mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-31 02:02:21 +06:00
Merge pull request #1804 from ronakice/master
fix multi-gpu eval in torch examples
This commit is contained in:
commit
9629e2c676
@ -224,6 +224,10 @@ def evaluate(args, model, tokenizer, prefix=""):
|
||||
eval_sampler = SequentialSampler(eval_dataset) if args.local_rank == -1 else DistributedSampler(eval_dataset)
|
||||
eval_dataloader = DataLoader(eval_dataset, sampler=eval_sampler, batch_size=args.eval_batch_size)
|
||||
|
||||
# multi-gpu eval
|
||||
if args.n_gpu > 1:
|
||||
model = torch.nn.DataParallel(model)
|
||||
|
||||
# Eval!
|
||||
logger.info("***** Running evaluation {} *****".format(prefix))
|
||||
logger.info(" Num examples = %d", len(eval_dataset))
|
||||
|
@ -300,6 +300,10 @@ def evaluate(args, model, tokenizer, prefix=""):
|
||||
eval_sampler = SequentialSampler(eval_dataset) if args.local_rank == -1 else DistributedSampler(eval_dataset)
|
||||
eval_dataloader = DataLoader(eval_dataset, sampler=eval_sampler, batch_size=args.eval_batch_size)
|
||||
|
||||
# multi-gpu evaluate
|
||||
if args.n_gpu > 1:
|
||||
model = torch.nn.DataParallel(model)
|
||||
|
||||
# Eval!
|
||||
logger.info("***** Running evaluation {} *****".format(prefix))
|
||||
logger.info(" Num examples = %d", len(eval_dataset))
|
||||
|
@ -229,6 +229,10 @@ def evaluate(args, model, tokenizer, prefix="", test=False):
|
||||
eval_sampler = SequentialSampler(eval_dataset) if args.local_rank == -1 else DistributedSampler(eval_dataset)
|
||||
eval_dataloader = DataLoader(eval_dataset, sampler=eval_sampler, batch_size=args.eval_batch_size)
|
||||
|
||||
# multi-gpu evaluate
|
||||
if args.n_gpu > 1:
|
||||
model = torch.nn.DataParallel(model)
|
||||
|
||||
# Eval!
|
||||
logger.info("***** Running evaluation {} *****".format(prefix))
|
||||
logger.info(" Num examples = %d", len(eval_dataset))
|
||||
|
@ -191,6 +191,10 @@ def evaluate(args, model, tokenizer, labels, pad_token_label_id, mode, prefix=""
|
||||
eval_sampler = SequentialSampler(eval_dataset) if args.local_rank == -1 else DistributedSampler(eval_dataset)
|
||||
eval_dataloader = DataLoader(eval_dataset, sampler=eval_sampler, batch_size=args.eval_batch_size)
|
||||
|
||||
# multi-gpu evaluate
|
||||
if args.n_gpu > 1:
|
||||
model = torch.nn.DataParallel(model)
|
||||
|
||||
# Eval!
|
||||
logger.info("***** Running evaluation %s *****", prefix)
|
||||
logger.info(" Num examples = %d", len(eval_dataset))
|
||||
|
@ -217,6 +217,10 @@ def evaluate(args, model, tokenizer, prefix=""):
|
||||
eval_sampler = SequentialSampler(dataset) if args.local_rank == -1 else DistributedSampler(dataset)
|
||||
eval_dataloader = DataLoader(dataset, sampler=eval_sampler, batch_size=args.eval_batch_size)
|
||||
|
||||
# multi-gpu evaluate
|
||||
if args.n_gpu > 1:
|
||||
model = torch.nn.DataParallel(model)
|
||||
|
||||
# Eval!
|
||||
logger.info("***** Running evaluation {} *****".format(prefix))
|
||||
logger.info(" Num examples = %d", len(dataset))
|
||||
|
@ -275,6 +275,10 @@ def evaluate(args, model, tokenizer, prefix=""):
|
||||
eval_dataset, sampler=eval_sampler, batch_size=args.eval_batch_size
|
||||
)
|
||||
|
||||
# multi-gpu evaluate
|
||||
if args.n_gpu > 1:
|
||||
model = torch.nn.DataParallel(model)
|
||||
|
||||
logger.info("***** Running evaluation {} *****".format(prefix))
|
||||
logger.info(" Num examples = %d", len(eval_dataset))
|
||||
logger.info(" Batch size = %d", args.eval_batch_size)
|
||||
|
Loading…
Reference in New Issue
Block a user