mirror of
https://github.com/huggingface/transformers.git
synced 2025-08-03 03:31:05 +06:00
output all hidden layers states in GPT/GPT-2
This commit is contained in:
parent
f12007e421
commit
965f172de6
@ -720,9 +720,13 @@ class GPT2Model(GPT2PreTrainedModel):
|
||||
hidden_states = inputs_embeds + position_embeds + token_type_embeds
|
||||
hidden_states = self.drop(hidden_states)
|
||||
|
||||
output_shape = input_shape + (hidden_states.size(-1),)
|
||||
|
||||
presents = []
|
||||
all_attentions = []
|
||||
all_hidden_states = []
|
||||
for block, layer_past in zip(self.h, past):
|
||||
all_hidden_states.append(hidden_states.view(*output_shape))
|
||||
outputs = block(hidden_states, layer_past, head_mask)
|
||||
if self.output_attentions:
|
||||
attentions, hidden_states, present = outputs
|
||||
@ -731,10 +735,11 @@ class GPT2Model(GPT2PreTrainedModel):
|
||||
hidden_states, present = outputs
|
||||
presents.append(present)
|
||||
hidden_states = self.ln_f(hidden_states)
|
||||
output_shape = input_shape + (hidden_states.size(-1),)
|
||||
all_hidden_states.append(hidden_states.view(*output_shape))
|
||||
|
||||
if self.output_attentions:
|
||||
return all_attentions, hidden_states.view(*output_shape), presents
|
||||
return hidden_states.view(*output_shape), presents
|
||||
return all_attentions, all_hidden_states, presents
|
||||
return all_hidden_states, presents
|
||||
|
||||
|
||||
class GPT2LMHeadModel(GPT2PreTrainedModel):
|
||||
@ -802,6 +807,8 @@ class GPT2LMHeadModel(GPT2PreTrainedModel):
|
||||
all_attentions, hidden_states, presents = transformer_output
|
||||
else:
|
||||
hidden_states, presents = transformer_output
|
||||
hidden_states = hidden_states[-1]
|
||||
|
||||
lm_logits = self.lm_head(hidden_states)
|
||||
if lm_labels is not None:
|
||||
# Shift so that tokens < n predict n
|
||||
@ -889,6 +896,8 @@ class GPT2DoubleHeadsModel(GPT2PreTrainedModel):
|
||||
all_attentions, hidden_states, presents = transformer_output
|
||||
else:
|
||||
hidden_states, presents = transformer_output
|
||||
hidden_states = hidden_states[-1]
|
||||
|
||||
lm_logits = self.lm_head(hidden_states)
|
||||
mc_logits = self.multiple_choice_head(hidden_states, mc_token_ids)
|
||||
losses = []
|
||||
|
@ -716,7 +716,10 @@ class OpenAIGPTModel(OpenAIGPTPreTrainedModel):
|
||||
hidden_states = inputs_embeds + position_embeds + token_type_embeds
|
||||
hidden_states = self.drop(hidden_states)
|
||||
|
||||
output_shape = input_shape + (hidden_states.size(-1),)
|
||||
|
||||
all_attentions = []
|
||||
all_hidden_states = [hidden_states.view(*output_shape)]
|
||||
for block in self.h:
|
||||
outputs = block(hidden_states, head_mask)
|
||||
if self.output_attentions:
|
||||
@ -724,10 +727,11 @@ class OpenAIGPTModel(OpenAIGPTPreTrainedModel):
|
||||
all_attentions.append(attentions)
|
||||
else:
|
||||
hidden_states = outputs
|
||||
output_shape = input_shape + (hidden_states.size(-1),)
|
||||
all_hidden_states.append(hidden_states.view(*output_shape))
|
||||
|
||||
if self.output_attentions:
|
||||
return all_attentions, hidden_states.view(*output_shape)
|
||||
return hidden_states.view(*output_shape)
|
||||
return all_attentions, all_hidden_states
|
||||
return all_hidden_states
|
||||
|
||||
|
||||
class OpenAIGPTLMHeadModel(OpenAIGPTPreTrainedModel):
|
||||
@ -805,6 +809,8 @@ class OpenAIGPTLMHeadModel(OpenAIGPTPreTrainedModel):
|
||||
hidden_states = self.transformer(input_ids, position_ids, token_type_ids, head_mask)
|
||||
if self.transformer.output_attentions:
|
||||
all_attentions, hidden_states = hidden_states
|
||||
hidden_states = hidden_states[-1]
