Add methods to update and verify out_features out_indices (#23031)

* Add methods to update and verify out_features out_indices

* Safe update for config attributes

* Fix function names

* Save config correctly

* PR comments - use property setters

* PR comment - directly set attributes

* Update test

* Add updates to recently merged focalnet backbone
This commit is contained in:
amyeroberts 2023-05-04 10:15:06 +01:00 committed by GitHub
parent 78b7debf56
commit 90e8263d91
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
23 changed files with 420 additions and 385 deletions

View File

@ -1006,32 +1006,6 @@ class ModuleUtilsMixin:
return 6 * self.estimate_tokens(input_dict) * self.num_parameters(exclude_embeddings=exclude_embeddings)
class BackboneMixin:
@property
def out_feature_channels(self):
# the current backbones will output the number of channels for each stage
# even if that stage is not in the out_features list.
return {stage: self.num_features[i] for i, stage in enumerate(self.stage_names)}
@property
def channels(self):
return [self.out_feature_channels[name] for name in self.out_features]
def forward_with_filtered_kwargs(self, *args, **kwargs):
signature = dict(inspect.signature(self.forward).parameters)
filtered_kwargs = {k: v for k, v in kwargs.items() if k in signature}
return self(*args, **filtered_kwargs)
def forward(
self,
pixel_values: Tensor,
output_hidden_states: Optional[bool] = None,
output_attentions: Optional[bool] = None,
return_dict: Optional[bool] = None,
):
raise NotImplementedError("This method should be implemented by the derived class.")
class PreTrainedModel(nn.Module, ModuleUtilsMixin, GenerationMixin, PushToHubMixin):
r"""
Base class for all models.

View File

@ -16,6 +16,7 @@
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
logger = logging.get_logger(__name__)
@ -25,7 +26,7 @@ BIT_PRETRAINED_CONFIG_ARCHIVE_MAP = {
}
class BitConfig(PretrainedConfig):
class BitConfig(BackboneConfigMixin, PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`BitModel`]. It is used to instantiate an BiT
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
@ -128,35 +129,6 @@ class BitConfig(PretrainedConfig):
self.width_factor = width_factor
self.stage_names = ["stem"] + [f"stage{idx}" for idx in range(1, len(depths) + 1)]
if out_features is not None and out_indices is not None:
if len(out_features) != len(out_indices):
raise ValueError("out_features and out_indices should have the same length if both are set")
elif out_features != [self.stage_names[idx] for idx in out_indices]:
raise ValueError("out_features and out_indices should correspond to the same stages if both are set")
if out_features is None and out_indices is not None:
out_features = [self.stage_names[idx] for idx in out_indices]
elif out_features is not None and out_indices is None:
out_indices = [self.stage_names.index(feature) for feature in out_features]
elif out_features is None and out_indices is None:
out_features = [self.stage_names[-1]]
out_indices = [len(self.stage_names) - 1]
if out_features is not None:
if not isinstance(out_features, list):
raise ValueError("out_features should be a list")
for feature in out_features:
if feature not in self.stage_names:
raise ValueError(
f"Feature {feature} is not a valid feature name. Valid names are {self.stage_names}"
)
if out_indices is not None:
if not isinstance(out_indices, (list, tuple)):
raise ValueError("out_indices should be a list or tuple")
for idx in out_indices:
if idx >= len(self.stage_names):
raise ValueError(f"Index {idx} is not a valid index for a list of length {len(self.stage_names)}")
self.out_features = out_features
self.out_indices = out_indices
self._out_features, self._out_indices = get_aligned_output_features_output_indices(
out_features=out_features, out_indices=out_indices, stage_names=self.stage_names
)

View File

@ -31,7 +31,7 @@ from ...modeling_outputs import (
BaseModelOutputWithPoolingAndNoAttention,
ImageClassifierOutputWithNoAttention,
)
from ...modeling_utils import BackboneMixin, PreTrainedModel
from ...modeling_utils import PreTrainedModel
from ...utils import (
add_code_sample_docstrings,
add_start_docstrings,
@ -39,6 +39,7 @@ from ...utils import (
logging,
replace_return_docstrings,
)
from ...utils.backbone_utils import BackboneMixin, get_aligned_output_features_output_indices
from .configuration_bit import BitConfig
@ -848,12 +849,10 @@ class BitBackbone(BitPreTrainedModel, BackboneMixin):
self.stage_names = config.stage_names
self.bit = BitModel(config)
self.out_features = config.out_features if config.out_features is not None else [self.stage_names[-1]]
self.num_features = [config.embedding_size] + config.hidden_sizes
if config.out_indices is not None:
self.out_indices = config.out_indices
else:
self.out_indices = tuple(i for i, layer in enumerate(self.stage_names) if layer in self.out_features)
self._out_features, self._out_indices = get_aligned_output_features_output_indices(
config.out_features, config.out_indices, self.stage_names
)
# initialize weights and apply final processing
self.post_init()

