💄 super

This commit is contained in:
Julien Chaumond 2020-01-15 18:33:50 -05:00
parent cd51893d37
commit 83a41d39b3
75 changed files with 328 additions and 328 deletions

View File

@ -31,7 +31,7 @@ POOLING_BREAKDOWN = {1: (1, 1), 2: (2, 1), 3: (3, 1), 4: (2, 2), 5: (5, 1), 6: (
class ImageEncoder(nn.Module):
def __init__(self, args):
super(ImageEncoder, self).__init__()
super().__init__()
model = torchvision.models.resnet152(pretrained=True)
modules = list(model.children())[:-2]
self.model = nn.Sequential(*modules)

View File

@ -5,7 +5,7 @@ class ClassificationHead(torch.nn.Module):
"""Classification Head for transformer encoders"""
def __init__(self, class_size, embed_size):
super(ClassificationHead, self).__init__()
super().__init__()
self.class_size = class_size
self.embed_size = embed_size
# self.mlp1 = torch.nn.Linear(embed_size, embed_size)

View File

@ -46,7 +46,7 @@ class Discriminator(torch.nn.Module):
"""Transformer encoder followed by a Classification Head"""
def __init__(self, class_size, pretrained_model="gpt2-medium", cached_mode=False, device="cpu"):
super(Discriminator, self).__init__()
super().__init__()
self.tokenizer = GPT2Tokenizer.from_pretrained(pretrained_model)
self.encoder = GPT2LMHeadModel.from_pretrained(pretrained_model)
self.embed_size = self.encoder.transformer.config.hidden_size

View File

@ -80,7 +80,7 @@ class BertAbsConfig(PretrainedConfig):
dec_dropout=0.2,
**kwargs,
):
super(BertAbsConfig, self).__init__(**kwargs)
super().__init__(**kwargs)
self.vocab_size = vocab_size
self.max_pos = max_pos

View File

@ -47,7 +47,7 @@ class BertAbsPreTrainedModel(PreTrainedModel):
class BertAbs(BertAbsPreTrainedModel):
def __init__(self, args, checkpoint=None, bert_extractive_checkpoint=None):
super(BertAbs, self).__init__(args)
super().__init__(args)
self.args = args
self.bert = Bert()
@ -122,7 +122,7 @@ class Bert(nn.Module):
"""
def __init__(self):
super(Bert, self).__init__()
super().__init__()
config = BertConfig.from_pretrained("bert-base-uncased")
self.model = BertModel(config)
@ -151,7 +151,7 @@ class TransformerDecoder(nn.Module):
"""
def __init__(self, num_layers, d_model, heads, d_ff, dropout, embeddings, vocab_size):
super(TransformerDecoder, self).__init__()
super().__init__()
# Basic attributes.
self.decoder_type = "transformer"
@ -261,7 +261,7 @@ class PositionalEncoding(nn.Module):
pe[:, 0::2] = torch.sin(position.float() * div_term)
pe[:, 1::2] = torch.cos(position.float() * div_term)
pe = pe.unsqueeze(0)
super(PositionalEncoding, self).__init__()
super().__init__()
self.register_buffer("pe", pe)
self.dropout = nn.Dropout(p=dropout)
self.dim = dim
@ -293,7 +293,7 @@ class TransformerDecoderLayer(nn.Module):
"""
def __init__(self, d_model, heads, d_ff, dropout):
super(TransformerDecoderLayer, self).__init__()
super().__init__()
self.self_attn = MultiHeadedAttention(heads, d_model, dropout=dropout)
@ -410,7 +410,7 @@ class MultiHeadedAttention(nn.Module):
self.dim_per_head = model_dim // head_count
self.model_dim = model_dim
super(MultiHeadedAttention, self).__init__()
super().__init__()
self.head_count = head_count
self.linear_keys = nn.Linear(model_dim, head_count * self.dim_per_head)
@ -639,7 +639,7 @@ class PositionwiseFeedForward(nn.Module):
"""
def __init__(self, d_model, d_ff, dropout=0.1):
super(PositionwiseFeedForward, self).__init__()
super().__init__()
self.w_1 = nn.Linear(d_model, d_ff)
self.w_2 = nn.Linear(d_ff, d_model)
self.layer_norm = nn.LayerNorm(d_model, eps=1e-6)

View File

@ -122,7 +122,7 @@ class AlbertConfig(PretrainedConfig):
layer_norm_eps=1e-12,
**kwargs
):
super(AlbertConfig, self).__init__(**kwargs)
super().__init__(**kwargs)
self.vocab_size = vocab_size
self.embedding_size = embedding_size

View File

@ -125,7 +125,7 @@ class BertConfig(PretrainedConfig):
layer_norm_eps=1e-12,
**kwargs
):
super(BertConfig, self).__init__(**kwargs)
super().__init__(**kwargs)
self.vocab_size = vocab_size
self.hidden_size = hidden_size

View File

@ -106,7 +106,7 @@ class CTRLConfig(PretrainedConfig):
summary_first_dropout=0.1,
**kwargs
):
super(CTRLConfig, self).__init__(**kwargs)
super().__init__(**kwargs)
self.vocab_size = vocab_size
self.n_ctx = n_ctx
self.n_positions = n_positions

View File

@ -113,7 +113,7 @@ class DistilBertConfig(PretrainedConfig):
seq_classif_dropout=0.2,
**kwargs
):
super(DistilBertConfig, self).__init__(**kwargs)
super().__init__(**kwargs)
self.vocab_size = vocab_size
self.max_position_embeddings = max_position_embeddings
self.sinusoidal_pos_embds = sinusoidal_pos_embds

View File

@ -136,7 +136,7 @@ class GPT2Config(PretrainedConfig):
summary_first_dropout=0.1,
**kwargs
):
super(GPT2Config, self).__init__(**kwargs)
super().__init__(**kwargs)
self.vocab_size = vocab_size
self.n_ctx = n_ctx

View File

@ -138,7 +138,7 @@ class OpenAIGPTConfig(PretrainedConfig):
summary_first_dropout=0.1,
**kwargs
):
super(OpenAIGPTConfig, self).__init__(**kwargs)
super().__init__(**kwargs)
self.vocab_size = vocab_size
self.n_ctx = n_ctx

View File

@ -77,7 +77,7 @@ class T5Config(PretrainedConfig):
initializer_factor=1.0,
**kwargs
):
super(T5Config, self).__init__(**kwargs)
super().__init__(**kwargs)
self.vocab_size = vocab_size
self.n_positions = n_positions
self.d_model = d_model

View File

@ -151,7 +151,7 @@ class TransfoXLConfig(PretrainedConfig):
layer_norm_epsilon=1e-5,
**kwargs
):
super(TransfoXLConfig, self).__init__(**kwargs)
super().__init__(**kwargs)
self.vocab_size = vocab_size
self.cutoffs = []

View File

@ -197,7 +197,7 @@ class XLMConfig(PretrainedConfig):
):
"""Constructs XLMConfig.
"""
super(XLMConfig, self).__init__(**kwargs)
super().__init__(**kwargs)
self.vocab_size = vocab_size
self.emb_dim = emb_dim
self.n_layers = n_layers

View File

@ -159,7 +159,7 @@ class XLNetConfig(PretrainedConfig):
):
"""Constructs XLNetConfig.
"""
super(XLNetConfig, self).__init__(**kwargs)
super().__init__(**kwargs)
self.vocab_size = vocab_size
self.d_model = d_model
self.n_layer = n_layer

