mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-31 02:02:21 +06:00
Added Type hints for XLM TF (#19333)
* Update modeling_tf_xlm.py * Updates * Update src/transformers/models/xlm/modeling_tf_xlm.py * Update src/transformers/models/xlm/modeling_tf_xlm.py * Update src/transformers/models/xlm/modeling_tf_xlm.py * Update src/transformers/models/xlm/modeling_tf_xlm.py * Update src/transformers/models/xlm/modeling_tf_xlm.py Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>
This commit is contained in:
parent
46fd04b481
commit
969534af4b
@ -19,7 +19,7 @@
|
||||
import itertools
|
||||
import warnings
|
||||
from dataclasses import dataclass
|
||||
from typing import Dict, Optional, Tuple
|
||||
from typing import Dict, Optional, Tuple, Union
|
||||
|
||||
import numpy as np
|
||||
import tensorflow as tf
|
||||
@ -33,6 +33,7 @@ from ...modeling_tf_outputs import (
|
||||
TFTokenClassifierOutput,
|
||||
)
|
||||
from ...modeling_tf_utils import (
|
||||
TFModelInputType,
|
||||
TFMultipleChoiceLoss,
|
||||
TFPreTrainedModel,
|
||||
TFQuestionAnsweringLoss,
|
||||
@ -844,19 +845,19 @@ class TFXLMWithLMHeadModel(TFXLMPreTrainedModel):
|
||||
)
|
||||
def call(
|
||||
self,
|
||||
input_ids=None,
|
||||
attention_mask=None,
|
||||
langs=None,
|
||||
token_type_ids=None,
|
||||
position_ids=None,
|
||||
lengths=None,
|
||||
cache=None,
|
||||
head_mask=None,
|
||||
inputs_embeds=None,
|
||||
output_attentions=None,
|
||||
output_hidden_states=None,
|
||||
return_dict=None,
|
||||
training=False,
|
||||
input_ids: Optional[TFModelInputType] = None,
|
||||
attention_mask: Optional[Union[np.ndarray, tf.Tensor]] = None,
|
||||
langs: Optional[Union[np.ndarray, tf.Tensor]] = None,
|
||||
token_type_ids: Optional[Union[np.ndarray, tf.Tensor]] = None,
|
||||
position_ids: Optional[Union[np.ndarray, tf.Tensor]] = None,
|
||||
lengths: Optional[Union[np.ndarray, tf.Tensor]] = None,
|
||||
cache: Optional[Dict[str, tf.Tensor]] = None,
|
||||
head_mask: Optional[Union[np.ndarray, tf.Tensor]] = None,
|
||||
inputs_embeds: Optional[Union[np.ndarray, tf.Tensor]] = None,
|
||||
output_attentions: Optional[bool] = None,
|
||||
output_hidden_states: Optional[bool] = None,
|
||||
return_dict: Optional[bool] = None,
|
||||
training: bool = False,
|
||||
):
|
||||
transformer_outputs = self.transformer(
|
||||
input_ids=input_ids,
|
||||
@ -916,20 +917,20 @@ class TFXLMForSequenceClassification(TFXLMPreTrainedModel, TFSequenceClassificat
|
||||
)
|
||||
def call(
|
||||
self,
|
||||
input_ids=None,
|
||||
attention_mask=None,
|
||||
langs=None,
|
||||
token_type_ids=None,
|
||||
position_ids=None,
|
||||
lengths=None,
|
||||
cache=None,
|
||||
head_mask=None,
|
||||
inputs_embeds=None,
|
||||
output_attentions=None,
|
||||
output_hidden_states=None,
|
||||
return_dict=None,
|
||||
labels=None,
|
||||
training=False,
|
||||
input_ids: Optional[TFModelInputType] = None,
|
||||
attention_mask: Optional[Union[np.ndarray, tf.Tensor]] = None,
|
||||
langs: Optional[Union[np.ndarray, tf.Tensor]] = None,
|
||||
token_type_ids: Optional[Union[np.ndarray, tf.Tensor]] = None,
|
||||
position_ids: Optional[Union[np.ndarray, tf.Tensor]] = None,
|
||||
lengths: Optional[Union[np.ndarray, tf.Tensor]] = None,
|
||||
cache: Optional[Dict[str, tf.Tensor]] = None,
|
||||
head_mask: Optional[Union[np.ndarray, tf.Tensor]] = None,
|
||||
inputs_embeds: Optional[Union[np.ndarray, tf.Tensor]] = None,
|
||||
output_attentions: Optional[bool] = None,
|
||||
output_hidden_states: Optional[bool] = None,
|
||||
return_dict: Optional[bool] = None,
|
||||
labels: Optional[Union[np.ndarray, tf.Tensor]] = None,
|
||||
training: bool = False,
|
||||
):
|
||||
r"""
|
||||
labels (`tf.Tensor` of shape `(batch_size,)`, *optional*):
|
||||
@ -1023,20 +1024,20 @@ class TFXLMForMultipleChoice(TFXLMPreTrainedModel, TFMultipleChoiceLoss):
|
||||
)
|
||||
def call(
|
||||
self,
|
||||
input_ids=None,
|
||||
attention_mask=None,
|
||||
langs=None,
|
||||
token_type_ids=None,
|
||||
position_ids=None,
|
||||
lengths=None,
|
||||
cache=None,