View File

@ -22,6 +22,7 @@ from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
logger = logging.get_logger(__name__)
@ -32,7 +33,7 @@ CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP = {
}
class ConvNextConfig(PretrainedConfig):
class ConvNextConfig(BackboneConfigMixin, PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`ConvNextModel`]. It is used to instantiate an
ConvNeXT model according to the specified arguments, defining the model architecture. Instantiating a configuration
@ -119,38 +120,9 @@ class ConvNextConfig(PretrainedConfig):
self.drop_path_rate = drop_path_rate
self.image_size = image_size
self.stage_names = ["stem"] + [f"stage{idx}" for idx in range(1, len(self.depths) + 1)]
if out_features is not None and out_indices is not None:
if len(out_features) != len(out_indices):
raise ValueError("out_features and out_indices should have the same length if both are set")
elif out_features != [self.stage_names[idx] for idx in out_indices]:
raise ValueError("out_features and out_indices should correspond to the same stages if both are set")
if out_features is None and out_indices is not None:
out_features = [self.stage_names[idx] for idx in out_indices]
elif out_features is not None and out_indices is None:
out_indices = [self.stage_names.index(feature) for feature in out_features]
elif out_features is None and out_indices is None:
out_features = [self.stage_names[-1]]
out_indices = [len(self.stage_names) - 1]
if out_features is not None:
if not isinstance(out_features, list):
raise ValueError("out_features should be a list")
for feature in out_features:
if feature not in self.stage_names:
raise ValueError(
f"Feature {feature} is not a valid feature name. Valid names are {self.stage_names}"
)
if out_indices is not None:
if not isinstance(out_indices, (list, tuple)):
raise ValueError("out_indices should be a list or tuple")
for idx in out_indices:
if idx >= len(self.stage_names):
raise ValueError(f"Index {idx} is not a valid index for a list of length {len(self.stage_names)}")
self.out_features = out_features
self.out_indices = out_indices
self._out_features, self._out_indices = get_aligned_output_features_output_indices(
out_features=out_features, out_indices=out_indices, stage_names=self.stage_names
)
class ConvNextOnnxConfig(OnnxConfig):

View File

@ -29,7 +29,7 @@ from ...modeling_outputs import (
BaseModelOutputWithPoolingAndNoAttention,
ImageClassifierOutputWithNoAttention,
)
from ...modeling_utils import BackboneMixin, PreTrainedModel
from ...modeling_utils import PreTrainedModel
from ...utils import (
add_code_sample_docstrings,
add_start_docstrings,
@ -37,6 +37,7 @@ from ...utils import (
logging,
replace_return_docstrings,
)
from ...utils.backbone_utils import BackboneMixin, get_aligned_output_features_output_indices
from .configuration_convnext import ConvNextConfig
@ -485,16 +486,14 @@ class ConvNextBackbone(ConvNextPreTrainedModel, BackboneMixin):
self.embeddings = ConvNextEmbeddings(config)
self.encoder = ConvNextEncoder(config)
self.out_features = config.out_features if config.out_features is not None else [self.stage_names[-1]]
self.num_features = [config.hidden_sizes[0]] + config.hidden_sizes
if config.out_indices is not None:
self.out_indices = config.out_indices
else:
self.out_indices = tuple(i for i, layer in enumerate(self.stage_names) if layer in self.out_features)
self._out_features, self._out_indices = get_aligned_output_features_output_indices(
config.out_features, config.out_indices, self.stage_names
)
# Add layer norms to hidden states of out_features
hidden_states_norms = {}
for stage, num_channels in zip(self.out_features, self.channels):
for stage, num_channels in zip(self._out_features, self.channels):
hidden_states_norms[stage] = ConvNextLayerNorm(num_channels, data_format="channels_first")
self.hidden_states_norms = nn.ModuleDict(hidden_states_norms)

View File

@ -17,6 +17,7 @@
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
logger = logging.get_logger(__name__)
@ -26,7 +27,7 @@ CONVNEXTV2_PRETRAINED_CONFIG_ARCHIVE_MAP = {
}
class ConvNextV2Config(PretrainedConfig):
class ConvNextV2Config(BackboneConfigMixin, PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`ConvNextV2Model`]. It is used to instantiate an
ConvNeXTV2 model according to the specified arguments, defining the model architecture. Instantiating a
@ -109,35 +110,6 @@ class ConvNextV2Config(PretrainedConfig):
self.drop_path_rate = drop_path_rate
self.image_size = image_size
self.stage_names = ["stem"] + [f"stage{idx}" for idx in range(1, len(self.depths) + 1)]
if out_features is not None and out_indices is not None:
if len(out_features) != len(out_indices):
raise ValueError("out_features and out_indices should have the same length if both are set")
elif out_features != [self.stage_names[idx] for idx in out_indices]:
raise ValueError("out_features and out_indices should correspond to the same stages if both are set")
if out_features is None and out_indices is not None:
out_features = [self.stage_names[idx] for idx in out_indices]
elif out_features is not None and out_indices is None:
out_indices = [self.stage_names.index(feature) for feature in out_features]
elif out_features is None and out_indices is None:
out_features = [self.stage_names[-1]]
out_indices = [len(self.stage_names) - 1]
if out_features is not None:
if not isinstance(out_features, list):
raise ValueError("out_features should be a list")
for feature in out_features:
if feature not in self.stage_names:
raise ValueError(
f"Feature {feature} is not a valid feature name. Valid names are {self.stage_names}"
)
if out_indices is not None:
if not isinstance(out_indices, (list, tuple)):
raise ValueError("out_indices should be a list or tuple")
for idx in out_indices:
if idx >= len(self.stage_names):
raise ValueError(f"Index {idx} is not a valid index for a list of length {len(self.stage_names)}")
self.out_features = out_features
self.out_indices = out_indices
self._out_features, self._out_indices = get_aligned_output_features_output_indices(
out_features=out_features, out_indices=out_indices, stage_names=self.stage_names
)