View File

@ -167,7 +167,7 @@ class AlbertEmbeddings(BertEmbeddings):
"""
def __init__(self, config):
super(AlbertEmbeddings, self).__init__(config)
super().__init__(config)
self.word_embeddings = nn.Embedding(config.vocab_size, config.embedding_size, padding_idx=0)
self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.embedding_size)
@ -177,7 +177,7 @@ class AlbertEmbeddings(BertEmbeddings):
class AlbertAttention(BertSelfAttention):
def __init__(self, config):
super(AlbertAttention, self).__init__(config)
super().__init__(config)
self.output_attentions = config.output_attentions
self.num_attention_heads = config.num_attention_heads
@ -258,7 +258,7 @@ class AlbertAttention(BertSelfAttention):
class AlbertLayer(nn.Module):
def __init__(self, config):
super(AlbertLayer, self).__init__()
super().__init__()
self.config = config
self.full_layer_layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
@ -279,7 +279,7 @@ class AlbertLayer(nn.Module):
class AlbertLayerGroup(nn.Module):
def __init__(self, config):
super(AlbertLayerGroup, self).__init__()
super().__init__()
self.output_attentions = config.output_attentions
self.output_hidden_states = config.output_hidden_states
@ -309,7 +309,7 @@ class AlbertLayerGroup(nn.Module):
class AlbertTransformer(nn.Module):
def __init__(self, config):
super(AlbertTransformer, self).__init__()
super().__init__()
self.config = config
self.output_attentions = config.output_attentions
@ -471,7 +471,7 @@ class AlbertModel(AlbertPreTrainedModel):
base_model_prefix = "albert"
def __init__(self, config):
super(AlbertModel, self).__init__(config)
super().__init__(config)
self.config = config
self.embeddings = AlbertEmbeddings(config)
@ -571,7 +571,7 @@ class AlbertModel(AlbertPreTrainedModel):
class AlbertMLMHead(nn.Module):
def __init__(self, config):
super(AlbertMLMHead, self).__init__()
super().__init__()
self.LayerNorm = nn.LayerNorm(config.embedding_size)
self.bias = nn.Parameter(torch.zeros(config.vocab_size))
@ -619,7 +619,7 @@ class AlbertForMaskedLM(AlbertPreTrainedModel):
"""
def __init__(self, config):
super(AlbertForMaskedLM, self).__init__(config)
super().__init__(config)
self.albert = AlbertModel(config)
self.predictions = AlbertMLMHead(config)
@ -706,7 +706,7 @@ class AlbertForSequenceClassification(AlbertPreTrainedModel):
"""
def __init__(self, config):
super(AlbertForSequenceClassification, self).__init__(config)
super().__init__(config)
self.num_labels = config.num_labels
self.albert = AlbertModel(config)
@ -804,7 +804,7 @@ class AlbertForQuestionAnswering(AlbertPreTrainedModel):
"""
def __init__(self, config):
super(AlbertForQuestionAnswering, self).__init__(config)
super().__init__(config)
self.num_labels = config.num_labels
self.albert = AlbertModel(config)

View File

@ -160,7 +160,7 @@ class BertEmbeddings(nn.Module):
"""
def __init__(self, config):
super(BertEmbeddings, self).__init__()
super().__init__()
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=0)
self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)
@ -197,7 +197,7 @@ class BertEmbeddings(nn.Module):
class BertSelfAttention(nn.Module):
def __init__(self, config):
super(BertSelfAttention, self).__init__()
super().__init__()
if config.hidden_size % config.num_attention_heads != 0:
raise ValueError(
"The hidden size (%d) is not a multiple of the number of attention "
@ -275,7 +275,7 @@ class BertSelfAttention(nn.Module):
class BertSelfOutput(nn.Module):
def __init__(self, config):
super(BertSelfOutput, self).__init__()
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.LayerNorm = BertLayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
@ -289,7 +289,7 @@ class BertSelfOutput(nn.Module):
class BertAttention(nn.Module):
def __init__(self, config):
super(BertAttention, self).__init__()
super().__init__()
self.self = BertSelfAttention(config)
self.output = BertSelfOutput(config)
self.pruned_heads = set()
@ -335,7 +335,7 @@ class BertAttention(nn.Module):
class BertIntermediate(nn.Module):
def __init__(self, config):
super(BertIntermediate, self).__init__()
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
if isinstance(config.hidden_act, str):
self.intermediate_act_fn = ACT2FN[config.hidden_act]
@ -350,7 +350,7 @@ class BertIntermediate(nn.Module):
class BertOutput(nn.Module):
def __init__(self, config):
super(BertOutput, self).__init__()
super().__init__()
self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
self.LayerNorm = BertLayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
@ -364,7 +364,7 @@ class BertOutput(nn.Module):
class BertLayer(nn.Module):
def __init__(self, config):
super(BertLayer, self).__init__()
super().__init__()
self.attention = BertAttention(config)
self.is_decoder = config.is_decoder
if self.is_decoder:
@ -399,7 +399,7 @@ class BertLayer(nn.Module):
class BertEncoder(nn.Module):
def __init__(self, config):
super(BertEncoder, self).__init__()
super().__init__()
self.output_attentions = config.output_attentions
self.output_hidden_states = config.output_hidden_states
self.layer = nn.ModuleList([BertLayer(config) for _ in range(config.num_hidden_layers)])
@ -440,7 +440,7 @@ class BertEncoder(nn.Module):
class BertPooler(nn.Module):
def __init__(self, config):
super(BertPooler, self).__init__()
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.activation = nn.Tanh()
@ -455,7 +455,7 @@ class BertPooler(nn.Module):
class BertPredictionHeadTransform(nn.Module):
def __init__(self, config):
super(BertPredictionHeadTransform, self).__init__()
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
if isinstance(config.hidden_act, str):
self.transform_act_fn = ACT2FN[config.hidden_act]
@ -472,7 +472,7 @@ class BertPredictionHeadTransform(nn.Module):
class BertLMPredictionHead(nn.Module):
def __init__(self, config):
super(BertLMPredictionHead, self).__init__()
super().__init__()
self.transform = BertPredictionHeadTransform(config)
# The output weights are the same as the input embeddings, but there is
@ -492,7 +492,7 @@ class BertLMPredictionHead(nn.Module):
class BertOnlyMLMHead(nn.Module):
def __init__(self, config):
super(BertOnlyMLMHead, self).__init__()
super().__init__()
self.predictions = BertLMPredictionHead(config)
def forward(self, sequence_output):
@ -502,7 +502,7 @@ class BertOnlyMLMHead(nn.Module):
class BertOnlyNSPHead(nn.Module):
def __init__(self, config):
super(BertOnlyNSPHead, self).__init__()
super().__init__()
self.seq_relationship = nn.Linear(config.hidden_size, 2)
def forward(self, pooled_output):
@ -512,7 +512,7 @@ class BertOnlyNSPHead(nn.Module):
class BertPreTrainingHeads(nn.Module):
def __init__(self, config):
super(BertPreTrainingHeads, self).__init__()
super().__init__()
self.predictions = BertLMPredictionHead(config)
self.seq_relationship = nn.Linear(config.hidden_size, 2)
@ -657,7 +657,7 @@ class BertModel(BertPreTrainedModel):
"""
def __init__(self, config):
super(BertModel, self).__init__(config)
super().__init__(config)
self.config = config
self.embeddings = BertEmbeddings(config)
@ -864,7 +864,7 @@ class BertForPreTraining(BertPreTrainedModel):
"""
def __init__(self, config):
super(BertForPreTraining, self).__init__(config)
super().__init__(config)
self.bert = BertModel(config)
self.cls = BertPreTrainingHeads(config)
@ -954,7 +954,7 @@ class BertForMaskedLM(BertPreTrainedModel):
"""
def __init__(self, config):
super(BertForMaskedLM, self).__init__(config)
super().__init__(config)
self.bert = BertModel(config)
self.cls = BertOnlyMLMHead(config)
@ -1053,7 +1053,7 @@ class BertForNextSentencePrediction(BertPreTrainedModel):
"""
def __init__(self, config):
super(BertForNextSentencePrediction, self).__init__(config)
super().__init__(config)
self.bert = BertModel(config)
self.cls = BertOnlyNSPHead(config)
@ -1132,7 +1132,7 @@ class BertForSequenceClassification(BertPreTrainedModel):
"""
def __init__(self, config):
super(BertForSequenceClassification, self).__init__(config)
super().__init__(config)
self.num_labels = config.num_labels
self.bert = BertModel(config)
@ -1221,7 +1221,7 @@ class BertForMultipleChoice(BertPreTrainedModel):
"""
def __init__(self, config):
super(BertForMultipleChoice, self).__init__(config)
super().__init__(config)
self.bert = BertModel(config)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
@ -1308,7 +1308,7 @@ class BertForTokenClassification(BertPreTrainedModel):
"""
def __init__(self, config):
super(BertForTokenClassification, self).__init__(config)
super().__init__(config)
self.num_labels = config.num_labels
self.bert = BertModel(config)
@ -1406,7 +1406,7 @@ class BertForQuestionAnswering(BertPreTrainedModel):
"""
def __init__(self, config):
super(BertForQuestionAnswering, self).__init__(config)
super().__init__(config)
self.num_labels = config.num_labels
self.bert = BertModel(config)

View File

@ -81,7 +81,7 @@ def scaled_dot_product_attention(q, k, v, mask, attention_mask=None, head_mask=N
class MultiHeadAttention(torch.nn.Module):
def __init__(self, d_model_size, num_heads, output_attentions=False):
super(MultiHeadAttention, self).__init__()
super().__init__()
self.output_attentions = output_attentions
self.num_heads = num_heads
self.d_model_size = d_model_size
@ -132,7 +132,7 @@ def point_wise_feed_forward_network(d_model_size, dff):
class EncoderLayer(torch.nn.Module):
def __init__(self, d_model_size, num_heads, dff, rate=0.1, output_attentions=False):
super(EncoderLayer, self).__init__()
super().__init__()
self.multi_head_attention = MultiHeadAttention(d_model_size, num_heads, output_attentions)
self.ffn = point_wise_feed_forward_network(d_model_size, dff)
@ -274,7 +274,7 @@ class CTRLModel(CTRLPreTrainedModel):
"""
def __init__(self, config):
super(CTRLModel, self).__init__(config)
super().__init__(config)
self.output_hidden_states = config.output_hidden_states
self.output_attentions = config.output_attentions
self.output_past = config.output_past
@ -481,7 +481,7 @@ class CTRLLMHeadModel(CTRLPreTrainedModel):
"""
def __init__(self, config):
super(CTRLLMHeadModel, self).__init__(config)
super().__init__(config)
self.transformer = CTRLModel(config)
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=True)