|
||||
head_mask=None,
|
||||
inputs_embeds=None,
|
||||
output_attentions=None,
|
||||
output_hidden_states=None,
|
||||
return_dict=None,
|
||||
labels=None,
|
||||
training=False,
|
||||
input_ids: Optional[TFModelInputType] = None,
|
||||
attention_mask: Optional[Union[np.ndarray, tf.Tensor]] = None,
|
||||
langs: Optional[Union[np.ndarray, tf.Tensor]] = None,
|
||||
token_type_ids: Optional[Union[np.ndarray, tf.Tensor]] = None,
|
||||
position_ids: Optional[Union[np.ndarray, tf.Tensor]] = None,
|
||||
lengths: Optional[Union[np.ndarray, tf.Tensor]] = None,
|
||||
cache: Optional[Dict[str, tf.Tensor]] = None,
|
||||
head_mask: Optional[Union[np.ndarray, tf.Tensor]] = None,
|
||||
inputs_embeds: Optional[Union[np.ndarray, tf.Tensor]] = None,
|
||||
output_attentions: Optional[bool] = None,
|
||||
output_hidden_states: Optional[bool] = None,
|
||||
return_dict: Optional[bool] = None,
|
||||
labels: Optional[Union[np.ndarray, tf.Tensor]] = None,
|
||||
training: bool = False,
|
||||
):
|
||||
if input_ids is not None:
|
||||
num_choices = shape_list(input_ids)[1]
|
||||
@ -1147,20 +1148,20 @@ class TFXLMForTokenClassification(TFXLMPreTrainedModel, TFTokenClassificationLos
|
||||
)
|
||||
def call(
|
||||
self,
|
||||
input_ids=None,
|
||||
attention_mask=None,
|
||||
langs=None,
|
||||
token_type_ids=None,
|
||||
position_ids=None,
|
||||
lengths=None,
|
||||
cache=None,
|
||||
head_mask=None,
|
||||
inputs_embeds=None,
|
||||
output_attentions=None,
|
||||
output_hidden_states=None,
|
||||
return_dict=None,
|
||||
labels=None,
|
||||
training=False,
|
||||
input_ids: Optional[TFModelInputType] = None,
|
||||
attention_mask: Optional[Union[np.ndarray, tf.Tensor]] = None,
|
||||
langs: Optional[Union[np.ndarray, tf.Tensor]] = None,
|
||||
token_type_ids: Optional[Union[np.ndarray, tf.Tensor]] = None,
|
||||
position_ids: Optional[Union[np.ndarray, tf.Tensor]] = None,
|
||||
lengths: Optional[Union[np.ndarray, tf.Tensor]] = None,
|
||||
cache: Optional[Dict[str, tf.Tensor]] = None,
|
||||
head_mask: Optional[Union[np.ndarray, tf.Tensor]] = None,
|
||||
inputs_embeds: Optional[Union[np.ndarray, tf.Tensor]] = None,
|
||||
output_attentions: Optional[bool] = None,
|
||||
output_hidden_states: Optional[bool] = None,
|
||||
return_dict: Optional[bool] = None,
|
||||
labels: Optional[Union[np.ndarray, tf.Tensor]] = None,
|
||||
training: bool = False,
|
||||
):
|
||||
r"""
|
||||
labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
||||
@ -1232,21 +1233,21 @@ class TFXLMForQuestionAnsweringSimple(TFXLMPreTrainedModel, TFQuestionAnsweringL
|
||||
)
|
||||
def call(
|
||||
self,
|
||||
input_ids=None,
|
||||
attention_mask=None,
|
||||
langs=None,
|
||||
token_type_ids=None,
|
||||
position_ids=None,
|
||||
lengths=None,
|
||||
cache=None,
|
||||
head_mask=None,
|
||||
inputs_embeds=None,
|
||||
output_attentions=None,
|
||||
output_hidden_states=None,
|
||||
return_dict=None,
|
||||
start_positions=None,
|
||||
end_positions=None,
|
||||
training=False,
|
||||
input_ids: Optional[TFModelInputType] = None,
|
||||
attention_mask: Optional[Union[np.ndarray, tf.Tensor]] = None,
|
||||
langs: Optional[Union[np.ndarray, tf.Tensor]] = None,
|
||||
token_type_ids: Optional[Union[np.ndarray, tf.Tensor]] = None,
|
||||
position_ids: Optional[Union[np.ndarray, tf.Tensor]] = None,
|
||||
lengths: Optional[Union[np.ndarray, tf.Tensor]] = None,
|
||||
cache: Optional[Dict[str, tf.Tensor]] = None,
|
||||
head_mask: Optional[Union[np.ndarray, tf.Tensor]] = None,
|
||||
inputs_embeds: Optional[Union[np.ndarray, tf.Tensor]] = None,
|
||||
output_attentions: Optional[bool] = None,
|
||||
output_hidden_states: Optional[bool] = None,
|
||||
return_dict: Optional[bool] = None,
|
||||
start_positions: Optional[Union[np.ndarray, tf.Tensor]] = None,
|
||||
end_positions: Optional[Union[np.ndarray, tf.Tensor]] = None,
|
||||
training: bool = False,
|
||||
):
|
||||
r"""
|
||||
start_positions (`tf.Tensor` of shape `(batch_size,)`, *optional*):
|
||||
|
Loading…
Reference in New Issue
Block a user