View File

@ -29,7 +29,7 @@ from ...modeling_outputs import (
BaseModelOutputWithPoolingAndNoAttention,
ImageClassifierOutputWithNoAttention,
)
from ...modeling_utils import BackboneMixin, PreTrainedModel
from ...modeling_utils import PreTrainedModel
from ...utils import (
add_code_sample_docstrings,
add_start_docstrings,
@ -37,6 +37,7 @@ from ...utils import (
logging,
replace_return_docstrings,
)
from ...utils.backbone_utils import BackboneMixin, get_aligned_output_features_output_indices
from .configuration_convnextv2 import ConvNextV2Config
@ -508,16 +509,14 @@ class ConvNextV2Backbone(ConvNextV2PreTrainedModel, BackboneMixin):
self.embeddings = ConvNextV2Embeddings(config)
self.encoder = ConvNextV2Encoder(config)
self.out_features = config.out_features if config.out_features is not None else [self.stage_names[-1]]
self.num_features = [config.hidden_sizes[0]] + config.hidden_sizes
if config.out_indices is not None:
self.out_indices = config.out_indices
else:
self.out_indices = tuple(i for i, layer in enumerate(self.stage_names) if layer in self.out_features)
self._out_features, self._out_indices = get_aligned_output_features_output_indices(
config.out_features, config.out_indices, self.stage_names
)
# Add layer norms to hidden states of out_features
hidden_states_norms = {}
for stage, num_channels in zip(self.out_features, self.channels):
for stage, num_channels in zip(self._out_features, self.channels):
hidden_states_norms[stage] = ConvNextV2LayerNorm(num_channels, data_format="channels_first")
self.hidden_states_norms = nn.ModuleDict(hidden_states_norms)

View File

@ -16,6 +16,7 @@
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
logger = logging.get_logger(__name__)
@ -26,7 +27,7 @@ DINAT_PRETRAINED_CONFIG_ARCHIVE_MAP = {
}
class DinatConfig(PretrainedConfig):
class DinatConfig(BackboneConfigMixin, PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`DinatModel`]. It is used to instantiate a Dinat
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
@ -145,35 +146,6 @@ class DinatConfig(PretrainedConfig):
self.hidden_size = int(embed_dim * 2 ** (len(depths) - 1))
self.layer_scale_init_value = layer_scale_init_value
self.stage_names = ["stem"] + [f"stage{idx}" for idx in range(1, len(depths) + 1)]
if out_features is not None and out_indices is not None:
if len(out_features) != len(out_indices):
raise ValueError("out_features and out_indices should have the same length if both are set")
elif out_features != [self.stage_names[idx] for idx in out_indices]:
raise ValueError("out_features and out_indices should correspond to the same stages if both are set")
if out_features is None and out_indices is not None:
out_features = [self.stage_names[idx] for idx in out_indices]
elif out_features is not None and out_indices is None:
out_indices = [self.stage_names.index(feature) for feature in out_features]
elif out_features is None and out_indices is None:
out_features = [self.stage_names[-1]]
out_indices = [len(self.stage_names) - 1]
if out_features is not None:
if not isinstance(out_features, list):
raise ValueError("out_features should be a list")
for feature in out_features:
if feature not in self.stage_names:
raise ValueError(
f"Feature {feature} is not a valid feature name. Valid names are {self.stage_names}"
)
if out_indices is not None:
if not isinstance(out_indices, (list, tuple)):
raise ValueError("out_indices should be a list or tuple")
for idx in out_indices:
if idx >= len(self.stage_names):
raise ValueError(f"Index {idx} is not a valid index for a list of length {len(self.stage_names)}")
self.out_features = out_features
self.out_indices = out_indices
self._out_features, self._out_indices = get_aligned_output_features_output_indices(
out_features=out_features, out_indices=out_indices, stage_names=self.stage_names
)

View File

@ -26,7 +26,7 @@ from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from ...activations import ACT2FN
from ...modeling_outputs import BackboneOutput
from ...modeling_utils import BackboneMixin, PreTrainedModel
from ...modeling_utils import PreTrainedModel
from ...pytorch_utils import find_pruneable_heads_and_indices, prune_linear_layer
from ...utils import (
ModelOutput,
@ -39,6 +39,7 @@ from ...utils import (
replace_return_docstrings,
requires_backends,
)
from ...utils.backbone_utils import BackboneMixin, get_aligned_output_features_output_indices
from .configuration_dinat import DinatConfig
@ -890,16 +891,14 @@ class DinatBackbone(DinatPreTrainedModel, BackboneMixin):
self.embeddings = DinatEmbeddings(config)
self.encoder = DinatEncoder(config)
self.out_features = config.out_features if config.out_features is not None else [self.stage_names[-1]]
if config.out_indices is not None:
self.out_indices = config.out_indices
else:
self.out_indices = tuple(i for i, layer in enumerate(self.stage_names) if layer in self.out_features)
self._out_features, self._out_indices = get_aligned_output_features_output_indices(
config.out_features, config.out_indices, self.stage_names
)
self.num_features = [config.embed_dim] + [int(config.embed_dim * 2**i) for i in range(len(config.depths))]
# Add layer norms to hidden states of out_features
hidden_states_norms = {}
for stage, num_channels in zip(self.out_features, self.channels):
for stage, num_channels in zip(self._out_features, self.channels):
hidden_states_norms[stage] = nn.LayerNorm(num_channels)
self.hidden_states_norms = nn.ModuleDict(hidden_states_norms)