View File

@ -59,7 +59,7 @@ def create_sinusoidal_embeddings(n_pos, dim, out):
class Embeddings(nn.Module):
def __init__(self, config):
super(Embeddings, self).__init__()
super().__init__()
self.word_embeddings = nn.Embedding(config.vocab_size, config.dim, padding_idx=0)
self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.dim)
if config.sinusoidal_pos_embds:
@ -97,7 +97,7 @@ class Embeddings(nn.Module):
class MultiHeadSelfAttention(nn.Module):
def __init__(self, config):
super(MultiHeadSelfAttention, self).__init__()
super().__init__()
self.n_heads = config.n_heads
self.dim = config.dim
@ -195,7 +195,7 @@ class MultiHeadSelfAttention(nn.Module):
class FFN(nn.Module):
def __init__(self, config):
super(FFN, self).__init__()
super().__init__()
self.dropout = nn.Dropout(p=config.dropout)
self.lin1 = nn.Linear(in_features=config.dim, out_features=config.hidden_dim)
self.lin2 = nn.Linear(in_features=config.hidden_dim, out_features=config.dim)
@ -214,7 +214,7 @@ class FFN(nn.Module):
class TransformerBlock(nn.Module):
def __init__(self, config):
super(TransformerBlock, self).__init__()
super().__init__()
self.n_heads = config.n_heads
self.dim = config.dim
@ -266,7 +266,7 @@ class TransformerBlock(nn.Module):
class Transformer(nn.Module):
def __init__(self, config):
super(Transformer, self).__init__()
super().__init__()
self.n_layers = config.n_layers
self.output_attentions = config.output_attentions
self.output_hidden_states = config.output_hidden_states
@ -424,7 +424,7 @@ class DistilBertModel(DistilBertPreTrainedModel):
"""
def __init__(self, config):
super(DistilBertModel, self).__init__(config)
super().__init__(config)
self.embeddings = Embeddings(config) # Embeddings
self.transformer = Transformer(config) # Encoder
@ -525,7 +525,7 @@ class DistilBertForMaskedLM(DistilBertPreTrainedModel):
"""
def __init__(self, config):
super(DistilBertForMaskedLM, self).__init__(config)
super().__init__(config)
self.output_attentions = config.output_attentions
self.output_hidden_states = config.output_hidden_states
@ -600,7 +600,7 @@ class DistilBertForSequenceClassification(DistilBertPreTrainedModel):
"""
def __init__(self, config):
super(DistilBertForSequenceClassification, self).__init__(config)
super().__init__(config)
self.num_labels = config.num_labels
self.distilbert = DistilBertModel(config)
@ -679,7 +679,7 @@ class DistilBertForQuestionAnswering(DistilBertPreTrainedModel):
"""
def __init__(self, config):
super(DistilBertForQuestionAnswering, self).__init__(config)
super().__init__(config)
self.distilbert = DistilBertModel(config)
self.qa_outputs = nn.Linear(config.dim, config.num_labels)
@ -766,7 +766,7 @@ class DistilBertForTokenClassification(DistilBertPreTrainedModel):
"""
def __init__(self, config):
super(DistilBertForTokenClassification, self).__init__(config)
super().__init__(config)
self.num_labels = config.num_labels
self.distilbert = DistilBertModel(config)

View File

@ -37,7 +37,7 @@ class PreTrainedEncoderDecoder(nn.Module):
"""
def __init__(self, encoder, decoder):
super(PreTrainedEncoderDecoder, self).__init__()
super().__init__()
self.encoder = encoder
self.decoder = decoder
@ -290,7 +290,7 @@ class Model2Model(PreTrainedEncoderDecoder):
"""
def __init__(self, *args, **kwargs):
super(Model2Model, self).__init__(*args, **kwargs)
super().__init__(*args, **kwargs)
self.tie_weights()
def tie_weights(self):
@ -321,7 +321,7 @@ class Model2Model(PreTrainedEncoderDecoder):
):
raise ValueError("Only the Bert model is currently supported.")
model = super(Model2Model, cls).from_pretrained(
model = super().from_pretrained(
encoder_pretrained_model_name_or_path=pretrained_model_name_or_path,
decoder_pretrained_model_name_or_path=pretrained_model_name_or_path,
*args,
@ -345,5 +345,5 @@ class Model2LSTM(PreTrainedEncoderDecoder):
" E.g. `decoder_config={'input_size': 768, 'hidden_size': 768, 'num_layers': 2}`"
)
kwargs["decoder_model"] = torch.nn.LSTM(kwargs.pop("decoder_config"))
model = super(Model2LSTM, cls).from_pretrained(*args, **kwargs)
model = super().from_pretrained(*args, **kwargs)
return model

View File

@ -101,7 +101,7 @@ def gelu(x):
class Attention(nn.Module):
def __init__(self, nx, n_ctx, config, scale=False):
super(Attention, self).__init__()
super().__init__()
self.output_attentions = config.output_attentions
n_state = nx # in Attention: n_state=768 (nx=n_embd)
@ -202,7 +202,7 @@ class Attention(nn.Module):
class MLP(nn.Module):
def __init__(self, n_state, config): # in MLP: n_state=3072 (4 * n_embd)
super(MLP, self).__init__()
super().__init__()
nx = config.n_embd
self.c_fc = Conv1D(n_state, nx)
self.c_proj = Conv1D(nx, n_state)
@ -217,7 +217,7 @@ class MLP(nn.Module):
class Block(nn.Module):
def __init__(self, n_ctx, config, scale=False):
super(Block, self).__init__()
super().__init__()
nx = config.n_embd
self.ln_1 = nn.LayerNorm(nx, eps=config.layer_norm_epsilon)
self.attn = Attention(nx, n_ctx, config, scale)
@ -249,7 +249,7 @@ class GPT2PreTrainedModel(PreTrainedModel):
base_model_prefix = "transformer"
def __init__(self, *inputs, **kwargs):
super(GPT2PreTrainedModel, self).__init__(*inputs, **kwargs)
super().__init__(*inputs, **kwargs)
def _init_weights(self, module):
""" Initialize the weights.
@ -355,7 +355,7 @@ class GPT2Model(GPT2PreTrainedModel):
"""
def __init__(self, config):
super(GPT2Model, self).__init__(config)
super().__init__(config)
self.output_hidden_states = config.output_hidden_states
self.output_attentions = config.output_attentions
self.output_past = config.output_past
@ -550,7 +550,7 @@ class GPT2LMHeadModel(GPT2PreTrainedModel):
"""
def __init__(self, config):
super(GPT2LMHeadModel, self).__init__(config)
super().__init__(config)
self.transformer = GPT2Model(config)
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
@ -678,7 +678,7 @@ class GPT2DoubleHeadsModel(GPT2PreTrainedModel):
"""
def __init__(self, config):
super(GPT2DoubleHeadsModel, self).__init__(config)
super().__init__(config)
config.num_labels = 1
self.transformer = GPT2Model(config)
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)

View File

@ -33,7 +33,7 @@ class ModalEmbeddings(nn.Module):
"""
def __init__(self, config, encoder, embeddings):
super(ModalEmbeddings, self).__init__()
super().__init__()
self.config = config
self.encoder = encoder
self.proj_embeddings = nn.Linear(config.modal_hidden_size, config.hidden_size)
@ -175,7 +175,7 @@ class MMBTModel(nn.Module):
"""
def __init__(self, config, transformer, encoder):
super(MMBTModel, self).__init__()
super().__init__()
self.config = config
self.transformer = transformer
self.modal_encoder = ModalEmbeddings(config, encoder, transformer.embeddings)
@ -359,7 +359,7 @@ class MMBTForClassification(nn.Module):
"""
def __init__(self, config, transformer, encoder):
super(MMBTForClassification, self).__init__()
super().__init__()
self.num_labels = config.num_labels
self.mmbt = MMBTModel(config, transformer, encoder)

