mirror of
https://github.com/huggingface/transformers.git
synced 2025-08-02 19:21:31 +06:00
Add type hints for GPTNeo PyTorch (#16127)
* Add type hints for SqueezeBert PyTorch * Add type hints for GPTNeo PyTorch * style fixes * chenged List with Tuple
This commit is contained in:
parent
e3008c679f
commit
8f3ea7a1e1
@ -16,7 +16,7 @@
|
||||
|
||||
|
||||
import os
|
||||
from typing import Tuple
|
||||
from typing import Optional, Tuple, Union
|
||||
|
||||
import torch
|
||||
import torch.utils.checkpoint
|
||||
@ -502,18 +502,18 @@ class GPTNeoModel(GPTNeoPreTrainedModel):
|
||||
)
|
||||
def forward(
|
||||
self,
|
||||
input_ids=None,
|
||||
past_key_values=None,
|
||||
attention_mask=None,
|
||||
token_type_ids=None,
|
||||
position_ids=None,
|
||||
head_mask=None,
|
||||
inputs_embeds=None,
|
||||
use_cache=None,
|
||||
output_attentions=None,
|
||||
output_hidden_states=None,
|
||||
return_dict=None,
|
||||
):
|
||||
input_ids: Optional[torch.Tensor] = None,
|
||||
past_key_values: Optional[Tuple[torch.FloatTensor]] = None,
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
token_type_ids: Optional[torch.Tensor] = None,
|
||||
position_ids: Optional[torch.Tensor] = None,
|
||||
head_mask: Optional[torch.Tensor] = None,
|
||||
inputs_embeds: Optional[torch.Tensor] = None,
|
||||
use_cache: Optional[bool] = None,
|
||||
output_attentions: Optional[bool] = None,
|
||||
output_hidden_states: Optional[bool] = None,
|
||||
return_dict: Optional[bool] = None,
|
||||
) -> Union[Tuple, BaseModelOutputWithPastAndCrossAttentions]:
|
||||
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
||||
output_hidden_states = (
|
||||
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
||||
@ -719,19 +719,19 @@ class GPTNeoForCausalLM(GPTNeoPreTrainedModel):
|
||||
)
|
||||
def forward(
|
||||
self,
|
||||
input_ids=None,
|
||||
past_key_values=None,
|
||||
attention_mask=None,
|
||||
token_type_ids=None,
|
||||
position_ids=None,
|
||||
head_mask=None,
|
||||
inputs_embeds=None,
|
||||
labels=None,
|
||||
use_cache=None,
|
||||
output_attentions=None,
|
||||
output_hidden_states=None,
|
||||
return_dict=None,
|
||||
):
|
||||
input_ids: Optional[torch.Tensor] = None,
|
||||
past_key_values: Optional[Tuple[torch.FloatTensor]] = None,
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
token_type_ids: Optional[torch.Tensor] = None,
|
||||
position_ids: Optional[torch.Tensor] = None,
|
||||
head_mask: Optional[torch.Tensor] = None,
|
||||
inputs_embeds: Optional[torch.Tensor] = None,
|
||||
labels: Optional[torch.Tensor] = None,
|
||||
use_cache: Optional[bool] = None,
|
||||
output_attentions: Optional[bool] = None,
|
||||
output_hidden_states: Optional[bool] = None,
|
||||
return_dict: Optional[bool] = None,
|
||||
) -> Union[Tuple, CausalLMOutputWithCrossAttentions]:
|
||||
r"""
|
||||
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
||||
Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
|
||||
@ -834,19 +834,19 @@ class GPTNeoForSequenceClassification(GPTNeoPreTrainedModel):
|
||||
)
|
||||
def forward(
|
||||
self,
|
||||
input_ids=None,
|
||||
past_key_values=None,
|
||||
attention_mask=None,
|
||||
token_type_ids=None,
|
||||
position_ids=None,
|
||||
head_mask=None,
|
||||
inputs_embeds=None,
|
||||
labels=None,
|
||||
use_cache=None,
|
||||
output_attentions=None,
|
||||
output_hidden_states=None,
|
||||
return_dict=None,
|
||||
):
|
||||
input_ids: Optional[torch.Tensor] = None,
|
||||
past_key_values: Optional[Tuple[torch.FloatTensor]] = None,
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
token_type_ids: Optional[torch.Tensor] = None,
|
||||
position_ids: Optional[torch.Tensor] = None,
|
||||
head_mask: Optional[torch.Tensor] = None,
|
||||
inputs_embeds: Optional[torch.Tensor] = None,
|
||||
labels: Optional[torch.Tensor] = None,
|
||||
use_cache: Optional[bool] = None,
|
||||
output_attentions: Optional[bool] = None,
|
||||
output_hidden_states: Optional[bool] = None,
|
||||
return_dict: Optional[bool] = None,
|
||||
) -> Union[Tuple, SequenceClassifierOutputWithPast]:
|
||||
r"""
|
||||
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
||||
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
||||
|
Loading…
Reference in New Issue
Block a user