Added Type hints for XLM TF (#19333)

* Update modeling_tf_xlm.py

* Updates

* Update src/transformers/models/xlm/modeling_tf_xlm.py

* Update src/transformers/models/xlm/modeling_tf_xlm.py

* Update src/transformers/models/xlm/modeling_tf_xlm.py

* Update src/transformers/models/xlm/modeling_tf_xlm.py

* Update src/transformers/models/xlm/modeling_tf_xlm.py

Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>
This commit is contained in:
IMvision12 2022-10-07 18:14:50 +05:30 committed by GitHub
parent 46fd04b481
commit 969534af4b
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

View File

@ -19,7 +19,7 @@
import itertools
import warnings
from dataclasses import dataclass
from typing import Dict, Optional, Tuple
from typing import Dict, Optional, Tuple, Union
import numpy as np
import tensorflow as tf
@ -33,6 +33,7 @@ from ...modeling_tf_outputs import (
TFTokenClassifierOutput,
)
from ...modeling_tf_utils import (
TFModelInputType,
TFMultipleChoiceLoss,
TFPreTrainedModel,
TFQuestionAnsweringLoss,
@ -844,19 +845,19 @@ class TFXLMWithLMHeadModel(TFXLMPreTrainedModel):
)
def call(
self,
input_ids=None,
attention_mask=None,
langs=None,
token_type_ids=None,
position_ids=None,
lengths=None,
cache=None,
head_mask=None,
inputs_embeds=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
training=False,
input_ids: Optional[TFModelInputType] = None,
attention_mask: Optional[Union[np.ndarray, tf.Tensor]] = None,
langs: Optional[Union[np.ndarray, tf.Tensor]] = None,
token_type_ids: Optional[Union[np.ndarray, tf.Tensor]] = None,
position_ids: Optional[Union[np.ndarray, tf.Tensor]] = None,
lengths: Optional[Union[np.ndarray, tf.Tensor]] = None,
cache: Optional[Dict[str, tf.Tensor]] = None,
head_mask: Optional[Union[np.ndarray, tf.Tensor]] = None,
inputs_embeds: Optional[Union[np.ndarray, tf.Tensor]] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: bool = False,
):
transformer_outputs = self.transformer(
input_ids=input_ids,
@ -916,20 +917,20 @@ class TFXLMForSequenceClassification(TFXLMPreTrainedModel, TFSequenceClassificat
)
def call(
self,
input_ids=None,
attention_mask=None,
langs=None,
token_type_ids=None,
position_ids=None,
lengths=None,
cache=None,
head_mask=None,
inputs_embeds=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
labels=None,
training=False,
input_ids: Optional[TFModelInputType] = None,
attention_mask: Optional[Union[np.ndarray, tf.Tensor]] = None,
langs: Optional[Union[np.ndarray, tf.Tensor]] = None,
token_type_ids: Optional[Union[np.ndarray, tf.Tensor]] = None,
position_ids: Optional[Union[np.ndarray, tf.Tensor]] = None,
lengths: Optional[Union[np.ndarray, tf.Tensor]] = None,
cache: Optional[Dict[str, tf.Tensor]] = None,
head_mask: Optional[Union[np.ndarray, tf.Tensor]] = None,
inputs_embeds: Optional[Union[np.ndarray, tf.Tensor]] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
labels: Optional[Union[np.ndarray, tf.Tensor]] = None,
training: bool = False,
):
r"""
labels (`tf.Tensor` of shape `(batch_size,)`, *optional*):
@ -1023,20 +1024,20 @@ class TFXLMForMultipleChoice(TFXLMPreTrainedModel, TFMultipleChoiceLoss):
)
def call(
self,
input_ids=None,
attention_mask=None,
langs=None,
token_type_ids=None,
position_ids=None,
lengths=None,
cache=None,
head_mask=None,
inputs_embeds=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
labels=None,
training=False,
input_ids: Optional[TFModelInputType] = None,
attention_mask: Optional[Union[np.ndarray, tf.Tensor]] = None,
langs: Optional[Union[np.ndarray, tf.Tensor]] = None,
token_type_ids: Optional[Union[np.ndarray, tf.Tensor]] = None,
position_ids: Optional[Union[np.ndarray, tf.Tensor]] = None,
lengths: Optional[Union[np.ndarray, tf.Tensor]] = None,
cache: Optional[Dict[str, tf.Tensor]] = None,
head_mask: Optional[Union[np.ndarray, tf.Tensor]] = None,
inputs_embeds: Optional[Union[np.ndarray, tf.Tensor]] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
labels: Optional[Union[np.ndarray, tf.Tensor]] = None,
training: bool = False,
):
if input_ids is not None:
num_choices = shape_list(input_ids)[1]
@ -1147,20 +1148,20 @@ class TFXLMForTokenClassification(TFXLMPreTrainedModel, TFTokenClassificationLos
)
def call(
self,
input_ids=None,
attention_mask=None,
langs=None,
token_type_ids=None,
position_ids=None,
lengths=None,
cache=None,
head_mask=None,
inputs_embeds=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
labels=None,
training=False,
input_ids: Optional[TFModelInputType] = None,
attention_mask: Optional[Union[np.ndarray, tf.Tensor]] = None,
langs: Optional[Union[np.ndarray, tf.Tensor]] = None,
token_type_ids: Optional[Union[np.ndarray, tf.Tensor]] = None,
position_ids: Optional[Union[np.ndarray, tf.Tensor]] = None,
lengths: Optional[Union[np.ndarray, tf.Tensor]] = None,
cache: Optional[Dict[str, tf.Tensor]] = None,
head_mask: Optional[Union[np.ndarray, tf.Tensor]] = None,
inputs_embeds: Optional[Union[np.ndarray, tf.Tensor]] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
labels: Optional[Union[np.ndarray, tf.Tensor]] = None,
training: bool = False,
):
r"""
labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
@ -1232,21 +1233,21 @@ class TFXLMForQuestionAnsweringSimple(TFXLMPreTrainedModel, TFQuestionAnsweringL
)
def call(
self,
input_ids=None,
attention_mask=None,
langs=None,
token_type_ids=None,
position_ids=None,
lengths=None,
cache=None,
head_mask=None,
inputs_embeds=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
start_positions=None,
end_positions=None,
training=False,
input_ids: Optional[TFModelInputType] = None,
attention_mask: Optional[Union[np.ndarray, tf.Tensor]] = None,
langs: Optional[Union[np.ndarray, tf.Tensor]] = None,
token_type_ids: Optional[Union[np.ndarray, tf.Tensor]] = None,
position_ids: Optional[Union[np.ndarray, tf.Tensor]] = None,
lengths: Optional[Union[np.ndarray, tf.Tensor]] = None,
cache: Optional[Dict[str, tf.Tensor]] = None,
head_mask: Optional[Union[np.ndarray, tf.Tensor]] = None,
inputs_embeds: Optional[Union[np.ndarray, tf.Tensor]] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
start_positions: Optional[Union[np.ndarray, tf.Tensor]] = None,
end_positions: Optional[Union[np.ndarray, tf.Tensor]] = None,
training: bool = False,
):
r"""
start_positions (`tf.Tensor` of shape `(batch_size,)`, *optional*):