View File

@ -16,6 +16,7 @@
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
logger = logging.get_logger(__name__)
@ -25,7 +26,7 @@ FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP = {
}
class FocalNetConfig(PretrainedConfig):
class FocalNetConfig(BackboneConfigMixin, PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`FocalNetModel`]. It is used to instantiate a
FocalNet model according to the specified arguments, defining the model architecture. Instantiating a configuration
@ -156,35 +157,6 @@ class FocalNetConfig(PretrainedConfig):
self.layer_norm_eps = layer_norm_eps
self.encoder_stride = encoder_stride
self.stage_names = ["stem"] + [f"stage{idx}" for idx in range(1, len(self.depths) + 1)]
if out_features is not None and out_indices is not None:
if len(out_features) != len(out_indices):
raise ValueError("out_features and out_indices should have the same length if both are set")
elif out_features != [self.stage_names[idx] for idx in out_indices]:
raise ValueError("out_features and out_indices should correspond to the same stages if both are set")
if out_features is None and out_indices is not None:
out_features = [self.stage_names[idx] for idx in out_indices]
elif out_features is not None and out_indices is None:
out_indices = [self.stage_names.index(feature) for feature in out_features]
elif out_features is None and out_indices is None:
out_features = [self.stage_names[-1]]
out_indices = [len(self.stage_names) - 1]
if out_features is not None:
if not isinstance(out_features, list):
raise ValueError("out_features should be a list")
for feature in out_features:
if feature not in self.stage_names:
raise ValueError(
f"Feature {feature} is not a valid feature name. Valid names are {self.stage_names}"
)
if out_indices is not None:
if not isinstance(out_indices, (list, tuple)):
raise ValueError("out_indices should be a list or tuple")
for idx in out_indices:
if idx >= len(self.stage_names):
raise ValueError(f"Index {idx} is not a valid index for a list of length {len(self.stage_names)}")
self.out_features = out_features
self.out_indices = out_indices
self._out_features, self._out_indices = get_aligned_output_features_output_indices(
out_features=out_features, out_indices=out_indices, stage_names=self.stage_names
)

View File

@ -27,7 +27,7 @@ from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from ...activations import ACT2FN
from ...modeling_outputs import BackboneOutput
from ...modeling_utils import BackboneMixin, PreTrainedModel
from ...modeling_utils import PreTrainedModel
from ...utils import (
ModelOutput,
add_code_sample_docstrings,
@ -36,6 +36,7 @@ from ...utils import (
logging,
replace_return_docstrings,
)
from ...utils.backbone_utils import BackboneMixin, get_aligned_output_features_output_indices
from .configuration_focalnet import FocalNetConfig
@ -987,11 +988,9 @@ class FocalNetBackbone(FocalNetPreTrainedModel, BackboneMixin):
self.focalnet = FocalNetModel(config)
self.num_features = [config.embed_dim] + config.hidden_sizes
self.out_features = config.out_features if config.out_features is not None else [self.stage_names[-1]]
if config.out_indices is not None:
self.out_indices = config.out_indices
else:
self.out_indices = tuple(i for i, layer in enumerate(self.stage_names) if layer in self.out_features)
self._out_features, self._out_indices = get_aligned_output_features_output_indices(
config.out_features, config.out_indices, self.stage_names
)
# initialize weights and apply final processing
self.post_init()

View File

@ -16,12 +16,13 @@
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
logger = logging.get_logger(__name__)
class MaskFormerSwinConfig(PretrainedConfig):
class MaskFormerSwinConfig(BackboneConfigMixin, PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`MaskFormerSwinModel`]. It is used to instantiate
a Donut model according to the specified arguments, defining the model architecture. Instantiating a configuration
@ -141,35 +142,6 @@ class MaskFormerSwinConfig(PretrainedConfig):
# this indicates the channel dimension after the last stage of the model
self.hidden_size = int(embed_dim * 2 ** (len(depths) - 1))
self.stage_names = ["stem"] + [f"stage{idx}" for idx in range(1, len(depths) + 1)]
if out_features is not None and out_indices is not None:
if len(out_features) != len(out_indices):
raise ValueError("out_features and out_indices should have the same length if both are set")
elif out_features != [self.stage_names[idx] for idx in out_indices]:
raise ValueError("out_features and out_indices should correspond to the same stages if both are set")
if out_features is None and out_indices is not None:
out_features = [self.stage_names[idx] for idx in out_indices]
elif out_features is not None and out_indices is None:
out_indices = [self.stage_names.index(feature) for feature in out_features]
elif out_features is None and out_indices is None:
out_features = [self.stage_names[-1]]
out_indices = [len(self.stage_names) - 1]
if out_features is not None:
if not isinstance(out_features, list):
raise ValueError("out_features should be a list")
for feature in out_features:
if feature not in self.stage_names:
raise ValueError(
f"Feature {feature} is not a valid feature name. Valid names are {self.stage_names}"
)
if out_indices is not None:
if not isinstance(out_indices, (list, tuple)):
raise ValueError("out_indices should be a list or tuple")
for idx in out_indices:
if idx >= len(self.stage_names):
raise ValueError(f"Index {idx} is not a valid index for a list of length {len(self.stage_names)}")
self.out_features = out_features
self.out_indices = out_indices
self._out_features, self._out_indices = get_aligned_output_features_output_indices(
out_features=out_features, out_indices=out_indices, stage_names=self.stage_names
)

View File

@ -27,8 +27,9 @@ from torch import Tensor, nn
from ...activations import ACT2FN
from ...file_utils import ModelOutput
from ...modeling_outputs import BackboneOutput
from ...modeling_utils import BackboneMixin, PreTrainedModel
from ...modeling_utils import PreTrainedModel
from ...pytorch_utils import find_pruneable_heads_and_indices, meshgrid, prune_linear_layer
from ...utils.backbone_utils import BackboneMixin, get_aligned_output_features_output_indices
from .configuration_maskformer_swin import MaskFormerSwinConfig
@ -855,14 +856,13 @@ class MaskFormerSwinBackbone(MaskFormerSwinPreTrainedModel, BackboneMixin):
self.stage_names = config.stage_names
self.model = MaskFormerSwinModel(config)
self.out_features = config.out_features if config.out_features is not None else [self.stage_names[-1]]
self._out_features = config.out_features if config.out_features is not None else [self.stage_names[-1]]
if "stem" in self.out_features:
raise ValueError("This backbone does not support 'stem' in the `out_features`.")
if config.out_indices is not None:
self.out_indices = config.out_indices
else:
self.out_indices = tuple(i for i, layer in enumerate(self.stage_names) if layer in self.out_features)
self._out_features, self._out_indices = get_aligned_output_features_output_indices(
config.out_features, config.out_indices, self.stage_names
)
self.num_features = [config.embed_dim] + [int(config.embed_dim * 2**i) for i in range(len(config.depths))]
self.hidden_states_norms = nn.ModuleList(
[nn.LayerNorm(num_channels) for num_channels in self.num_features[1:]]

