Add type hints to Blip2QFormer, BigBirdForQA and ConditionalDetr family models (#25488)

* Add missing type hints to `BigBirdForQuestionAnswering`

* Add type hints to `Blip2QFormerModel`

* Add type hints for `ConditionalDetr` family
This commit is contained in:
David Reguera 2023-08-14 15:44:34 +02:00 committed by GitHub
parent b1b0fc4f56
commit 87c9d8a10f
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
3 changed files with 46 additions and 46 deletions

View File

@ -3012,9 +3012,9 @@ class BigBirdForQuestionAnswering(BigBirdPreTrainedModel):
@replace_return_docstrings(output_type=BigBirdForQuestionAnsweringModelOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: torch.LongTensor = None,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
question_lengths=None,
question_lengths: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,

View File

@ -1080,17 +1080,17 @@ class Blip2QFormerModel(Blip2PreTrainedModel):
def forward(
self,
query_embeds,
attention_mask=None,
head_mask=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
past_key_values=None,
use_cache=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
query_embeds: torch.FloatTensor,
attention_mask: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPoolingAndCrossAttentions]:
r"""
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, `optional`):
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if

View File

@ -17,7 +17,7 @@
import math
from dataclasses import dataclass
from typing import Dict, List, Optional, Tuple
from typing import Dict, List, Optional, Tuple, Union
import torch
from torch import Tensor, nn
@ -1525,16 +1525,16 @@ class ConditionalDetrModel(ConditionalDetrPreTrainedModel):
@replace_return_docstrings(output_type=ConditionalDetrModelOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
pixel_values,
pixel_mask=None,
decoder_attention_mask=None,
encoder_outputs=None,
inputs_embeds=None,
decoder_inputs_embeds=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
pixel_values: torch.FloatTensor,
pixel_mask: Optional[torch.LongTensor] = None,
decoder_attention_mask: Optional[torch.LongTensor] = None,
encoder_outputs: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[torch.FloatTensor, ConditionalDetrModelOutput]:
r"""
Returns:
@ -1686,17 +1686,17 @@ class ConditionalDetrForObjectDetection(ConditionalDetrPreTrainedModel):
@replace_return_docstrings(output_type=ConditionalDetrObjectDetectionOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
pixel_values,
pixel_mask=None,
decoder_attention_mask=None,
encoder_outputs=None,
inputs_embeds=None,
decoder_inputs_embeds=None,
labels=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
pixel_values: torch.FloatTensor,
pixel_mask: Optional[torch.LongTensor] = None,
decoder_attention_mask: Optional[torch.LongTensor] = None,
encoder_outputs: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[List[dict]] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.FloatTensor], ConditionalDetrObjectDetectionOutput]:
r"""
labels (`List[Dict]` of len `(batch_size,)`, *optional*):
Labels for computing the bipartite matching loss. List of dicts, each dictionary containing at least the
@ -1870,17 +1870,17 @@ class ConditionalDetrForSegmentation(ConditionalDetrPreTrainedModel):
@replace_return_docstrings(output_type=ConditionalDetrSegmentationOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
pixel_values,
pixel_mask=None,
decoder_attention_mask=None,
encoder_outputs=None,
inputs_embeds=None,
decoder_inputs_embeds=None,
labels=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
pixel_values: torch.FloatTensor,
pixel_mask: Optional[torch.LongTensor] = None,
decoder_attention_mask: Optional[torch.LongTensor] = None,
encoder_outputs: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[List[dict]] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.FloatTensor], ConditionalDetrSegmentationOutput]:
r"""
labels (`List[Dict]` of len `(batch_size,)`, *optional*):
Labels for computing the bipartite matching loss, DICE/F-1 loss and Focal loss. List of dicts, each