finishing model test

This commit is contained in:
thomwolf 2018-11-04 21:27:10 +01:00
parent d69b0b0e90
commit 87da161c2a

View File

@ -16,16 +16,13 @@ from __future__ import absolute_import
from __future__ import division from __future__ import division
from __future__ import print_function from __future__ import print_function
import six
import unittest import unittest
import collections
import json import json
import random import random
import re
import torch import torch
import modeling as modeling import modeling
class BertModelTest(unittest.TestCase): class BertModelTest(unittest.TestCase):
@ -124,9 +121,6 @@ class BertModelTest(unittest.TestCase):
output_result = tester.create_model() output_result = tester.create_model()
tester.check_output(output_result) tester.check_output(output_result)
# TODO Find PyTorch equivalent of assert_all_tensors_reachable() if necessary
# self.assert_all_tensors_reachable(sess, [init_op, ops])
@classmethod @classmethod
def ids_tensor(cls, shape, vocab_size, rng=None, name=None): def ids_tensor(cls, shape, vocab_size, rng=None, name=None):
"""Creates a random int32 tensor of the shape within the vocab size.""" """Creates a random int32 tensor of the shape within the vocab size."""
@ -141,120 +135,7 @@ class BertModelTest(unittest.TestCase):
for _ in range(total_dims): for _ in range(total_dims):
values.append(rng.randint(0, vocab_size - 1)) values.append(rng.randint(0, vocab_size - 1))
# TODO Solve : the returned tensors provoke index out of range errors when passed to the model return torch.tensor(data=values, dtype=torch.long).view(shape).contiguous()
return torch.tensor(data=values, dtype=torch.int32)
def assert_all_tensors_reachable(self, sess, outputs):
"""Checks that all the tensors in the graph are reachable from outputs."""
graph = sess.graph
ignore_strings = [
"^.*/dilation_rate$",
"^.*/Tensordot/concat$",
"^.*/Tensordot/concat/axis$",
"^testing/.*$",
]
ignore_regexes = [re.compile(x) for x in ignore_strings]
unreachable = self.get_unreachable_ops(graph, outputs)
filtered_unreachable = []
for x in unreachable:
do_ignore = False
for r in ignore_regexes:
m = r.match(x.name)
if m is not None:
do_ignore = True
if do_ignore:
continue
filtered_unreachable.append(x)
unreachable = filtered_unreachable
self.assertEqual(
len(unreachable), 0, "The following ops are unreachable: %s" %
(" ".join([x.name for x in unreachable])))
@classmethod
def get_unreachable_ops(cls, graph, outputs):
"""Finds all of the tensors in graph that are unreachable from outputs."""
outputs = cls.flatten_recursive(outputs)
output_to_op = collections.defaultdict(list)
op_to_all = collections.defaultdict(list)
assign_out_to_in = collections.defaultdict(list)
for op in graph.get_operations():
for x in op.inputs:
op_to_all[op.name].append(x.name)
for y in op.outputs:
output_to_op[y.name].append(op.name)
op_to_all[op.name].append(y.name)
if str(op.type) == "Assign":
for y in op.outputs:
for x in op.inputs:
assign_out_to_in[y.name].append(x.name)
assign_groups = collections.defaultdict(list)
for out_name in assign_out_to_in.keys():
name_group = assign_out_to_in[out_name]
for n1 in name_group:
assign_groups[n1].append(out_name)
for n2 in name_group:
if n1 != n2:
assign_groups[n1].append(n2)
seen_tensors = {}
stack = [x.name for x in outputs]
while stack:
name = stack.pop()
if name in seen_tensors:
continue
seen_tensors[name] = True
if name in output_to_op:
for op_name in output_to_op[name]:
if op_name in op_to_all:
for input_name in op_to_all[op_name]:
if input_name not in stack:
stack.append(input_name)
expanded_names = []
if name in assign_groups:
for assign_name in assign_groups[name]:
expanded_names.append(assign_name)
for expanded_name in expanded_names:
if expanded_name not in stack:
stack.append(expanded_name)
unreachable_ops = []
for op in graph.get_operations():
is_unreachable = False
all_names = [x.name for x in op.inputs] + [x.name for x in op.outputs]
for name in all_names:
if name not in seen_tensors:
is_unreachable = True
if is_unreachable:
unreachable_ops.append(op)
return unreachable_ops
@classmethod
def flatten_recursive(cls, item):
"""Flattens (potentially nested) a tuple/dictionary/list to a list."""
output = []
if isinstance(item, list):
output.extend(item)
elif isinstance(item, tuple):
output.extend(list(item))
elif isinstance(item, dict):
for (_, v) in six.iteritems(item):
output.append(v)
else:
return [item]
flat_output = []
for x in output:
flat_output.extend(cls.flatten_recursive(x))
return flat_output
if __name__ == "__main__": if __name__ == "__main__":