View File

@ -127,7 +127,7 @@ ACT_FNS = {"relu": nn.ReLU, "swish": swish, "gelu": gelu}
class Attention(nn.Module):
def __init__(self, nx, n_ctx, config, scale=False):
super(Attention, self).__init__()
super().__init__()
n_state = nx # in Attention: n_state=768 (nx=n_embd)
# [switch nx => n_state from Block to Attention to keep identical to TF implem]
assert n_state % config.n_head == 0
@ -221,7 +221,7 @@ class Attention(nn.Module):
class MLP(nn.Module):
def __init__(self, n_state, config): # in MLP: n_state=3072 (4 * n_embd)
super(MLP, self).__init__()
super().__init__()
nx = config.n_embd
self.c_fc = Conv1D(n_state, nx)
self.c_proj = Conv1D(nx, n_state)
@ -236,7 +236,7 @@ class MLP(nn.Module):
class Block(nn.Module):
def __init__(self, n_ctx, config, scale=False):
super(Block, self).__init__()
super().__init__()
nx = config.n_embd
self.attn = Attention(nx, n_ctx, config, scale)
self.ln_1 = nn.LayerNorm(nx, eps=config.layer_norm_epsilon)
@ -359,7 +359,7 @@ class OpenAIGPTModel(OpenAIGPTPreTrainedModel):
"""
def __init__(self, config):
super(OpenAIGPTModel, self).__init__(config)
super().__init__(config)
self.output_attentions = config.output_attentions
self.output_hidden_states = config.output_hidden_states
@ -518,7 +518,7 @@ class OpenAIGPTLMHeadModel(OpenAIGPTPreTrainedModel):
"""
def __init__(self, config):
super(OpenAIGPTLMHeadModel, self).__init__(config)
super().__init__(config)
self.transformer = OpenAIGPTModel(config)
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
@ -623,7 +623,7 @@ class OpenAIGPTDoubleHeadsModel(OpenAIGPTPreTrainedModel):
"""
def __init__(self, config):
super(OpenAIGPTDoubleHeadsModel, self).__init__(config)
super().__init__(config)
config.num_labels = 1
self.transformer = OpenAIGPTModel(config)

View File

@ -45,7 +45,7 @@ class RobertaEmbeddings(BertEmbeddings):
"""
def __init__(self, config):
super(RobertaEmbeddings, self).__init__(config)
super().__init__(config)
self.padding_idx = 1
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=self.padding_idx)
self.position_embeddings = nn.Embedding(
@ -60,7 +60,7 @@ class RobertaEmbeddings(BertEmbeddings):
else:
position_ids = self.create_position_ids_from_inputs_embeds(inputs_embeds)
return super(RobertaEmbeddings, self).forward(
return super().forward(
input_ids, token_type_ids=token_type_ids, position_ids=position_ids, inputs_embeds=inputs_embeds
)
@ -204,7 +204,7 @@ class RobertaModel(BertModel):
base_model_prefix = "roberta"
def __init__(self, config):
super(RobertaModel, self).__init__(config)
super().__init__(config)
self.embeddings = RobertaEmbeddings(config)
self.init_weights()
@ -254,7 +254,7 @@ class RobertaForMaskedLM(BertPreTrainedModel):
base_model_prefix = "roberta"
def __init__(self, config):
super(RobertaForMaskedLM, self).__init__(config)
super().__init__(config)
self.roberta = RobertaModel(config)
self.lm_head = RobertaLMHead(config)
@ -299,7 +299,7 @@ class RobertaLMHead(nn.Module):
"""Roberta Head for masked language modeling."""
def __init__(self, config):
super(RobertaLMHead, self).__init__()
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.layer_norm = BertLayerNorm(config.hidden_size, eps=config.layer_norm_eps)
@ -362,7 +362,7 @@ class RobertaForSequenceClassification(BertPreTrainedModel):
base_model_prefix = "roberta"
def __init__(self, config):
super(RobertaForSequenceClassification, self).__init__(config)
super().__init__(config)
self.num_labels = config.num_labels
self.roberta = RobertaModel(config)
@ -484,7 +484,7 @@ class RobertaForMultipleChoice(BertPreTrainedModel):
base_model_prefix = "roberta"
def __init__(self, config):
super(RobertaForMultipleChoice, self).__init__(config)
super().__init__(config)
self.roberta = RobertaModel(config)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
@ -571,7 +571,7 @@ class RobertaForTokenClassification(BertPreTrainedModel):
base_model_prefix = "roberta"
def __init__(self, config):
super(RobertaForTokenClassification, self).__init__(config)
super().__init__(config)
self.num_labels = config.num_labels
self.roberta = RobertaModel(config)
@ -625,7 +625,7 @@ class RobertaClassificationHead(nn.Module):
"""Head for sentence-level classification tasks."""
def __init__(self, config):
super(RobertaClassificationHead, self).__init__()
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
self.out_proj = nn.Linear(config.hidden_size, config.num_labels)
@ -684,7 +684,7 @@ class RobertaForQuestionAnswering(BertPreTrainedModel):
base_model_prefix = "roberta"
def __init__(self, config):
super(RobertaForQuestionAnswering, self).__init__(config)
super().__init__(config)
self.num_labels = config.num_labels
self.roberta = RobertaModel(config)

View File

@ -142,7 +142,7 @@ class T5LayerNorm(nn.Module):
""" Construct a layernorm module in the T5 style
No bias and no substraction of mean.
"""
super(T5LayerNorm, self).__init__()
super().__init__()
self.weight = nn.Parameter(torch.ones(hidden_size))
self.variance_epsilon = eps
@ -154,7 +154,7 @@ class T5LayerNorm(nn.Module):
class T5DenseReluDense(nn.Module):
def __init__(self, config):
super(T5DenseReluDense, self).__init__()
super().__init__()
self.wi = nn.Linear(config.d_model, config.d_ff, bias=False)
self.wo = nn.Linear(config.d_ff, config.d_model, bias=False)
self.dropout = nn.Dropout(config.dropout_rate)
@ -169,7 +169,7 @@ class T5DenseReluDense(nn.Module):
class T5LayerFF(nn.Module):
def __init__(self, config):
super(T5LayerFF, self).__init__()
super().__init__()
self.DenseReluDense = T5DenseReluDense(config)
self.layer_norm = T5LayerNorm(config.d_model, eps=config.layer_norm_epsilon)
self.dropout = nn.Dropout(config.dropout_rate)
@ -185,7 +185,7 @@ class T5Attention(nn.Module):
NEW_ID = itertools.count()
def __init__(self, config, has_relative_attention_bias=False):
super(T5Attention, self).__init__()
super().__init__()
self.layer_id = next(T5Attention.NEW_ID)
self.is_decoder = config.is_decoder
self.has_relative_attention_bias = has_relative_attention_bias
@ -363,7 +363,7 @@ class T5Attention(nn.Module):
class T5LayerSelfAttention(nn.Module):
def __init__(self, config, has_relative_attention_bias=False):
super(T5LayerSelfAttention, self).__init__()
super().__init__()
self.SelfAttention = T5Attention(config, has_relative_attention_bias=has_relative_attention_bias)
self.layer_norm = T5LayerNorm(config.d_model, eps=config.layer_norm_epsilon)
self.dropout = nn.Dropout(config.dropout_rate)
@ -381,7 +381,7 @@ class T5LayerSelfAttention(nn.Module):
class T5LayerCrossAttention(nn.Module):
def __init__(self, config, has_relative_attention_bias=False):
super(T5LayerCrossAttention, self).__init__()
super().__init__()
self.EncDecAttention = T5Attention(config, has_relative_attention_bias=has_relative_attention_bias)
self.layer_norm = T5LayerNorm(config.d_model, eps=config.layer_norm_epsilon)
self.dropout = nn.Dropout(config.dropout_rate)
@ -399,7 +399,7 @@ class T5LayerCrossAttention(nn.Module):
class T5Block(nn.Module):
def __init__(self, config, has_relative_attention_bias=False):
super(T5Block, self).__init__()
super().__init__()
self.is_decoder = config.is_decoder
self.layer = nn.ModuleList()
self.layer.append(T5LayerSelfAttention(config, has_relative_attention_bias=has_relative_attention_bias))
@ -501,7 +501,7 @@ class T5PreTrainedModel(PreTrainedModel):
class T5Stack(T5PreTrainedModel):
def __init__(self, config):
super(T5Stack, self).__init__(config)
super().__init__(config)
self.output_attentions = config.output_attentions
self.output_hidden_states = config.output_hidden_states
self.is_decoder = config.is_decoder
@ -724,7 +724,7 @@ class T5Model(T5PreTrainedModel):
"""
def __init__(self, config):
super(T5Model, self).__init__(config)
super().__init__(config)
self.shared = nn.Embedding(config.vocab_size, config.d_model)
encoder_config = copy.deepcopy(config)
@ -830,7 +830,7 @@ class T5WithLMHeadModel(T5PreTrainedModel):
"""
def __init__(self, config):
super(T5WithLMHeadModel, self).__init__(config)
super().__init__(config)
self.model_dim = config.d_model
self.shared = nn.Embedding(config.vocab_size, config.d_model)

