mirror of
https://github.com/huggingface/transformers.git
synced 2025-08-01 02:31:11 +06:00
fix zero shot pipeline docs (#6245)
This commit is contained in:
parent
5920a37a4c
commit
972535ea74
@ -20,6 +20,7 @@ There are two categories of pipeline abstractions to be aware about:
|
||||
- :class:`~transformers.TextGenerationPipeline`
|
||||
- :class:`~transformers.TokenClassificationPipeline`
|
||||
- :class:`~transformers.TranslationPipeline`
|
||||
- :class:`~transformers.ZeroShotClassificationPipeline`
|
||||
|
||||
The pipeline abstraction
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
@ -97,6 +98,13 @@ TokenClassificationPipeline
|
||||
:special-members: __call__
|
||||
:members:
|
||||
|
||||
ZeroShotClassificationPipeline
|
||||
==========================================
|
||||
|
||||
.. autoclass:: transformers.ZeroShotClassificationPipeline
|
||||
:special-members: __call__
|
||||
:members:
|
||||
|
||||
|
||||
Parent class: :obj:`Pipeline`
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
@ -120,6 +120,7 @@ from .pipelines import (
|
||||
TextGenerationPipeline,
|
||||
TokenClassificationPipeline,
|
||||
TranslationPipeline,
|
||||
ZeroShotClassificationPipeline,
|
||||
pipeline,
|
||||
)
|
||||
|
||||
|
@ -1033,30 +1033,31 @@ class ZeroShotClassificationPipeline(Pipeline):
|
||||
Classify the sequence(s) given as inputs.
|
||||
|
||||
Args:
|
||||
sequences (:obj:`str` or obj:`List[str]`):
|
||||
sequences (:obj:`str` or :obj:`List[str]`):
|
||||
The sequence(s) to classify, will be truncated if the model input is too large.
|
||||
candidate_labels (:obj:`str` or obj:`List[str]`):
|
||||
candidate_labels (:obj:`str` or :obj:`List[str]`):
|
||||
The set of possible class labels to classify each sequence into. Can be a single label, a string of
|
||||
comma-separated labels, or a list of labels.
|
||||
hypothesis_template (obj:`str`, `optional`, defaults to :obj:`"This example is {}."`):
|
||||
hypothesis_template (:obj:`str`, `optional`, defaults to :obj:`"This example is {}."`):
|
||||
The template used to turn each label into an NLI-style hypothesis. This template must include a {}
|
||||
or similar syntax for the candidate label to be inserted into the template. For example, the default
|
||||
template is :obj:`"This example is {}."` With the candidate label :obj:`"sports"`, this would be fed
|
||||
into the model like :obj:`"<cls> sequence to classify <sep> This example is sports . <sep>"`. The
|
||||
default template works well in many cases, but it may be worthwhile to experiment with different
|
||||
templates depending on the task setting.
|
||||
multi_class (obj:`bool`, `optional`, defaults to :obj:`False`):
|
||||
multi_class (:obj:`bool`, `optional`, defaults to :obj:`False`):
|
||||
Whether or not multiple candidate labels can be true. If :obj:`False`, the scores are normalized
|
||||
such that the sum of the label likelihoods for each sequence is 1. If :obj:`True`, the labels are
|
||||
considered independent and probabilities are normalized for each candidate by doing a softmax of
|
||||
the entailment score vs. the contradiction score.
|
||||
|
||||
Return:
|
||||
A :obj:`dict` or a list of :obj:`dict`: Each result comes as a dictionary with the
|
||||
following keys:
|
||||
|
||||
- **sequence** (:obj:`str`) -- The sequence for which this is the output.
|
||||
- **labels** (:obj:`List[str]`) -- The labels sorted by order of likelihood.
|
||||
- **scores** (:obj:` List[float]`) -- The probabilities for each of the labels.
|
||||
- **scores** (:obj:`List[float]`) -- The probabilities for each of the labels.
|
||||
"""
|
||||
outputs = super().__call__(sequences, candidate_labels, hypothesis_template)
|
||||
num_sequences = 1 if isinstance(sequences, str) else len(sequences)
|
||||
|
Loading…
Reference in New Issue
Block a user