Add few tests on the TF optimization file with some info in the documentation. Complete the README.

This commit is contained in:
Julien Plu 2019-12-05 12:56:43 +01:00
parent ff98b041da
commit 9200a759d7
4 changed files with 191 additions and 6 deletions

View File

@ -5,6 +5,7 @@ The ``.optimization`` module provides:
- an optimizer with weight decay fixed that can be used to fine-tuned models, and
- several schedules in the form of schedule objects that inherit from ``_LRSchedule``:
- a gradient accumulation class to accumulate the gradients of multiple batches
``AdamW``
~~~~~~~~~~~~~~~~
@ -12,6 +13,15 @@ The ``.optimization`` module provides:
.. autoclass:: transformers.AdamW
:members:
``AdamWeightDecay``
~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.AdamWeightDecay
:members:
.. autofunction:: transformers.create_optimizer
:members:
Schedules
----------------------------------------------------
@ -49,3 +59,17 @@ Learning Rate Schedules
.. image:: /imgs/warmup_linear_schedule.png
:target: /imgs/warmup_linear_schedule.png
:alt:
``Warmup``
~~~~~~~~~~~~~~~~
.. autoclass:: transformers.Warmup
:members:
Gradient Strategies
----------------------------------------------------
``GradientAccumulator``
~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.GradientAccumulator

View File

@ -465,7 +465,8 @@ Training with the previously defined hyper-parameters yields the following resul
## Named Entity Recognition
Based on the script [`run_ner.py`](https://github.com/huggingface/transformers/blob/master/examples/run_ner.py).
Based on the scripts [`run_ner.py`](https://github.com/huggingface/transformers/blob/master/examples/run_ner.py) for Pytorch and
[`run_tf_ner.py`(https://github.com/huggingface/transformers/blob/master/examples/run_tf_ner.py)] for Tensorflow 2.
This example fine-tune Bert Multilingual on GermEval 2014 (German NER).
Details and results for the fine-tuning provided by @stefan-it.
@ -510,7 +511,7 @@ The GermEval 2014 dataset has much more labels than CoNLL-2002/2003 datasets, so
cat train.txt dev.txt test.txt | cut -d " " -f 2 | grep -v "^$"| sort | uniq > labels.txt
```
### Training
### Prepare the run
Additional environment variables must be set:
@ -522,6 +523,8 @@ export SAVE_STEPS=750
export SEED=1
```
### Run the Pytorch version
To start training, just run:
```bash
@ -542,7 +545,7 @@ python3 run_ner.py --data_dir ./ \
If your GPU supports half-precision training, just add the `--fp16` flag. After training, the model will be both evaluated on development and test datasets.
### Evaluation
#### Evaluation
Evaluation on development dataset outputs the following for our example:
@ -564,7 +567,7 @@ On the test dataset the following results could be achieved:
10/04/2019 00:42:42 - INFO - __main__ - recall = 0.8624150210424085
```
### Comparing BERT (large, cased), RoBERTa (large, cased) and DistilBERT (base, uncased)
#### Comparing BERT (large, cased), RoBERTa (large, cased) and DistilBERT (base, uncased)
Here is a small comparison between BERT (large, cased), RoBERTa (large, cased) and DistilBERT (base, uncased) with the same hyperparameters as specified in the [example documentation](https://huggingface.co/transformers/examples.html#named-entity-recognition) (one run):
@ -574,6 +577,72 @@ Here is a small comparison between BERT (large, cased), RoBERTa (large, cased) a
| `roberta-large` | 95.96 | 91.87
| `distilbert-base-uncased` | 94.34 | 90.32
### Run the Tensorflow 2 version
To start training, just run:
```bash
python3 run_tf_ner.py --data_dir ./ \
--model_type bert \
--labels ./labels.txt \
--model_name_or_path $BERT_MODEL \
--output_dir $OUTPUT_DIR \
--max_seq_length $MAX_LENGTH \
--num_train_epochs $NUM_EPOCHS \
--per_device_train_batch_size $BATCH_SIZE \
--save_steps $SAVE_STEPS \
--seed $SEED \
--do_train \
--do_eval \
--do_predict
```
Such as the Pytorch version, if your GPU supports half-precision training, just add the `--fp16` flag. After training, the model will be both evaluated on development and test datasets.
#### Evaluation
Evaluation on development dataset outputs the following for our example:
```bash
precision recall f1-score support
LOCderiv 0.7619 0.6154 0.6809 52
PERpart 0.8724 0.8997 0.8858 4057
OTHpart 0.9360 0.9466 0.9413 711
ORGpart 0.7015 0.6989 0.7002 269
LOCpart 0.7668 0.8488 0.8057 496
LOC 0.8745 0.9191 0.8963 235
ORGderiv 0.7723 0.8571 0.8125 91
OTHderiv 0.4800 0.6667 0.5581 18
OTH 0.5789 0.6875 0.6286 16
PERderiv 0.5385 0.3889 0.4516 18
PER 0.5000 0.5000 0.5000 2
ORG 0.0000 0.0000 0.0000 3
micro avg 0.8574 0.8862 0.8715 5968
macro avg 0.8575 0.8862 0.8713 5968
```
On the test dataset the following results could be achieved:
```bash
precision recall f1-score support
PERpart 0.8847 0.8944 0.8896 9397
OTHpart 0.9376 0.9353 0.9365 1639
ORGpart 0.7307 0.7044 0.7173 697
LOC 0.9133 0.9394 0.9262 561
LOCpart 0.8058 0.8157 0.8107 1150
ORG 0.0000 0.0000 0.0000 8
OTHderiv 0.5882 0.4762 0.5263 42
PERderiv 0.6571 0.5227 0.5823 44
OTH 0.4906 0.6667 0.5652 39
ORGderiv 0.7016 0.7791 0.7383 172
LOCderiv 0.8256 0.6514 0.7282 109
PER 0.0000 0.0000 0.0000 11
micro avg 0.8722 0.8774 0.8748 13869
macro avg 0.8712 0.8774 0.8740 13869
```
## Abstractive summarization
Based on the script

