XLNET can be exported to TorchScript

This commit is contained in:
LysandreJik 2019-07-03 11:03:09 -04:00
parent be54b16960
commit 971c24687f

View File

@ -384,7 +384,8 @@ class XLNetRelativeAttention(nn.Module):
x = x.reshape(x_size[1], x_size[0], x_size[2], x_size[3])
x = x[1:, ...]
x = x.reshape(x_size[0], x_size[1] - 1, x_size[2], x_size[3])
x = x[:, 0:klen, :, :]
# x = x[:, 0:klen, :, :]
x = torch.index_select(x, 1, torch.arange(klen))
return x
@ -527,9 +528,9 @@ class XLNetRelativeAttention(nn.Module):
output_h = self.post_attention(h, attn_vec)
output_g = None
outputs = [output_h, output_g]
outputs = (output_h, output_g)
if self.output_attentions:
outputs = outputs + [attn_prob]
outputs += (attn_prob,)
return outputs
class XLNetFeedForward(nn.Module):
@ -574,7 +575,7 @@ class XLNetLayer(nn.Module):
output_g = self.ff(output_g)
output_h = self.ff(output_h)
outputs = [output_h, output_g] + outputs[2:] # Add again attentions if there are there
outputs = (output_h, output_g) + outputs[2:] # Add again attentions if there are there
return outputs
@ -688,7 +689,7 @@ class XLNetModel(XLNetPreTrainedModel):
def relative_positional_encoding(self, qlen, klen, bsz=None):
"""create relative positional encoding."""
freq_seq = torch.arange(0, self.d_model, 2.0, dtype=torch.float)
inv_freq = 1 / (10000 ** (freq_seq / self.d_model))
inv_freq = 1 / torch.pow(10000, (freq_seq / self.d_model))
if self.attn_type == 'bi':
# beg, end = klen - 1, -qlen
@ -869,7 +870,7 @@ class XLNetModel(XLNetPreTrainedModel):
else:
head_mask = [None] * self.n_layer
new_mems = []
new_mems = ()
if mems is None:
mems = [None] * len(self.layer)
@ -877,7 +878,7 @@ class XLNetModel(XLNetPreTrainedModel):
hidden_states = []
for i, layer_module in enumerate(self.layer):
# cache new mems
new_mems.append(self.cache_mem(output_h, mems[i]))
new_mems += (self.cache_mem(output_h, mems[i]),)
if self.output_hidden_states:
hidden_states.append((output_h, output_g) if output_g is not None else output_h)
@ -895,16 +896,16 @@ class XLNetModel(XLNetPreTrainedModel):
output = self.dropout(output_g if output_g is not None else output_h)
# Prepare outputs, we transpose back here to shape [bsz, len, hidden_dim] (cf. beginning of forward() method)
outputs = [output.permute(1, 0, 2).contiguous(), new_mems]
outputs = (output.permute(1, 0, 2).contiguous(), new_mems)
if self.output_hidden_states:
if output_g is not None:
hidden_states = [h.permute(1, 0, 2).contiguous() for hs in hidden_states for h in hs]
hidden_states = tuple(h.permute(1, 0, 2).contiguous() for hs in hidden_states for h in hs)
else:
hidden_states = [hs.permute(1, 0, 2).contiguous() for hs in hidden_states]
outputs.append(hidden_states)
hidden_states = tuple(hs.permute(1, 0, 2).contiguous() for hs in hidden_states)
outputs += (hidden_states,)
if self.output_attentions:
attentions = list(t.permute(2, 3, 0, 1).contiguous() for t in attentions)
outputs.append(attentions)
attentions = tuple(t.permute(2, 3, 0, 1).contiguous() for t in attentions)
outputs += (attentions,)
return outputs # outputs, new_mems, (hidden_states), (attentions)
@ -986,7 +987,7 @@ class XLNetLMHeadModel(XLNetPreTrainedModel):
def tie_weights(self):
""" Make sure we are sharing the embeddings
"""
self.lm_loss.weight = self.transformer.word_embedding.weight
self.lm_loss.weight = nn.Parameter(self.transformer.word_embedding.weight.clone())
def forward(self, input_ids, token_type_ids=None, input_mask=None, attention_mask=None,
mems=None, perm_mask=None, target_mapping=None, inp_q=None,
@ -1026,14 +1027,14 @@ class XLNetLMHeadModel(XLNetPreTrainedModel):
logits = self.lm_loss(transformer_outputs[0])
outputs = [logits] + transformer_outputs[1:] # Keep mems, hidden states, attentions if there are in it
outputs = (logits,) + transformer_outputs[1:] # Keep mems, hidden states, attentions if there are in it
if labels is not None:
# Flatten the tokens
loss_fct = CrossEntropyLoss(ignore_index=-1)
loss = loss_fct(logits.view(-1, logits.size(-1)),
labels.view(-1))
outputs = [loss] + outputs
outputs = (loss,) + outputs
return outputs # return (loss), logits, (mems), (hidden states), (attentions)
@ -1061,7 +1062,7 @@ class XLNetSequenceSummary(nn.Module):
output = hidden_states[:, 0]
elif self.summary_type == 'mean':
output = hidden_states.mean(dim=1)
elif summary_type == 'attn':
elif self.summary_type == 'attn':
raise NotImplementedError
output = self.summary(output)
@ -1180,7 +1181,7 @@ class XLNetForSequenceClassification(XLNetPreTrainedModel):
output = self.sequence_summary(output)
logits = self.logits_proj(output)
outputs = [logits] + transformer_outputs[1:] # Keep mems, hidden states, attentions if there are in it
outputs = (logits,) + transformer_outputs[1:] # Keep mems, hidden states, attentions if there are in it
if labels is not None:
if self.num_labels == 1:
@ -1190,7 +1191,7 @@ class XLNetForSequenceClassification(XLNetPreTrainedModel):
else:
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
outputs = [loss] + outputs
outputs = (loss,) + outputs
return outputs # return (loss), logits, (mems), (hidden states), (attentions)
@ -1271,7 +1272,7 @@ class XLNetForQuestionAnswering(XLNetPreTrainedModel):
start_logits = start_logits.squeeze(-1)
end_logits = end_logits.squeeze(-1)
outputs = [start_logits, end_logits] + transformer_outputs[1:] # Keep mems, hidden states, attentions if there are in it
outputs = (start_logits, end_logits,) + transformer_outputs[1:] # Keep mems, hidden states, attentions if there are in it
if start_positions is not None and end_positions is not None:
# If we are on multi-GPU, split add a dimension
@ -1288,6 +1289,6 @@ class XLNetForQuestionAnswering(XLNetPreTrainedModel):
start_loss = loss_fct(start_logits, start_positions)
end_loss = loss_fct(end_logits, end_positions)
total_loss = (start_loss + end_loss) / 2
outputs = [total_loss] + outputs
outputs = (total_loss,) + outputs
return outputs # return (loss), logits, (mems), (hidden states), (attentions)