|
||||
|
||||
lm_logits = self.lm_head(hidden_states)
|
||||
if lm_labels is not None:
|
||||
# Shift so that tokens < n predict n
|
||||
@ -902,6 +908,8 @@ class OpenAIGPTDoubleHeadsModel(OpenAIGPTPreTrainedModel):
|
||||
hidden_states = self.transformer(input_ids, position_ids, token_type_ids, head_mask)
|
||||
if self.transformer.output_attentions:
|
||||
all_attentions, hidden_states = hidden_states
|
||||
hidden_states = hidden_states[-1]
|
||||
|
||||
lm_logits = self.lm_head(hidden_states)
|
||||
mc_logits = self.multiple_choice_head(hidden_states, mc_token_ids)
|
||||
losses = []
|
||||
|
@ -115,8 +115,9 @@ class GPT2ModelTest(unittest.TestCase):
|
||||
return outputs
|
||||
|
||||
def check_gpt2_model_output(self, result):
|
||||
self.parent.assertEqual(len(result["hidden_states"]), self.n_layer + 1)
|
||||
self.parent.assertListEqual(
|
||||
list(result["hidden_states"].size()),
|
||||
list(result["hidden_states"][0].size()),
|
||||
[self.batch_size, self.n_choices, self.seq_length, self.n_embd])
|
||||
|
||||
|
||||
@ -222,7 +223,10 @@ class GPT2ModelTest(unittest.TestCase):
|
||||
else:
|
||||
output = model(input_ids, head_mask=head_mask)
|
||||
|
||||
output = sum(t.sum() for t in output[:-1])
|
||||
if isinstance(model, GPT2Model):
|
||||
output = sum(t.sum() for t in output[0])
|
||||
elif isinstance(output, (list, tuple)):
|
||||
output = sum(t.sum() for t in output[:-1])
|
||||
output = output.sum()
|
||||
output.backward()
|
||||
multihead_outputs = (model if isinstance(model, GPT2Model) else model.transformer).get_multihead_outputs()
|
||||
@ -256,7 +260,10 @@ class GPT2ModelTest(unittest.TestCase):
|
||||
else:
|
||||
output = model(input_ids)
|
||||
|
||||
output = sum(t.sum() for t in output[:-1])
|
||||
if isinstance(model, GPT2Model):
|
||||
output = sum(t.sum() for t in output[0])
|
||||
elif isinstance(output, (list, tuple)):
|
||||
output = sum(t.sum() for t in output[:-1])
|
||||
output = output.sum()
|
||||
output.backward()
|
||||
multihead_outputs = transformer.get_multihead_outputs()
|
||||
|
@ -125,8 +125,9 @@ class OpenAIGPTModelTest(unittest.TestCase):
|
||||
return outputs
|
||||
|
||||
def check_openai_model_output(self, result):
|
||||
self.parent.assertEqual(len(result["hidden_states"]), self.n_layer + 1)
|
||||
self.parent.assertListEqual(
|
||||
list(result["hidden_states"].size()),
|
||||
list(result["hidden_states"][0].size()),
|
||||
[self.batch_size, self.n_choices, self.seq_length, self.n_embd])
|
||||
|
||||
|
||||
@ -195,7 +196,10 @@ class OpenAIGPTModelTest(unittest.TestCase):
|
||||
else:
|
||||
output = model(input_ids, head_mask=head_mask)
|
||||
|
||||
output = sum(t.sum() for t in output[:-1])
|
||||
if isinstance(model, OpenAIGPTModel):
|
||||
output = sum(t.sum() for t in output[0])
|
||||
elif isinstance(output, (list, tuple)):
|
||||
output = sum(t.sum() for t in output)
|
||||
output = output.sum()
|
||||
output.backward()
|
||||
multihead_outputs = (model if isinstance(model, OpenAIGPTModel) else model.transformer).get_multihead_outputs()
|
||||
@ -229,7 +233,10 @@ class OpenAIGPTModelTest(unittest.TestCase):
|
||||
else:
|
||||
output = model(input_ids)
|
||||
|
||||
output = sum(t.sum() for t in output[:-1])
|
||||
if isinstance(model, OpenAIGPTModel):
|
||||
output = sum(t.sum() for t in output[0])
|
||||
elif isinstance(output, (list, tuple)):
|
||||
output = sum(t.sum() for t in output)
|
||||
output = output.sum()
|
||||
output.backward()
|
||||
multihead_outputs = transformer.get_multihead_outputs()
|
||||
|
Loading…
Reference in New Issue
Block a user