mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-31 10:12:23 +06:00
parent
3a826a45ca
commit
8bbcdf5409
@ -1,54 +0,0 @@
|
||||
# Copyright 2025 The HuggingFace Team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
from transformers.utils import is_torch_available
|
||||
|
||||
|
||||
if is_torch_available():
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
from transformers.models.llama4.modeling_llama4 import Llama4TextMLP
|
||||
|
||||
|
||||
def skip(*args, **kwargs):
|
||||
pass
|
||||
|
||||
|
||||
class CompressedExpertsLinear(nn.Module):
|
||||
"""
|
||||
A module that implements a compressed version of a list of expert modules.
|
||||
This is specifically designed to work with Llama4TextExperts in MoE layers.
|
||||
"""
|
||||
|
||||
def __init__(self, config):
|
||||
# Skip random weight initialization for experts. Otherwise,
|
||||
# the init of this module would take over minutes. For a model
|
||||
# with tens of layers of experts, it would easily take over 20 minutes.
|
||||
nn.init.kaiming_uniform_ = skip
|
||||
nn.init.uniform_ = skip
|
||||
nn.init.normal_ = skip
|
||||
super().__init__()
|
||||
self.num_experts = config.num_local_experts
|
||||
self.expert_modules = nn.ModuleList([Llama4TextMLP(config) for _ in range(self.num_experts)])
|
||||
|
||||
def forward(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
) -> torch.Tensor:
|
||||
hidden_states = hidden_states.reshape(self.num_experts, -1, hidden_states.shape[-1])
|
||||
expert_routed_out_list = []
|
||||
for expert_idx in range(self.num_experts):
|
||||
expert_routed_out_list.append(self.expert_modules[expert_idx](hidden_states[expert_idx]))
|
||||
routed_out = torch.cat(expert_routed_out_list, dim=0)
|
||||
return routed_out
|
Loading…
Reference in New Issue
Block a user