View File

@ -16,6 +16,7 @@
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
logger = logging.get_logger(__name__)
@ -26,7 +27,7 @@ NAT_PRETRAINED_CONFIG_ARCHIVE_MAP = {
}
class NatConfig(PretrainedConfig):
class NatConfig(BackboneConfigMixin, PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`NatModel`]. It is used to instantiate a Nat model
according to the specified arguments, defining the model architecture. Instantiating a configuration with the
@ -141,35 +142,6 @@ class NatConfig(PretrainedConfig):
self.hidden_size = int(embed_dim * 2 ** (len(depths) - 1))
self.layer_scale_init_value = layer_scale_init_value
self.stage_names = ["stem"] + [f"stage{idx}" for idx in range(1, len(depths) + 1)]
if out_features is not None and out_indices is not None:
if len(out_features) != len(out_indices):
raise ValueError("out_features and out_indices should have the same length if both are set")
elif out_features != [self.stage_names[idx] for idx in out_indices]:
raise ValueError("out_features and out_indices should correspond to the same stages if both are set")
if out_features is None and out_indices is not None:
out_features = [self.stage_names[idx] for idx in out_indices]
elif out_features is not None and out_indices is None:
out_indices = [self.stage_names.index(feature) for feature in out_features]
elif out_features is None and out_indices is None:
out_features = [self.stage_names[-1]]
out_indices = [len(self.stage_names) - 1]
if out_features is not None:
if not isinstance(out_features, list):
raise ValueError("out_features should be a list")
for feature in out_features:
if feature not in self.stage_names:
raise ValueError(
f"Feature {feature} is not a valid feature name. Valid names are {self.stage_names}"
)
if out_indices is not None:
if not isinstance(out_indices, (list, tuple)):
raise ValueError("out_indices should be a list or tuple")
for idx in out_indices:
if idx >= len(self.stage_names):
raise ValueError(f"Index {idx} is not a valid index for a list of length {len(self.stage_names)}")
self.out_features = out_features
self.out_indices = out_indices
self._out_features, self._out_indices = get_aligned_output_features_output_indices(
out_features=out_features, out_indices=out_indices, stage_names=self.stage_names
)

View File

@ -26,7 +26,7 @@ from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from ...activations import ACT2FN
from ...modeling_outputs import BackboneOutput
from ...modeling_utils import BackboneMixin, PreTrainedModel
from ...modeling_utils import PreTrainedModel
from ...pytorch_utils import find_pruneable_heads_and_indices, prune_linear_layer
from ...utils import (
ModelOutput,
@ -39,6 +39,7 @@ from ...utils import (
replace_return_docstrings,
requires_backends,
)
from ...utils.backbone_utils import BackboneMixin, get_aligned_output_features_output_indices
from .configuration_nat import NatConfig
@ -868,11 +869,9 @@ class NatBackbone(NatPreTrainedModel, BackboneMixin):
self.embeddings = NatEmbeddings(config)
self.encoder = NatEncoder(config)
self.out_features = config.out_features if config.out_features is not None else [self.stage_names[-1]]
if config.out_indices is not None:
self.out_indices = config.out_indices
else:
self.out_indices = tuple(i for i, layer in enumerate(self.stage_names) if layer in self.out_features)
self._out_features, self._out_indices = get_aligned_output_features_output_indices(
config.out_features, config.out_indices, self.stage_names
)
self.num_features = [config.embed_dim] + [int(config.embed_dim * 2**i) for i in range(len(config.depths))]
# Add layer norms to hidden states of out_features

View File

@ -22,6 +22,7 @@ from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
logger = logging.get_logger(__name__)
@ -31,7 +32,7 @@ RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP = {
}
class ResNetConfig(PretrainedConfig):
class ResNetConfig(BackboneConfigMixin, PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`ResNetModel`]. It is used to instantiate an
ResNet model according to the specified arguments, defining the model architecture. Instantiating a configuration
@ -108,38 +109,9 @@ class ResNetConfig(PretrainedConfig):
self.hidden_act = hidden_act
self.downsample_in_first_stage = downsample_in_first_stage
self.stage_names = ["stem"] + [f"stage{idx}" for idx in range(1, len(depths) + 1)]
if out_features is not None and out_indices is not None:
if len(out_features) != len(out_indices):
raise ValueError("out_features and out_indices should have the same length if both are set")
elif out_features != [self.stage_names[idx] for idx in out_indices]:
raise ValueError("out_features and out_indices should correspond to the same stages if both are set")
if out_features is None and out_indices is not None:
out_features = [self.stage_names[idx] for idx in out_indices]
elif out_features is not None and out_indices is None:
out_indices = [self.stage_names.index(feature) for feature in out_features]
elif out_features is None and out_indices is None:
out_features = [self.stage_names[-1]]
out_indices = [len(self.stage_names) - 1]
if out_features is not None:
if not isinstance(out_features, list):
raise ValueError("out_features should be a list")
for feature in out_features:
if feature not in self.stage_names:
raise ValueError(
f"Feature {feature} is not a valid feature name. Valid names are {self.stage_names}"
)
if out_indices is not None:
if not isinstance(out_indices, (list, tuple)):
raise ValueError("out_indices should be a list or tuple")
for idx in out_indices:
if idx >= len(self.stage_names):
raise ValueError(f"Index {idx} is not a valid index for a list of length {len(self.stage_names)}")
self.out_features = out_features
self.out_indices = out_indices
self._out_features, self._out_indices = get_aligned_output_features_output_indices(
out_features=out_features, out_indices=out_indices, stage_names=self.stage_names
)
class ResNetOnnxConfig(OnnxConfig):