View File

@ -45,7 +45,7 @@ class TFAlbertEmbeddings(tf.keras.layers.Layer):
"""
def __init__(self, config, **kwargs):
super(TFAlbertEmbeddings, self).__init__(**kwargs)
super().__init__(**kwargs)
self.config = config
self.position_embeddings = tf.keras.layers.Embedding(
@ -76,7 +76,7 @@ class TFAlbertEmbeddings(tf.keras.layers.Layer):
shape=[self.config.vocab_size, self.config.embedding_size],
initializer=get_initializer(self.config.initializer_range),
)
super(TFAlbertEmbeddings, self).build(input_shape)
super().build(input_shape)
def call(self, inputs, mode="embedding", training=False):
"""Get token embeddings of inputs.
@ -141,7 +141,7 @@ class TFAlbertEmbeddings(tf.keras.layers.Layer):
class TFAlbertSelfAttention(tf.keras.layers.Layer):
def __init__(self, config, **kwargs):
super(TFAlbertSelfAttention, self).__init__(**kwargs)
super().__init__(**kwargs)
if config.hidden_size % config.num_attention_heads != 0:
raise ValueError(
"The hidden size (%d) is not a multiple of the number of attention "
@ -217,7 +217,7 @@ class TFAlbertSelfAttention(tf.keras.layers.Layer):
class TFAlbertSelfOutput(tf.keras.layers.Layer):
def __init__(self, config, **kwargs):
super(TFAlbertSelfOutput, self).__init__(**kwargs)
super().__init__(**kwargs)
self.dense = tf.keras.layers.Dense(
config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense"
)
@ -235,7 +235,7 @@ class TFAlbertSelfOutput(tf.keras.layers.Layer):
class TFAlbertAttention(TFBertSelfAttention):
def __init__(self, config, **kwargs):
super(TFAlbertAttention, self).__init__(config, **kwargs)
super().__init__(config, **kwargs)
self.hidden_size = config.hidden_size
self.dense = tf.keras.layers.Dense(
@ -303,7 +303,7 @@ class TFAlbertAttention(TFBertSelfAttention):
class TFAlbertLayer(tf.keras.layers.Layer):
def __init__(self, config, **kwargs):
super(TFAlbertLayer, self).__init__(**kwargs)
super().__init__(**kwargs)
self.attention = TFAlbertAttention(config, name="attention")
self.ffn = tf.keras.layers.Dense(
@ -341,7 +341,7 @@ class TFAlbertLayer(tf.keras.layers.Layer):
class TFAlbertLayerGroup(tf.keras.layers.Layer):
def __init__(self, config, **kwargs):
super(TFAlbertLayerGroup, self).__init__(**kwargs)
super().__init__(**kwargs)
self.output_attentions = config.output_attentions
self.output_hidden_states = config.output_hidden_states
@ -376,7 +376,7 @@ class TFAlbertLayerGroup(tf.keras.layers.Layer):
class TFAlbertTransformer(tf.keras.layers.Layer):
def __init__(self, config, **kwargs):
super(TFAlbertTransformer, self).__init__(**kwargs)
super().__init__(**kwargs)
self.config = config
self.output_attentions = config.output_attentions
@ -445,7 +445,7 @@ class TFAlbertPreTrainedModel(TFPreTrainedModel):
class TFAlbertMLMHead(tf.keras.layers.Layer):
def __init__(self, config, input_embeddings, **kwargs):
super(TFAlbertMLMHead, self).__init__(**kwargs)
super().__init__(**kwargs)
self.vocab_size = config.vocab_size
self.dense = tf.keras.layers.Dense(
@ -467,7 +467,7 @@ class TFAlbertMLMHead(tf.keras.layers.Layer):
self.decoder_bias = self.add_weight(
shape=(self.vocab_size,), initializer="zeros", trainable=True, name="decoder/bias"
)
super(TFAlbertMLMHead, self).build(input_shape)
super().build(input_shape)
def call(self, hidden_states):
hidden_states = self.dense(hidden_states)
@ -596,7 +596,7 @@ class TFAlbertModel(TFAlbertPreTrainedModel):
"""
def __init__(self, config, **kwargs):
super(TFAlbertModel, self).__init__(config, **kwargs)
super().__init__(config, **kwargs)
self.num_hidden_layers = config.num_hidden_layers
self.embeddings = TFAlbertEmbeddings(config, name="embeddings")
@ -733,7 +733,7 @@ class TFAlbertForMaskedLM(TFAlbertPreTrainedModel):
"""
def __init__(self, config, *inputs, **kwargs):
super(TFAlbertForMaskedLM, self).__init__(config, *inputs, **kwargs)
super().__init__(config, *inputs, **kwargs)
self.albert = TFAlbertModel(config, name="albert")
self.predictions = TFAlbertMLMHead(config, self.albert.embeddings, name="predictions")
@ -786,7 +786,7 @@ class TFAlbertForSequenceClassification(TFAlbertPreTrainedModel):
"""
def __init__(self, config, *inputs, **kwargs):
super(TFAlbertForSequenceClassification, self).__init__(config, *inputs, **kwargs)
super().__init__(config, *inputs, **kwargs)
self.num_labels = config.num_labels
self.albert = TFAlbertModel(config, name="albert")

