
||||
from transformers.testing_utils import require_torch, require_torchcodec, slow, torch_device
|
||||
|
||||
from ...test_configuration_common import ConfigTester
|
||||
from ...test_modeling_common import (
|
||||
@ -453,7 +453,7 @@ class SEWUtilsTest(unittest.TestCase):
|
||||
|
||||
|
||||
@require_torch
|
||||
@require_soundfile
|
||||
@require_torchcodec
|
||||
@slow
|
||||
class SEWModelIntegrationTest(unittest.TestCase):
|
||||
def _load_datasamples(self, num_samples):
|
||||
|
@ -19,7 +19,7 @@ import unittest
|
||||
import pytest
|
||||
|
||||
from transformers import SEWDConfig, is_torch_available
|
||||
from transformers.testing_utils import require_soundfile, require_torch, slow, torch_device
|
||||
from transformers.testing_utils import require_torch, require_torchcodec, slow, torch_device
|
||||
|
||||
from ...test_configuration_common import ConfigTester
|
||||
from ...test_modeling_common import (
|
||||
@ -464,7 +464,7 @@ class SEWDUtilsTest(unittest.TestCase):
|
||||
|
||||
|
||||
@require_torch
|
||||
@require_soundfile
|
||||
@require_torchcodec
|
||||
@slow
|
||||
class SEWDModelIntegrationTest(unittest.TestCase):
|
||||
def _load_datasamples(self, num_samples):
|
||||
|
@ -21,7 +21,7 @@ import pytest
|
||||
from datasets import load_dataset
|
||||
|
||||
from transformers import UniSpeechConfig, is_torch_available
|
||||
from transformers.testing_utils import is_flaky, require_soundfile, require_torch, slow, torch_device
|
||||
from transformers.testing_utils import is_flaky, require_torch, require_torchcodec, slow, torch_device
|
||||
|
||||
from ...test_configuration_common import ConfigTester
|
||||
from ...test_modeling_common import (
|
||||
@ -553,7 +553,7 @@ class UniSpeechRobustModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.T
|
||||
|
||||
|
||||
@require_torch
|
||||
@require_soundfile
|
||||
@require_torchcodec
|
||||
@slow
|
||||
class UniSpeechModelIntegrationTest(unittest.TestCase):
|
||||
def _load_datasamples(self, num_samples):
|
||||
|
@ -21,7 +21,7 @@ import pytest
|
||||
from datasets import load_dataset
|
||||
|
||||
from transformers import UniSpeechSatConfig, is_torch_available
|
||||
from transformers.testing_utils import require_soundfile, require_torch, slow, torch_device
|
||||
from transformers.testing_utils import require_torch, require_torchcodec, slow, torch_device
|
||||
|
||||
from ...test_configuration_common import ConfigTester
|
||||
from ...test_modeling_common import (
|
||||
@ -807,7 +807,7 @@ class UniSpeechSatRobustModelTest(ModelTesterMixin, unittest.TestCase):
|
||||
|
||||
|
||||
@require_torch
|
||||
@require_soundfile
|
||||
@require_torchcodec
|
||||
@slow
|
||||
class UniSpeechSatModelIntegrationTest(unittest.TestCase):
|
||||
def _load_datasamples(self, num_samples):
|
||||
|
@ -34,10 +34,10 @@ from transformers.testing_utils import (
|
||||
is_torchaudio_available,
|
||||
require_flash_attn,
|
||||
require_pyctcdecode,
|
||||
require_soundfile,
|
||||
require_torch,
|
||||
require_torch_gpu,
|
||||
require_torchaudio,
|
||||
require_torchcodec,
|
||||
run_test_in_subprocess,
|
||||
slow,
|
||||
torch_device,
|
||||
@ -1444,7 +1444,7 @@ class Wav2Vec2UtilsTest(unittest.TestCase):
|
||||
|
||||
|
||||
@require_torch
|
||||
@require_soundfile
|
||||
@require_torchcodec
|
||||
@slow
|
||||
class Wav2Vec2ModelIntegrationTest(unittest.TestCase):
|
||||
def tearDown(self):
|
||||
|
Loading…
Reference in New Issue
Block a user