View File

@ -28,7 +28,7 @@ from ...modeling_outputs import (
BaseModelOutputWithPoolingAndNoAttention,
ImageClassifierOutputWithNoAttention,
)
from ...modeling_utils import BackboneMixin, PreTrainedModel
from ...modeling_utils import PreTrainedModel
from ...utils import (
add_code_sample_docstrings,
add_start_docstrings,
@ -36,6 +36,7 @@ from ...utils import (
logging,
replace_return_docstrings,
)
from ...utils.backbone_utils import BackboneMixin, get_aligned_output_features_output_indices
from .configuration_resnet import ResNetConfig
@ -436,11 +437,9 @@ class ResNetBackbone(ResNetPreTrainedModel, BackboneMixin):
self.embedder = ResNetEmbeddings(config)
self.encoder = ResNetEncoder(config)
self.out_features = config.out_features if config.out_features is not None else [self.stage_names[-1]]
if config.out_indices is not None:
self.out_indices = config.out_indices
else:
self.out_indices = tuple(i for i, layer in enumerate(self.stage_names) if layer in self.out_features)
self._out_features, self._out_indices = get_aligned_output_features_output_indices(
config.out_features, config.out_indices, self.stage_names
)
self.num_features = [config.embedding_size] + config.hidden_sizes
# initialize weights and apply final processing

View File

@ -22,6 +22,7 @@ from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
logger = logging.get_logger(__name__)
@ -34,7 +35,7 @@ SWIN_PRETRAINED_CONFIG_ARCHIVE_MAP = {
}
class SwinConfig(PretrainedConfig):
class SwinConfig(BackboneConfigMixin, PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`SwinModel`]. It is used to instantiate a Swin
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
@ -158,38 +159,9 @@ class SwinConfig(PretrainedConfig):
# this indicates the channel dimension after the last stage of the model
self.hidden_size = int(embed_dim * 2 ** (len(depths) - 1))
self.stage_names = ["stem"] + [f"stage{idx}" for idx in range(1, len(depths) + 1)]
if out_features is not None and out_indices is not None:
if len(out_features) != len(out_indices):
raise ValueError("out_features and out_indices should have the same length if both are set")
elif out_features != [self.stage_names[idx] for idx in out_indices]:
raise ValueError("out_features and out_indices should correspond to the same stages if both are set")
if out_features is None and out_indices is not None:
out_features = [self.stage_names[idx] for idx in out_indices]
elif out_features is not None and out_indices is None:
out_indices = [self.stage_names.index(feature) for feature in out_features]
elif out_features is None and out_indices is None:
out_features = [self.stage_names[-1]]
out_indices = [len(self.stage_names) - 1]
if out_features is not None:
if not isinstance(out_features, list):
raise ValueError("out_features should be a list")
for feature in out_features:
if feature not in self.stage_names:
raise ValueError(
f"Feature {feature} is not a valid feature name. Valid names are {self.stage_names}"
)
if out_indices is not None:
if not isinstance(out_indices, (list, tuple)):
raise ValueError("out_indices should be a list or tuple")
for idx in out_indices:
if idx >= len(self.stage_names):
raise ValueError(f"Index {idx} is not a valid index for a list of length {len(self.stage_names)}")
self.out_features = out_features
self.out_indices = out_indices
self._out_features, self._out_indices = get_aligned_output_features_output_indices(
out_features=out_features, out_indices=out_indices, stage_names=self.stage_names
)
class SwinOnnxConfig(OnnxConfig):

View File

@ -28,7 +28,7 @@ from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from ...activations import ACT2FN
from ...modeling_outputs import BackboneOutput
from ...modeling_utils import BackboneMixin, PreTrainedModel
from ...modeling_utils import PreTrainedModel
from ...pytorch_utils import find_pruneable_heads_and_indices, meshgrid, prune_linear_layer
from ...utils import (
ModelOutput,
@ -38,6 +38,7 @@ from ...utils import (
logging,
replace_return_docstrings,
)
from ...utils.backbone_utils import BackboneMixin, get_aligned_output_features_output_indices
from .configuration_swin import SwinConfig
@ -1264,16 +1265,14 @@ class SwinBackbone(SwinPreTrainedModel, BackboneMixin):
self.embeddings = SwinEmbeddings(config)
self.encoder = SwinEncoder(config, self.embeddings.patch_grid)
self.out_features = config.out_features if config.out_features is not None else [self.stage_names[-1]]
if config.out_indices is not None:
self.out_indices = config.out_indices
else:
self.out_indices = tuple(i for i, layer in enumerate(self.stage_names) if layer in self.out_features)
self._out_features, self._out_indices = get_aligned_output_features_output_indices(
config.out_features, config.out_indices, self.stage_names
)
self.num_features = [config.embed_dim] + [int(config.embed_dim * 2**i) for i in range(len(config.depths))]
# Add layer norms to hidden states of out_features
hidden_states_norms = {}
for stage, num_channels in zip(self.out_features, self.channels):
for stage, num_channels in zip(self._out_features, self.channels):
hidden_states_norms[stage] = nn.LayerNorm(num_channels)
self.hidden_states_norms = nn.ModuleDict(hidden_states_norms)

View File

@ -22,8 +22,9 @@ from torch.nn import CrossEntropyLoss
from ... import AutoBackbone
from ...modeling_outputs import SemanticSegmenterOutput
from ...modeling_utils import BackboneMixin, PreTrainedModel
from ...modeling_utils import PreTrainedModel
from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, replace_return_docstrings
from ...utils.backbone_utils import BackboneMixin
from .configuration_upernet import UperNetConfig