View File

@ -93,7 +93,7 @@ class TFBertEmbeddings(tf.keras.layers.Layer):
"""
def __init__(self, config, **kwargs):
super(TFBertEmbeddings, self).__init__(**kwargs)
super().__init__(**kwargs)
self.vocab_size = config.vocab_size
self.hidden_size = config.hidden_size
self.initializer_range = config.initializer_range
@ -126,7 +126,7 @@ class TFBertEmbeddings(tf.keras.layers.Layer):
shape=[self.vocab_size, self.hidden_size],
initializer=get_initializer(self.initializer_range),
)
super(TFBertEmbeddings, self).build(input_shape)
super().build(input_shape)
def call(self, inputs, mode="embedding", training=False):
"""Get token embeddings of inputs.
@ -193,7 +193,7 @@ class TFBertEmbeddings(tf.keras.layers.Layer):
class TFBertSelfAttention(tf.keras.layers.Layer):
def __init__(self, config, **kwargs):
super(TFBertSelfAttention, self).__init__(**kwargs)
super().__init__(**kwargs)
if config.hidden_size % config.num_attention_heads != 0:
raise ValueError(
"The hidden size (%d) is not a multiple of the number of attention "
@ -269,7 +269,7 @@ class TFBertSelfAttention(tf.keras.layers.Layer):
class TFBertSelfOutput(tf.keras.layers.Layer):
def __init__(self, config, **kwargs):
super(TFBertSelfOutput, self).__init__(**kwargs)
super().__init__(**kwargs)
self.dense = tf.keras.layers.Dense(
config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense"
)
@ -287,7 +287,7 @@ class TFBertSelfOutput(tf.keras.layers.Layer):
class TFBertAttention(tf.keras.layers.Layer):
def __init__(self, config, **kwargs):
super(TFBertAttention, self).__init__(**kwargs)
super().__init__(**kwargs)
self.self_attention = TFBertSelfAttention(config, name="self")
self.dense_output = TFBertSelfOutput(config, name="output")
@ -305,7 +305,7 @@ class TFBertAttention(tf.keras.layers.Layer):
class TFBertIntermediate(tf.keras.layers.Layer):
def __init__(self, config, **kwargs):
super(TFBertIntermediate, self).__init__(**kwargs)
super().__init__(**kwargs)
self.dense = tf.keras.layers.Dense(
config.intermediate_size, kernel_initializer=get_initializer(config.initializer_range), name="dense"
)
@ -322,7 +322,7 @@ class TFBertIntermediate(tf.keras.layers.Layer):
class TFBertOutput(tf.keras.layers.Layer):
def __init__(self, config, **kwargs):
super(TFBertOutput, self).__init__(**kwargs)
super().__init__(**kwargs)
self.dense = tf.keras.layers.Dense(
config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense"
)
@ -340,7 +340,7 @@ class TFBertOutput(tf.keras.layers.Layer):
class TFBertLayer(tf.keras.layers.Layer):
def __init__(self, config, **kwargs):
super(TFBertLayer, self).__init__(**kwargs)
super().__init__(**kwargs)
self.attention = TFBertAttention(config, name="attention")
self.intermediate = TFBertIntermediate(config, name="intermediate")
self.bert_output = TFBertOutput(config, name="output")
@ -358,7 +358,7 @@ class TFBertLayer(tf.keras.layers.Layer):
class TFBertEncoder(tf.keras.layers.Layer):
def __init__(self, config, **kwargs):
super(TFBertEncoder, self).__init__(**kwargs)
super().__init__(**kwargs)
self.output_attentions = config.output_attentions
self.output_hidden_states = config.output_hidden_states
self.layer = [TFBertLayer(config, name="layer_._{}".format(i)) for i in range(config.num_hidden_layers)]
@ -392,7 +392,7 @@ class TFBertEncoder(tf.keras.layers.Layer):
class TFBertPooler(tf.keras.layers.Layer):
def __init__(self, config, **kwargs):
super(TFBertPooler, self).__init__(**kwargs)
super().__init__(**kwargs)
self.dense = tf.keras.layers.Dense(
config.hidden_size,
kernel_initializer=get_initializer(config.initializer_range),
@ -410,7 +410,7 @@ class TFBertPooler(tf.keras.layers.Layer):
class TFBertPredictionHeadTransform(tf.keras.layers.Layer):
def __init__(self, config, **kwargs):
super(TFBertPredictionHeadTransform, self).__init__(**kwargs)
super().__init__(**kwargs)
self.dense = tf.keras.layers.Dense(
config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense"
)
@ -429,7 +429,7 @@ class TFBertPredictionHeadTransform(tf.keras.layers.Layer):
class TFBertLMPredictionHead(tf.keras.layers.Layer):
def __init__(self, config, input_embeddings, **kwargs):
super(TFBertLMPredictionHead, self).__init__(**kwargs)
super().__init__(**kwargs)
self.vocab_size = config.vocab_size
self.transform = TFBertPredictionHeadTransform(config, name="transform")
@ -439,7 +439,7 @@ class TFBertLMPredictionHead(tf.keras.layers.Layer):
def build(self, input_shape):
self.bias = self.add_weight(shape=(self.vocab_size,), initializer="zeros", trainable=True, name="bias")
super(TFBertLMPredictionHead, self).build(input_shape)
super().build(input_shape)
def call(self, hidden_states):
hidden_states = self.transform(hidden_states)
@ -450,7 +450,7 @@ class TFBertLMPredictionHead(tf.keras.layers.Layer):
class TFBertMLMHead(tf.keras.layers.Layer):
def __init__(self, config, input_embeddings, **kwargs):
super(TFBertMLMHead, self).__init__(**kwargs)
super().__init__(**kwargs)
self.predictions = TFBertLMPredictionHead(config, input_embeddings, name="predictions")
def call(self, sequence_output):
@ -460,7 +460,7 @@ class TFBertMLMHead(tf.keras.layers.Layer):
class TFBertNSPHead(tf.keras.layers.Layer):
def __init__(self, config, **kwargs):
super(TFBertNSPHead, self).__init__(**kwargs)
super().__init__(**kwargs)
self.seq_relationship = tf.keras.layers.Dense(
2, kernel_initializer=get_initializer(config.initializer_range), name="seq_relationship"
)
@ -472,7 +472,7 @@ class TFBertNSPHead(tf.keras.layers.Layer):
class TFBertMainLayer(tf.keras.layers.Layer):
def __init__(self, config, **kwargs):
super(TFBertMainLayer, self).__init__(**kwargs)
super().__init__(**kwargs)
self.num_hidden_layers = config.num_hidden_layers
self.embeddings = TFBertEmbeddings(config, name="embeddings")
@ -707,7 +707,7 @@ class TFBertModel(TFBertPreTrainedModel):
"""
def __init__(self, config, *inputs, **kwargs):
super(TFBertModel, self).__init__(config, *inputs, **kwargs)
super().__init__(config, *inputs, **kwargs)
self.bert = TFBertMainLayer(config, name="bert")
def call(self, inputs, **kwargs):
@ -750,7 +750,7 @@ class TFBertForPreTraining(TFBertPreTrainedModel):
"""
def __init__(self, config, *inputs, **kwargs):
super(TFBertForPreTraining, self).__init__(config, *inputs, **kwargs)
super().__init__(config, *inputs, **kwargs)
self.bert = TFBertMainLayer(config, name="bert")
self.nsp = TFBertNSPHead(config, name="nsp___cls")
@ -803,7 +803,7 @@ class TFBertForMaskedLM(TFBertPreTrainedModel):
"""
def __init__(self, config, *inputs, **kwargs):
super(TFBertForMaskedLM, self).__init__(config, *inputs, **kwargs)
super().__init__(config, *inputs, **kwargs)
self.bert = TFBertMainLayer(config, name="bert")
self.mlm = TFBertMLMHead(config, self.bert.embeddings, name="mlm___cls")
@ -854,7 +854,7 @@ class TFBertForNextSentencePrediction(TFBertPreTrainedModel):
"""
def __init__(self, config, *inputs, **kwargs):
super(TFBertForNextSentencePrediction, self).__init__(config, *inputs, **kwargs)
super().__init__(config, *inputs, **kwargs)
self.bert = TFBertMainLayer(config, name="bert")
self.nsp = TFBertNSPHead(config, name="nsp___cls")
@ -903,7 +903,7 @@ class TFBertForSequenceClassification(TFBertPreTrainedModel):
"""
def __init__(self, config, *inputs, **kwargs):
super(TFBertForSequenceClassification, self).__init__(config, *inputs, **kwargs)
super().__init__(config, *inputs, **kwargs)
self.num_labels = config.num_labels
self.bert = TFBertMainLayer(config, name="bert")
@ -960,7 +960,7 @@ class TFBertForMultipleChoice(TFBertPreTrainedModel):
"""
def __init__(self, config, *inputs, **kwargs):
super(TFBertForMultipleChoice, self).__init__(config, *inputs, **kwargs)
super().__init__(config, *inputs, **kwargs)
self.bert = TFBertMainLayer(config, name="bert")
self.dropout = tf.keras.layers.Dropout(config.hidden_dropout_prob)
@ -1064,7 +1064,7 @@ class TFBertForTokenClassification(TFBertPreTrainedModel):
"""
def __init__(self, config, *inputs, **kwargs):
super(TFBertForTokenClassification, self).__init__(config, *inputs, **kwargs)
super().__init__(config, *inputs, **kwargs)
self.num_labels = config.num_labels
self.bert = TFBertMainLayer(config, name="bert")
@ -1121,7 +1121,7 @@ class TFBertForQuestionAnswering(TFBertPreTrainedModel):
"""
def __init__(self, config, *inputs, **kwargs):
super(TFBertForQuestionAnswering, self).__init__(config, *inputs, **kwargs)
super().__init__(config, *inputs, **kwargs)
self.num_labels = config.num_labels
self.bert = TFBertMainLayer(config, name="bert")

View File

@ -75,7 +75,7 @@ def scaled_dot_product_attention(q, k, v, mask, attention_mask=None, head_mask=N
class TFMultiHeadAttention(tf.keras.layers.Layer):
def __init__(self, d_model_size, num_heads, output_attentions=False, **kwargs):
super(TFMultiHeadAttention, self).__init__(**kwargs)
super().__init__(**kwargs)
self.output_attentions = output_attentions
self.num_heads = num_heads
self.d_model_size = d_model_size
@ -132,7 +132,7 @@ class TFEncoderLayer(tf.keras.layers.Layer):
def __init__(
self, d_model_size, num_heads, dff, rate=0.1, layer_norm_epsilon=1e-6, output_attentions=False, **kwargs
):
super(TFEncoderLayer, self).__init__(**kwargs)
super().__init__(**kwargs)
self.multi_head_attention = TFMultiHeadAttention(
d_model_size, num_heads, output_attentions, name="multi_head_attention"
@ -166,7 +166,7 @@ class TFEncoderLayer(tf.keras.layers.Layer):
class TFCTRLMainLayer(tf.keras.layers.Layer):
def __init__(self, config, **kwargs):
super(TFCTRLMainLayer, self).__init__(**kwargs)
super().__init__(**kwargs)
self.output_hidden_states = config.output_hidden_states
self.output_attentions = config.output_attentions
self.output_past = config.output_past
@ -443,7 +443,7 @@ class TFCTRLModel(TFCTRLPreTrainedModel):
"""
def __init__(self, config, *inputs, **kwargs):
super(TFCTRLModel, self).__init__(config, *inputs, **kwargs)
super().__init__(config, *inputs, **kwargs)
self.transformer = TFCTRLMainLayer(config, name="transformer")
def call(self, inputs, **kwargs):
@ -453,7 +453,7 @@ class TFCTRLModel(TFCTRLPreTrainedModel):
class TFCTRLLMHead(tf.keras.layers.Layer):
def __init__(self, config, input_embeddings, **kwargs):
super(TFCTRLLMHead, self).__init__(**kwargs)
super().__init__(**kwargs)
self.vocab_size = config.vocab_size
# The output weights are the same as the input embeddings, but there is
@ -462,7 +462,7 @@ class TFCTRLLMHead(tf.keras.layers.Layer):
def build(self, input_shape):
self.bias = self.add_weight(shape=(self.vocab_size,), initializer="zeros", trainable=True, name="bias")
super(TFCTRLLMHead, self).build(input_shape)
super().build(input_shape)
def call(self, hidden_states):
hidden_states = self.input_embeddings(hidden_states, mode="linear")
@ -508,7 +508,7 @@ class TFCTRLLMHeadModel(TFCTRLPreTrainedModel):
"""
def __init__(self, config, *inputs, **kwargs):
super(TFCTRLLMHeadModel, self).__init__(config, *inputs, **kwargs)
super().__init__(config, *inputs, **kwargs)
self.transformer = TFCTRLMainLayer(config, name="transformer")
self.lm_head = TFCTRLLMHead(config, self.transformer.w, name="lm_head")