View File

@ -540,6 +540,9 @@ def main(_):
checkpoints = list(os.path.dirname(c) for c in sorted(glob.glob(args['output_dir'] + "/**/" + TF2_WEIGHTS_NAME, recursive=True), key=lambda f: int(''.join(filter(str.isdigit, f)) or -1)))
logging.info("Evaluate the following checkpoints: %s", checkpoints)
if len(checkpoints) == 0:
checkpoints.append(args['output_dir'])
for checkpoint in checkpoints:
global_step = checkpoint.split("-")[-1] if re.match(".*checkpoint-[0-9]", checkpoint) else "final"
@ -572,10 +575,10 @@ def main(_):
if args['do_predict']:
tokenizer = tokenizer_class.from_pretrained(args['output_dir'], do_lower_case=args['do_lower_case'])
model = model_class.from_pretrained(args['output_dir'])
eval_batch_size = args['per_gpu_eval_batch_size'] * args['n_device']
eval_batch_size = args['per_device_eval_batch_size'] * args['n_device']
predict_dataset, _ = load_and_cache_examples(args, tokenizer, labels, pad_token_label_id, eval_batch_size, mode="test")
y_true, y_pred, pred_loss = evaluate(args, strategy, model, tokenizer, labels, pad_token_label_id, mode="test")
output_test_results_file = os.path.join(args.output_dir, "test_results.txt")
output_test_results_file = os.path.join(args['output_dir'], "test_results.txt")
output_test_predictions_file = os.path.join(args['output_dir'], "test_predictions.txt")
report = metrics.classification_report(y_true, y_pred, digits=4)

View File

@ -0,0 +1,89 @@
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import unittest
import pytest
from transformers import is_tf_available
if is_tf_available():
import tensorflow as tf
from tensorflow.python.eager import context
from tensorflow.python.framework import ops
from transformers import (create_optimizer, GradientAccumulator)
else:
pytestmark = pytest.mark.skip("Require TensorFlow")
class OptimizationFTest(unittest.TestCase):
def assertListAlmostEqual(self, list1, list2, tol):
self.assertEqual(len(list1), len(list2))
for a, b in zip(list1, list2):
self.assertAlmostEqual(a, b, delta=tol)
def testGradientAccumulator(self):
accumulator = GradientAccumulator()
accumulator([tf.constant([1.0, 2.0])])
accumulator([tf.constant([-2.0, 1.0])])
accumulator([tf.constant([-1.0, 2.0])])
with self.assertRaises(ValueError):
accumulator([tf.constant([1.0, 1.0]), tf.constant([2.0, 2.0])])
self.assertEqual(accumulator.step, 3)
self.assertEqual(len(accumulator.gradients), 1)
self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist(), [-2.0, 5.0], tol=1e-2)
accumulator.reset()
self.assertEqual(accumulator.step, 0)
self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist(), [0.0, 0.0], tol=1e-2)
def testGradientAccumulatorDistributionStrategy(self):
context._context = None
ops.enable_eager_execution_internal()
physical_devices = tf.config.experimental.list_physical_devices("CPU")
tf.config.experimental.set_virtual_device_configuration(
physical_devices[0],
[tf.config.experimental.VirtualDeviceConfiguration(),
tf.config.experimental.VirtualDeviceConfiguration()])
devices = tf.config.experimental.list_logical_devices(device_type="CPU")
strategy = tf.distribute.MirroredStrategy(devices=[device.name for device in devices])
with strategy.scope():
accumulator = GradientAccumulator()
variable = tf.Variable([4.0, 3.0])
optimizer = create_optimizer(5e-5, 10, 5)
gradient_placeholder = tf.Variable([0.0, 0.0], trainable=False)
def accumulate_on_replica(gradient):
accumulator([gradient])
def apply_on_replica():
optimizer.apply_gradients(list(zip(accumulator.gradients, [variable])), 1.0)
@tf.function
def accumulate(grad1, grad2):
with strategy.scope():
gradient_placeholder.values[0].assign(grad1)
gradient_placeholder.values[1].assign(grad2)
strategy.experimental_run_v2(accumulate_on_replica, args=(gradient_placeholder,))
@tf.function
def apply_grad():
with strategy.scope():
strategy.experimental_run_v2(apply_on_replica)
accumulate([1.0, 2.0], [-1.0, 1.0])
accumulate([3.0, -1.0], [-1.0, -1.0])
accumulate([-2.0, 2.0], [3.0, -2.0])
self.assertEqual(accumulator.step, 3)
self.assertListAlmostEqual(accumulator._gradients[0].values[0].value().numpy().tolist(), [2.0, 3.0], tol=1e-2)
self.assertListAlmostEqual(accumulator._gradients[0].values[1].value().numpy().tolist(), [1.0, -2.0], tol=1e-2)
apply_grad()
self.assertListAlmostEqual(variable.value().numpy().tolist(), [4.0, 3.0], tol=1e-2)
accumulator.reset()
self.assertEqual(accumulator.step, 0)
self.assertListAlmostEqual(accumulator._gradients[0].values[0].value().numpy().tolist(), [0.0, 0.0], tol=1e-2)
self.assertListAlmostEqual(accumulator._gradients[0].values[1].value().numpy().tolist(), [0.0, 0.0], tol=1e-2)
if __name__ == "__main__":
unittest.main()