View File

@ -0,0 +1,203 @@
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Collection of utils to be used by backbones and their components."""
import inspect
from typing import Iterable, List, Optional, Tuple, Union
def verify_out_features_out_indices(
out_features: Optional[Iterable[str]], out_indices: Optional[Iterable[int]], stage_names: Optional[Iterable[str]]
):
"""
Verify that out_indices and out_features are valid for the given stage_names.
"""
if stage_names is None:
raise ValueError("Stage_names must be set for transformers backbones")
if out_features is not None:
if not isinstance(out_features, (list,)):
raise ValueError(f"out_features must be a list {type(out_features)}")
if any(feat not in stage_names for feat in out_features):
raise ValueError(f"out_features must be a subset of stage_names: {stage_names} got {out_features}")
if out_indices is not None:
if not isinstance(out_indices, (list, tuple)):
raise ValueError(f"out_indices must be a list or tuple, got {type(out_indices)}")
if any(idx >= len(stage_names) for idx in out_indices):
raise ValueError("out_indices must be valid indices for stage_names {stage_names}, got {out_indices}")
if out_features is not None and out_indices is not None:
if len(out_features) != len(out_indices):
raise ValueError("out_features and out_indices should have the same length if both are set")
if out_features != [stage_names[idx] for idx in out_indices]:
raise ValueError("out_features and out_indices should correspond to the same stages if both are set")
def _align_output_features_output_indices(
out_features: Optional[List[str]],
out_indices: Optional[Union[List[int], Tuple[int]]],
stage_names: List[str],
):
"""
Finds the corresponding `out_features` and `out_indices` for the given `stage_names`.
The logic is as follows:
- `out_features` not set, `out_indices` set: `out_features` is set to the `out_features` corresponding to the
`out_indices`.
- `out_indices` not set, `out_features` set: `out_indices` is set to the `out_indices` corresponding to the
`out_features`.
- `out_indices` and `out_features` not set: `out_indices` and `out_features` are set to the last stage.
- `out_indices` and `out_features` set: input `out_indices` and `out_features` are returned.
Args:
out_features (`List[str]`): The names of the features for the backbone to output.
out_indices (`List[int]` or `Tuple[int]`): The indices of the features for the backbone to output.
stage_names (`List[str]`): The names of the stages of the backbone.
"""
if out_indices is None and out_features is None:
out_indices = [len(stage_names) - 1]
out_features = [stage_names[-1]]
elif out_indices is None and out_features is not None:
out_indices = [stage_names.index(layer) for layer in stage_names if layer in out_features]
elif out_features is None and out_indices is not None:
out_features = [stage_names[idx] for idx in out_indices]
return out_features, out_indices
def get_aligned_output_features_output_indices(
out_features: Optional[List[str]],
out_indices: Optional[Union[List[int], Tuple[int]]],
stage_names: List[str],
) -> Tuple[List[str], List[int]]:
"""
Get the `out_features` and `out_indices` so that they are aligned.
The logic is as follows:
- `out_features` not set, `out_indices` set: `out_features` is set to the `out_features` corresponding to the
`out_indices`.
- `out_indices` not set, `out_features` set: `out_indices` is set to the `out_indices` corresponding to the
`out_features`.
- `out_indices` and `out_features` not set: `out_indices` and `out_features` are set to the last stage.
- `out_indices` and `out_features` set: they are verified to be aligned.
Args:
out_features (`List[str]`): The names of the features for the backbone to output.
out_indices (`List[int]` or `Tuple[int]`): The indices of the features for the backbone to output.
stage_names (`List[str]`): The names of the stages of the backbone.
"""
# First verify that the out_features and out_indices are valid
verify_out_features_out_indices(out_features=out_features, out_indices=out_indices, stage_names=stage_names)
output_features, output_indices = _align_output_features_output_indices(
out_features=out_features, out_indices=out_indices, stage_names=stage_names
)
# Verify that the aligned out_features and out_indices are valid
verify_out_features_out_indices(out_features=output_features, out_indices=output_indices, stage_names=stage_names)
return output_features, output_indices
class BackboneMixin:
@property
def out_feature_channels(self):
# the current backbones will output the number of channels for each stage
# even if that stage is not in the out_features list.
return {stage: self.num_features[i] for i, stage in enumerate(self.stage_names)}
@property
def channels(self):
return [self.out_feature_channels[name] for name in self.out_features]
def forward_with_filtered_kwargs(self, *args, **kwargs):
signature = dict(inspect.signature(self.forward).parameters)
filtered_kwargs = {k: v for k, v in kwargs.items() if k in signature}
return self(*args, **filtered_kwargs)
def forward(
self,
pixel_values,
output_hidden_states: Optional[bool] = None,
output_attentions: Optional[bool] = None,
return_dict: Optional[bool] = None,
):
raise NotImplementedError("This method should be implemented by the derived class.")
@property
def out_features(self):
return self._out_features
@out_features.setter
def out_features(self, out_features: List[str]):
"""
Set the out_features attribute. This will also update the out_indices attribute to match the new out_features.
"""
self._out_features, self._out_indices = get_aligned_output_features_output_indices(
out_features=out_features, out_indices=None, stage_names=self.stage_names
)
@property
def out_indices(self):
return self._out_indices
@out_indices.setter
def out_indices(self, out_indices: Union[Tuple[int], List[int]]):
"""
Set the out_indices attribute. This will also update the out_features attribute to match the new out_indices.
"""
self._out_features, self._out_indices = get_aligned_output_features_output_indices(
out_features=None, out_indices=out_indices, stage_names=self.stage_names
)
class BackboneConfigMixin:
"""
A Mixin to support handling the `out_features` and `out_indices` attributes for the backbone configurations.
"""
@property
def out_features(self):
return self._out_features
@out_features.setter
def out_features(self, out_features: List[str]):
"""
Set the out_features attribute. This will also update the out_indices attribute to match the new out_features.
"""
self._out_features, self._out_indices = get_aligned_output_features_output_indices(
out_features=out_features, out_indices=None, stage_names=self.stage_names
)
@property
def out_indices(self):
return self._out_indices
@out_indices.setter
def out_indices(self, out_indices: Union[Tuple[int], List[int]]):
"""
Set the out_indices attribute. This will also update the out_features attribute to match the new out_indices.
"""
self._out_features, self._out_indices = get_aligned_output_features_output_indices(
out_features=None, out_indices=out_indices, stage_names=self.stage_names
)
def to_dict(self):
"""
Serializes this instance to a Python dictionary. Override the default `to_dict()` from `PretrainedConfig` to
include the `out_features` and `out_indices` attributes.
"""
output = super().to_dict()
output["out_features"] = output.pop("_out_features")
output["out_indices"] = output.pop("_out_indices")
return output