View File

@ -65,7 +65,7 @@ def gelu_new(x):
class TFEmbeddings(tf.keras.layers.Layer):
def __init__(self, config, **kwargs):
super(TFEmbeddings, self).__init__(**kwargs)
super().__init__(**kwargs)
self.vocab_size = config.vocab_size
self.dim = config.dim
self.initializer_range = config.initializer_range
@ -92,7 +92,7 @@ class TFEmbeddings(tf.keras.layers.Layer):
self.word_embeddings = self.add_weight(
"weight", shape=[self.vocab_size, self.dim], initializer=get_initializer(self.initializer_range)
)
super(TFEmbeddings, self).build(input_shape)
super().build(input_shape)
def call(self, inputs, inputs_embeds=None, mode="embedding", training=False):
"""Get token embeddings of inputs.
@ -169,7 +169,7 @@ class TFEmbeddings(tf.keras.layers.Layer):
class TFMultiHeadSelfAttention(tf.keras.layers.Layer):
def __init__(self, config, **kwargs):
super(TFMultiHeadSelfAttention, self).__init__(**kwargs)
super().__init__(**kwargs)
self.n_heads = config.n_heads
self.dim = config.dim
@ -259,7 +259,7 @@ class TFMultiHeadSelfAttention(tf.keras.layers.Layer):
class TFFFN(tf.keras.layers.Layer):
def __init__(self, config, **kwargs):
super(TFFFN, self).__init__(**kwargs)
super().__init__(**kwargs)
self.dropout = tf.keras.layers.Dropout(config.dropout)
self.lin1 = tf.keras.layers.Dense(
config.hidden_dim, kernel_initializer=get_initializer(config.initializer_range), name="lin1"
@ -284,7 +284,7 @@ class TFFFN(tf.keras.layers.Layer):
class TFTransformerBlock(tf.keras.layers.Layer):
def __init__(self, config, **kwargs):
super(TFTransformerBlock, self).__init__(**kwargs)
super().__init__(**kwargs)
self.n_heads = config.n_heads
self.dim = config.dim
@ -338,7 +338,7 @@ class TFTransformerBlock(tf.keras.layers.Layer):
class TFTransformer(tf.keras.layers.Layer):
def __init__(self, config, **kwargs):
super(TFTransformer, self).__init__(**kwargs)
super().__init__(**kwargs)
self.n_layers = config.n_layers
self.output_attentions = config.output_attentions
self.output_hidden_states = config.output_hidden_states
@ -399,7 +399,7 @@ class TFTransformer(tf.keras.layers.Layer):
class TFDistilBertMainLayer(tf.keras.layers.Layer):
def __init__(self, config, **kwargs):
super(TFDistilBertMainLayer, self).__init__(**kwargs)
super().__init__(**kwargs)
self.num_hidden_layers = config.num_hidden_layers
self.embeddings = TFEmbeddings(config, name="embeddings") # Embeddings
@ -569,7 +569,7 @@ class TFDistilBertModel(TFDistilBertPreTrainedModel):
"""
def __init__(self, config, *inputs, **kwargs):
super(TFDistilBertModel, self).__init__(config, *inputs, **kwargs)
super().__init__(config, *inputs, **kwargs)
self.distilbert = TFDistilBertMainLayer(config, name="distilbert") # Embeddings
def call(self, inputs, **kwargs):
@ -579,7 +579,7 @@ class TFDistilBertModel(TFDistilBertPreTrainedModel):
class TFDistilBertLMHead(tf.keras.layers.Layer):
def __init__(self, config, input_embeddings, **kwargs):
super(TFDistilBertLMHead, self).__init__(**kwargs)
super().__init__(**kwargs)
self.vocab_size = config.vocab_size
# The output weights are the same as the input embeddings, but there is
@ -588,7 +588,7 @@ class TFDistilBertLMHead(tf.keras.layers.Layer):
def build(self, input_shape):
self.bias = self.add_weight(shape=(self.vocab_size,), initializer="zeros", trainable=True, name="bias")
super(TFDistilBertLMHead, self).build(input_shape)
super().build(input_shape)
def call(self, hidden_states):
hidden_states = self.input_embeddings(hidden_states, mode="linear")
@ -628,7 +628,7 @@ class TFDistilBertForMaskedLM(TFDistilBertPreTrainedModel):
"""
def __init__(self, config, *inputs, **kwargs):
super(TFDistilBertForMaskedLM, self).__init__(config, *inputs, **kwargs)
super().__init__(config, *inputs, **kwargs)
self.output_attentions = config.output_attentions
self.output_hidden_states = config.output_hidden_states
self.vocab_size = config.vocab_size
@ -690,7 +690,7 @@ class TFDistilBertForSequenceClassification(TFDistilBertPreTrainedModel):
"""
def __init__(self, config, *inputs, **kwargs):
super(TFDistilBertForSequenceClassification, self).__init__(config, *inputs, **kwargs)
super().__init__(config, *inputs, **kwargs)
self.num_labels = config.num_labels
self.distilbert = TFDistilBertMainLayer(config, name="distilbert")
@ -747,7 +747,7 @@ class TFDistilBertForTokenClassification(TFDistilBertPreTrainedModel):
"""
def __init__(self, config, *inputs, **kwargs):
super(TFDistilBertForTokenClassification, self).__init__(config, *inputs, **kwargs)
super().__init__(config, *inputs, **kwargs)
self.num_labels = config.num_labels
self.distilbert = TFDistilBertMainLayer(config, name="distilbert")
@ -804,7 +804,7 @@ class TFDistilBertForQuestionAnswering(TFDistilBertPreTrainedModel):
"""
def __init__(self, config, *inputs, **kwargs):
super(TFDistilBertForQuestionAnswering, self).__init__(config, *inputs, **kwargs)
super().__init__(config, *inputs, **kwargs)
self.distilbert = TFDistilBertMainLayer(config, name="distilbert")
self.qa_outputs = tf.keras.layers.Dense(

View File

@ -58,7 +58,7 @@ def gelu(x):
class TFAttention(tf.keras.layers.Layer):
def __init__(self, nx, n_ctx, config, scale=False, **kwargs):
super(TFAttention, self).__init__(**kwargs)
super().__init__(**kwargs)
self.output_attentions = config.output_attentions
n_state = nx # in Attention: n_state=768 (nx=n_embd)
@ -157,7 +157,7 @@ class TFAttention(tf.keras.layers.Layer):
class TFMLP(tf.keras.layers.Layer):
def __init__(self, n_state, config, **kwargs):
super(TFMLP, self).__init__(**kwargs)
super().__init__(**kwargs)
nx = config.n_embd
self.c_fc = TFConv1D(n_state, nx, initializer_range=config.initializer_range, name="c_fc")
self.c_proj = TFConv1D(nx, n_state, initializer_range=config.initializer_range, name="c_proj")
@ -173,7 +173,7 @@ class TFMLP(tf.keras.layers.Layer):
class TFBlock(tf.keras.layers.Layer):
def __init__(self, n_ctx, config, scale=False, **kwargs):
super(TFBlock, self).__init__(**kwargs)
super().__init__(**kwargs)
nx = config.n_embd
self.ln_1 = tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_epsilon, name="ln_1")
self.attn = TFAttention(nx, n_ctx, config, scale, name="attn")
@ -198,7 +198,7 @@ class TFBlock(tf.keras.layers.Layer):
class TFGPT2MainLayer(tf.keras.layers.Layer):
def __init__(self, config, *inputs, **kwargs):
super(TFGPT2MainLayer, self).__init__(config, *inputs, **kwargs)
super().__init__(config, *inputs, **kwargs)
self.output_hidden_states = config.output_hidden_states
self.output_attentions = config.output_attentions
self.num_hidden_layers = config.n_layer
@ -475,7 +475,7 @@ class TFGPT2Model(TFGPT2PreTrainedModel):
"""
def __init__(self, config, *inputs, **kwargs):
super(TFGPT2Model, self).__init__(config, *inputs, **kwargs)
super().__init__(config, *inputs, **kwargs)
self.transformer = TFGPT2MainLayer(config, name="transformer")
def call(self, inputs, **kwargs):
@ -521,7 +521,7 @@ class TFGPT2LMHeadModel(TFGPT2PreTrainedModel):
"""
def __init__(self, config, *inputs, **kwargs):
super(TFGPT2LMHeadModel, self).__init__(config, *inputs, **kwargs)
super().__init__(config, *inputs, **kwargs)
self.transformer = TFGPT2MainLayer(config, name="transformer")
def get_output_embeddings(self):
@ -598,7 +598,7 @@ class TFGPT2DoubleHeadsModel(TFGPT2PreTrainedModel):
"""
def __init__(self, config, *inputs, **kwargs):
super(TFGPT2DoubleHeadsModel, self).__init__(config, *inputs, **kwargs)
super().__init__(config, *inputs, **kwargs)
config.num_labels = 1
self.transformer = TFGPT2MainLayer(config, name="transformer")
self.multiple_choice_head = TFSequenceSummary(

