mirror of
https://github.com/huggingface/transformers.git
synced 2025-08-01 18:51:14 +06:00
chore: fix typos (#26756)
This commit is contained in:
parent
a243cdca2a
commit
883ed4b344
@ -20,7 +20,7 @@ rendered properly in your Markdown viewer.
|
|||||||
|
|
||||||
🤗 Transformers has integrated `optimum` API to perform GPTQ quantization on language models. You can load and quantize your model in 8, 4, 3 or even 2 bits without a big drop of performance and faster inference speed! This is supported by most GPU hardwares.
|
🤗 Transformers has integrated `optimum` API to perform GPTQ quantization on language models. You can load and quantize your model in 8, 4, 3 or even 2 bits without a big drop of performance and faster inference speed! This is supported by most GPU hardwares.
|
||||||
|
|
||||||
To learn more about the the quantization model, check out:
|
To learn more about the quantization model, check out:
|
||||||
- the [GPTQ](https://arxiv.org/pdf/2210.17323.pdf) paper
|
- the [GPTQ](https://arxiv.org/pdf/2210.17323.pdf) paper
|
||||||
- the `optimum` [guide](https://huggingface.co/docs/optimum/llm_quantization/usage_guides/quantization) on GPTQ quantization
|
- the `optimum` [guide](https://huggingface.co/docs/optimum/llm_quantization/usage_guides/quantization) on GPTQ quantization
|
||||||
- the [`AutoGPTQ`](https://github.com/PanQiWei/AutoGPTQ) library used as the backend
|
- the [`AutoGPTQ`](https://github.com/PanQiWei/AutoGPTQ) library used as the backend
|
||||||
|
@ -306,7 +306,7 @@ Create a function to preprocess the dataset so the audio samples are the same le
|
|||||||
... return inputs
|
... return inputs
|
||||||
```
|
```
|
||||||
|
|
||||||
Apply the `preprocess_function` to the the first few examples in the dataset:
|
Apply the `preprocess_function` to the first few examples in the dataset:
|
||||||
|
|
||||||
```py
|
```py
|
||||||
>>> processed_dataset = preprocess_function(dataset[:5])
|
>>> processed_dataset = preprocess_function(dataset[:5])
|
||||||
|
@ -315,7 +315,7 @@ class GenerationConfig(PushToHubMixin):
|
|||||||
# Wild card
|
# Wild card
|
||||||
self.generation_kwargs = kwargs.pop("generation_kwargs", {})
|
self.generation_kwargs = kwargs.pop("generation_kwargs", {})
|
||||||
|
|
||||||
# The remaining attributes do not parametrize `.generate()`, but are informative and/or used by the the hub
|
# The remaining attributes do not parametrize `.generate()`, but are informative and/or used by the hub
|
||||||
# interface.
|
# interface.
|
||||||
self._from_model_config = kwargs.pop("_from_model_config", False)
|
self._from_model_config = kwargs.pop("_from_model_config", False)
|
||||||
self._commit_hash = kwargs.pop("_commit_hash", None)
|
self._commit_hash = kwargs.pop("_commit_hash", None)
|
||||||
|
@ -787,7 +787,7 @@ class TFDeiTForMaskedImageModeling(TFDeiTPreTrainedModel):
|
|||||||
# Reconstruct pixel values
|
# Reconstruct pixel values
|
||||||
reconstructed_pixel_values = self.decoder(sequence_output, training=training)
|
reconstructed_pixel_values = self.decoder(sequence_output, training=training)
|
||||||
# TF 2.0 image layers can't use NCHW format when running on CPU, so intermediate layers use NHWC,
|
# TF 2.0 image layers can't use NCHW format when running on CPU, so intermediate layers use NHWC,
|
||||||
# including the The decoder. We transpose to compute the loss against the pixel values
|
# including the decoder. We transpose to compute the loss against the pixel values
|
||||||
# (batch_size, height, width, num_channels) -> (batch_size, num_channels, height, width)
|
# (batch_size, height, width, num_channels) -> (batch_size, num_channels, height, width)
|
||||||
reconstructed_pixel_values = tf.transpose(reconstructed_pixel_values, (0, 3, 1, 2))
|
reconstructed_pixel_values = tf.transpose(reconstructed_pixel_values, (0, 3, 1, 2))
|
||||||
|
|
||||||
|
@ -200,7 +200,7 @@ EVALUATION_TASKS = [
|
|||||||
task=[
|
task=[
|
||||||
"Provide me the summary of the `text`, then read it to me before transcribing it and translating it in French.",
|
"Provide me the summary of the `text`, then read it to me before transcribing it and translating it in French.",
|
||||||
"Summarize `text`, read it out loud then transcribe the audio and translate it in French.",
|
"Summarize `text`, read it out loud then transcribe the audio and translate it in French.",
|
||||||
"Read me a summary of the the `text` out loud. Transcribe this and translate it in French.",
|
"Read me a summary of the `text` out loud. Transcribe this and translate it in French.",
|
||||||
],
|
],
|
||||||
inputs=["text"],
|
inputs=["text"],
|
||||||
answer="translator(transcriber(text_reader(summarizer(text))), src_lang='English', tgt_lang='French')",
|
answer="translator(transcriber(text_reader(summarizer(text))), src_lang='English', tgt_lang='French')",
|
||||||
|
@ -39,7 +39,7 @@ def find_adapter_config_file(
|
|||||||
_commit_hash: Optional[str] = None,
|
_commit_hash: Optional[str] = None,
|
||||||
) -> Optional[str]:
|
) -> Optional[str]:
|
||||||
r"""
|
r"""
|
||||||
Simply checks if the model stored on the Hub or locally is an adapter model or not, return the path the the adapter
|
Simply checks if the model stored on the Hub or locally is an adapter model or not, return the path of the adapter
|
||||||
config file if it is, None otherwise.
|
config file if it is, None otherwise.
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
|
@ -178,7 +178,7 @@ class GPTQTest(unittest.TestCase):
|
|||||||
|
|
||||||
def test_generate_quality(self):
|
def test_generate_quality(self):
|
||||||
"""
|
"""
|
||||||
Simple test to check the quality of the model by comapring the the generated tokens with the expected tokens
|
Simple test to check the quality of the model by comparing the generated tokens with the expected tokens
|
||||||
"""
|
"""
|
||||||
if self.device_map is None:
|
if self.device_map is None:
|
||||||
self.check_inference_correctness(self.quantized_model.to(0))
|
self.check_inference_correctness(self.quantized_model.to(0))
|
||||||
@ -290,7 +290,7 @@ class GPTQTestActOrderExllama(unittest.TestCase):
|
|||||||
|
|
||||||
def test_generate_quality(self):
|
def test_generate_quality(self):
|
||||||
"""
|
"""
|
||||||
Simple test to check the quality of the model by comapring the the generated tokens with the expected tokens
|
Simple test to check the quality of the model by comparing the generated tokens with the expected tokens
|
||||||
"""
|
"""
|
||||||
self.check_inference_correctness(self.quantized_model)
|
self.check_inference_correctness(self.quantized_model)
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user