mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-31 02:02:21 +06:00
Add type hints to Blip2QFormer, BigBirdForQA and ConditionalDetr family models (#25488)
* Add missing type hints to `BigBirdForQuestionAnswering` * Add type hints to `Blip2QFormerModel` * Add type hints for `ConditionalDetr` family
This commit is contained in:
parent
b1b0fc4f56
commit
87c9d8a10f
@ -3012,9 +3012,9 @@ class BigBirdForQuestionAnswering(BigBirdPreTrainedModel):
|
||||
@replace_return_docstrings(output_type=BigBirdForQuestionAnsweringModelOutput, config_class=_CONFIG_FOR_DOC)
|
||||
def forward(
|
||||
self,
|
||||
input_ids: torch.LongTensor = None,
|
||||
input_ids: Optional[torch.LongTensor] = None,
|
||||
attention_mask: Optional[torch.FloatTensor] = None,
|
||||
question_lengths=None,
|
||||
question_lengths: Optional[torch.Tensor] = None,
|
||||
token_type_ids: Optional[torch.LongTensor] = None,
|
||||
position_ids: Optional[torch.LongTensor] = None,
|
||||
head_mask: Optional[torch.FloatTensor] = None,
|
||||
|
@ -1080,17 +1080,17 @@ class Blip2QFormerModel(Blip2PreTrainedModel):
|
||||
|
||||
def forward(
|
||||
self,
|
||||
query_embeds,
|
||||
attention_mask=None,
|
||||
head_mask=None,
|
||||
encoder_hidden_states=None,
|
||||
encoder_attention_mask=None,
|
||||
past_key_values=None,
|
||||
use_cache=None,
|
||||
output_attentions=None,
|
||||
output_hidden_states=None,
|
||||
return_dict=None,
|
||||
):
|
||||
query_embeds: torch.FloatTensor,
|
||||
attention_mask: Optional[torch.FloatTensor] = None,
|
||||
head_mask: Optional[torch.FloatTensor] = None,
|
||||
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
||||
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
||||
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
||||
use_cache: Optional[bool] = None,
|
||||
output_attentions: Optional[bool] = None,
|
||||
output_hidden_states: Optional[bool] = None,
|
||||
return_dict: Optional[bool] = None,
|
||||
) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPoolingAndCrossAttentions]:
|
||||
r"""
|
||||
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, `optional`):
|
||||
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
|
||||
|
@ -17,7 +17,7 @@
|
||||
|
||||
import math
|
||||
from dataclasses import dataclass
|
||||
from typing import Dict, List, Optional, Tuple
|
||||
from typing import Dict, List, Optional, Tuple, Union
|
||||
|
||||
import torch
|
||||
from torch import Tensor, nn
|
||||
@ -1525,16 +1525,16 @@ class ConditionalDetrModel(ConditionalDetrPreTrainedModel):
|
||||
@replace_return_docstrings(output_type=ConditionalDetrModelOutput, config_class=_CONFIG_FOR_DOC)
|
||||
def forward(
|
||||
self,
|
||||
pixel_values,
|
||||
pixel_mask=None,
|
||||
decoder_attention_mask=None,
|
||||
encoder_outputs=None,
|
||||
inputs_embeds=None,
|
||||
decoder_inputs_embeds=None,
|
||||
output_attentions=None,
|
||||
output_hidden_states=None,
|
||||
return_dict=None,
|
||||
):
|
||||
pixel_values: torch.FloatTensor,
|
||||
pixel_mask: Optional[torch.LongTensor] = None,
|
||||
decoder_attention_mask: Optional[torch.LongTensor] = None,
|
||||
encoder_outputs: Optional[torch.FloatTensor] = None,
|
||||
inputs_embeds: Optional[torch.FloatTensor] = None,
|
||||
decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
|
||||
output_attentions: Optional[bool] = None,
|
||||
output_hidden_states: Optional[bool] = None,
|
||||
return_dict: Optional[bool] = None,
|
||||
) -> Union[torch.FloatTensor, ConditionalDetrModelOutput]:
|
||||
r"""
|
||||
Returns:
|
||||
|
||||
@ -1686,17 +1686,17 @@ class ConditionalDetrForObjectDetection(ConditionalDetrPreTrainedModel):
|
||||
@replace_return_docstrings(output_type=ConditionalDetrObjectDetectionOutput, config_class=_CONFIG_FOR_DOC)
|
||||
def forward(
|
||||
self,
|
||||
pixel_values,
|
||||
pixel_mask=None,
|
||||
decoder_attention_mask=None,
|
||||
encoder_outputs=None,
|
||||
inputs_embeds=None,
|
||||
decoder_inputs_embeds=None,
|
||||
labels=None,
|
||||
output_attentions=None,
|
||||
output_hidden_states=None,
|
||||
return_dict=None,
|
||||
):
|
||||
pixel_values: torch.FloatTensor,
|
||||
pixel_mask: Optional[torch.LongTensor] = None,
|
||||
decoder_attention_mask: Optional[torch.LongTensor] = None,
|
||||
encoder_outputs: Optional[torch.FloatTensor] = None,
|
||||
inputs_embeds: Optional[torch.FloatTensor] = None,
|
||||
decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
|
||||
labels: Optional[List[dict]] = None,
|
||||
output_attentions: Optional[bool] = None,
|
||||
output_hidden_states: Optional[bool] = None,
|
||||
return_dict: Optional[bool] = None,
|
||||
) -> Union[Tuple[torch.FloatTensor], ConditionalDetrObjectDetectionOutput]:
|
||||
r"""
|
||||
labels (`List[Dict]` of len `(batch_size,)`, *optional*):
|
||||
Labels for computing the bipartite matching loss. List of dicts, each dictionary containing at least the
|
||||
@ -1870,17 +1870,17 @@ class ConditionalDetrForSegmentation(ConditionalDetrPreTrainedModel):
|
||||
@replace_return_docstrings(output_type=ConditionalDetrSegmentationOutput, config_class=_CONFIG_FOR_DOC)
|
||||
def forward(
|
||||
self,
|
||||
pixel_values,
|
||||
pixel_mask=None,
|
||||
decoder_attention_mask=None,
|
||||
encoder_outputs=None,
|
||||
inputs_embeds=None,
|
||||
decoder_inputs_embeds=None,
|
||||
labels=None,
|
||||
output_attentions=None,
|
||||
output_hidden_states=None,
|
||||
return_dict=None,
|
||||
):
|
||||
pixel_values: torch.FloatTensor,
|
||||
pixel_mask: Optional[torch.LongTensor] = None,
|
||||
decoder_attention_mask: Optional[torch.LongTensor] = None,
|
||||
encoder_outputs: Optional[torch.FloatTensor] = None,
|
||||
inputs_embeds: Optional[torch.FloatTensor] = None,
|
||||
decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
|
||||
labels: Optional[List[dict]] = None,
|
||||
output_attentions: Optional[bool] = None,
|
||||
output_hidden_states: Optional[bool] = None,
|
||||
return_dict: Optional[bool] = None,
|
||||
) -> Union[Tuple[torch.FloatTensor], ConditionalDetrSegmentationOutput]:
|
||||
r"""
|
||||
labels (`List[Dict]` of len `(batch_size,)`, *optional*):
|
||||
Labels for computing the bipartite matching loss, DICE/F-1 loss and Focal loss. List of dicts, each
|
||||
|
Loading…
Reference in New Issue
Block a user