View File

@ -81,9 +81,15 @@ class BackboneTesterMixin:
out_channels = [num_features[idx] for idx in out_indices]
self.assertListEqual(model.channels, out_channels)
config.out_features = None
config.out_indices = None
model = model_class(config)
new_config = copy.deepcopy(config)
new_config.out_features = None
model = model_class(new_config)
self.assertEqual(len(model.channels), 1)
self.assertListEqual(model.channels, [num_features[-1]])
new_config = copy.deepcopy(config)
new_config.out_indices = None
model = model_class(new_config)
self.assertEqual(len(model.channels), 1)
self.assertListEqual(model.channels, [num_features[-1]])
@ -102,6 +108,15 @@ class BackboneTesterMixin:
# Check output of last stage is taken if out_features=None, out_indices=None
modified_config = copy.deepcopy(config)
modified_config.out_features = None
model = model_class(modified_config)
model.to(torch_device)
model.eval()
result = model(**inputs_dict)
self.assertEqual(len(result.feature_maps), 1)
self.assertEqual(len(model.channels), 1)
modified_config = copy.deepcopy(config)
modified_config.out_indices = None
model = model_class(modified_config)
model.to(torch_device)

View File

@ -0,0 +1,102 @@
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
from transformers.utils.backbone_utils import (
BackboneMixin,
get_aligned_output_features_output_indices,
verify_out_features_out_indices,
)
class BackboneUtilsTester(unittest.TestCase):
def test_get_aligned_output_features_output_indices(self):
stage_names = ["a", "b", "c"]
# Defaults to last layer if both are None
out_features, out_indices = get_aligned_output_features_output_indices(None, None, stage_names)
self.assertEqual(out_features, ["c"])
self.assertEqual(out_indices, [2])
# Out indices set to match out features
out_features, out_indices = get_aligned_output_features_output_indices(["a", "c"], None, stage_names)
self.assertEqual(out_features, ["a", "c"])
self.assertEqual(out_indices, [0, 2])
# Out features set to match out indices
out_features, out_indices = get_aligned_output_features_output_indices(None, [0, 2], stage_names)
self.assertEqual(out_features, ["a", "c"])
self.assertEqual(out_indices, [0, 2])
# Out features selected from negative indices
out_features, out_indices = get_aligned_output_features_output_indices(None, [-3, -1], stage_names)
self.assertEqual(out_features, ["a", "c"])
self.assertEqual(out_indices, [-3, -1])
def test_verify_out_features_out_indices(self):
# Stage names must be set
with self.assertRaises(ValueError):
verify_out_features_out_indices(["a", "b"], (0, 1), None)
# Out features must be a list
with self.assertRaises(ValueError):
verify_out_features_out_indices(("a", "b"), (0, 1), ["a", "b"])
# Out features must be a subset of stage names
with self.assertRaises(ValueError):
verify_out_features_out_indices(["a", "b"], (0, 1), ["a"])
# Out indices must be a list or tuple
with self.assertRaises(ValueError):
verify_out_features_out_indices(None, 0, ["a", "b"])
# Out indices must be a subset of stage names
with self.assertRaises(ValueError):
verify_out_features_out_indices(None, (0, 1), ["a"])
# Out features and out indices must be the same length
with self.assertRaises(ValueError):
verify_out_features_out_indices(["a", "b"], (0,), ["a", "b", "c"])
# Out features should match out indices
with self.assertRaises(ValueError):
verify_out_features_out_indices(["a", "b"], (0, 2), ["a", "b", "c"])
# Out features and out indices should be in order
with self.assertRaises(ValueError):
verify_out_features_out_indices(["b", "a"], (0, 1), ["a", "b"])
# Check passes with valid inputs
verify_out_features_out_indices(["a", "b", "d"], (0, 1, -1), ["a", "b", "c", "d"])
def test_backbone_mixin(self):
backbone = BackboneMixin()
backbone.stage_names = ["a", "b", "c"]
backbone._out_features = ["a", "c"]
backbone._out_indices = [0, 2]
# Check that the output features and indices are set correctly
self.assertEqual(backbone.out_features, ["a", "c"])
self.assertEqual(backbone.out_indices, [0, 2])
# Check out features and indices are updated correctly
backbone.out_features = ["a", "b"]
self.assertEqual(backbone.out_features, ["a", "b"])
self.assertEqual(backbone.out_indices, [0, 1])
backbone.out_indices = [-3, -1]
self.assertEqual(backbone.out_features, ["a", "c"])
self.assertEqual(backbone.out_indices, [-3, -1])