View File

@ -66,7 +66,7 @@ ACT_FNS = {
class TFAttention(tf.keras.layers.Layer):
def __init__(self, nx, n_ctx, config, scale=False, **kwargs):
super(TFAttention, self).__init__(**kwargs)
super().__init__(**kwargs)
self.output_attentions = config.output_attentions
n_state = nx # in Attention: n_state=768 (nx=n_embd)
@ -160,7 +160,7 @@ class TFAttention(tf.keras.layers.Layer):
class TFMLP(tf.keras.layers.Layer):
def __init__(self, n_state, config, **kwargs):
super(TFMLP, self).__init__(**kwargs)
super().__init__(**kwargs)
nx = config.n_embd
self.c_fc = TFConv1D(n_state, nx, initializer_range=config.initializer_range, name="c_fc")
self.c_proj = TFConv1D(nx, n_state, initializer_range=config.initializer_range, name="c_proj")
@ -176,7 +176,7 @@ class TFMLP(tf.keras.layers.Layer):
class TFBlock(tf.keras.layers.Layer):
def __init__(self, n_ctx, config, scale=False, **kwargs):
super(TFBlock, self).__init__(**kwargs)
super().__init__(**kwargs)
nx = config.n_embd
self.attn = TFAttention(nx, n_ctx, config, scale, name="attn")
self.ln_1 = tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_epsilon, name="ln_1")
@ -199,7 +199,7 @@ class TFBlock(tf.keras.layers.Layer):
class TFOpenAIGPTMainLayer(tf.keras.layers.Layer):
def __init__(self, config, *inputs, **kwargs):
super(TFOpenAIGPTMainLayer, self).__init__(config, *inputs, **kwargs)
super().__init__(config, *inputs, **kwargs)
self.output_hidden_states = config.output_hidden_states
self.output_attentions = config.output_attentions
self.num_hidden_layers = config.n_layer
@ -453,7 +453,7 @@ class TFOpenAIGPTModel(TFOpenAIGPTPreTrainedModel):
"""
def __init__(self, config, *inputs, **kwargs):
super(TFOpenAIGPTModel, self).__init__(config, *inputs, **kwargs)
super().__init__(config, *inputs, **kwargs)
self.transformer = TFOpenAIGPTMainLayer(config, name="transformer")
def call(self, inputs, **kwargs):
@ -494,7 +494,7 @@ class TFOpenAIGPTLMHeadModel(TFOpenAIGPTPreTrainedModel):
"""
def __init__(self, config, *inputs, **kwargs):
super(TFOpenAIGPTLMHeadModel, self).__init__(config, *inputs, **kwargs)
super().__init__(config, *inputs, **kwargs)
self.transformer = TFOpenAIGPTMainLayer(config, name="transformer")
def get_output_embeddings(self):
@ -563,7 +563,7 @@ class TFOpenAIGPTDoubleHeadsModel(TFOpenAIGPTPreTrainedModel):
"""
def __init__(self, config, *inputs, **kwargs):
super(TFOpenAIGPTDoubleHeadsModel, self).__init__(config, *inputs, **kwargs)
super().__init__(config, *inputs, **kwargs)
config.num_labels = 1
self.transformer = TFOpenAIGPTMainLayer(config, name="transformer")
self.multiple_choice_head = TFSequenceSummary(

View File

@ -42,7 +42,7 @@ class TFRobertaEmbeddings(TFBertEmbeddings):
"""
def __init__(self, config, **kwargs):
super(TFRobertaEmbeddings, self).__init__(config, **kwargs)
super().__init__(config, **kwargs)
self.padding_idx = 1
def create_position_ids_from_input_ids(self, x):
@ -78,7 +78,7 @@ class TFRobertaEmbeddings(TFBertEmbeddings):
else:
position_ids = self.create_position_ids_from_inputs_embeds(inputs_embeds)
return super(TFRobertaEmbeddings, self)._embedding(
return super()._embedding(
[input_ids, position_ids, token_type_ids, inputs_embeds], training=training
)
@ -89,7 +89,7 @@ class TFRobertaMainLayer(TFBertMainLayer):
"""
def __init__(self, config, **kwargs):
super(TFRobertaMainLayer, self).__init__(config, **kwargs)
super().__init__(config, **kwargs)
self.embeddings = TFRobertaEmbeddings(config, name="embeddings")
def get_input_embeddings(self):
@ -234,7 +234,7 @@ class TFRobertaModel(TFRobertaPreTrainedModel):
"""
def __init__(self, config, *inputs, **kwargs):
super(TFRobertaModel, self).__init__(config, *inputs, **kwargs)
super().__init__(config, *inputs, **kwargs)
self.roberta = TFRobertaMainLayer(config, name="roberta")
def call(self, inputs, **kwargs):
@ -246,7 +246,7 @@ class TFRobertaLMHead(tf.keras.layers.Layer):
"""Roberta Head for masked language modeling."""
def __init__(self, config, input_embeddings, **kwargs):
super(TFRobertaLMHead, self).__init__(**kwargs)
super().__init__(**kwargs)
self.vocab_size = config.vocab_size
self.dense = tf.keras.layers.Dense(
config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense"
@ -260,7 +260,7 @@ class TFRobertaLMHead(tf.keras.layers.Layer):
def build(self, input_shape):
self.bias = self.add_weight(shape=(self.vocab_size,), initializer="zeros", trainable=True, name="bias")
super(TFRobertaLMHead, self).build(input_shape)
super().build(input_shape)
def call(self, features):
x = self.dense(features)
@ -305,7 +305,7 @@ class TFRobertaForMaskedLM(TFRobertaPreTrainedModel):
"""
def __init__(self, config, *inputs, **kwargs):
super(TFRobertaForMaskedLM, self).__init__(config, *inputs, **kwargs)
super().__init__(config, *inputs, **kwargs)
self.roberta = TFRobertaMainLayer(config, name="roberta")
self.lm_head = TFRobertaLMHead(config, self.roberta.embeddings, name="lm_head")
@ -328,7 +328,7 @@ class TFRobertaClassificationHead(tf.keras.layers.Layer):
"""Head for sentence-level classification tasks."""
def __init__(self, config, **kwargs):
super(TFRobertaClassificationHead, self).__init__(config, **kwargs)
super().__init__(config, **kwargs)
self.dense = tf.keras.layers.Dense(
config.hidden_size,
kernel_initializer=get_initializer(config.initializer_range),
@ -383,7 +383,7 @@ class TFRobertaForSequenceClassification(TFRobertaPreTrainedModel):
"""
def __init__(self, config, *inputs, **kwargs):
super(TFRobertaForSequenceClassification, self).__init__(config, *inputs, **kwargs)
super().__init__(config, *inputs, **kwargs)
self.num_labels = config.num_labels
self.roberta = TFRobertaMainLayer(config, name="roberta")
@ -433,7 +433,7 @@ class TFRobertaForTokenClassification(TFRobertaPreTrainedModel):
"""
def __init__(self, config, *inputs, **kwargs):
super(TFRobertaForTokenClassification, self).__init__(config, *inputs, **kwargs)
super().__init__(config, *inputs, **kwargs)
self.num_labels = config.num_labels
self.roberta = TFRobertaMainLayer(config, name="roberta")

View File

@ -50,13 +50,13 @@ class TFT5LayerNorm(tf.keras.layers.Layer):
""" Construct a layernorm module in the T5 style
No bias and no substraction of mean.
"""
super(TFT5LayerNorm, self).__init__(**kwargs)
super().__init__(**kwargs)
self.variance_epsilon = epsilon
def build(self, input_shape):
"""Build shared word embedding layer """
self.weight = self.add_weight("weight", shape=(input_shape[-1],), initializer="ones")
super(TFT5LayerNorm, self).build(input_shape)
super().build(input_shape)
def call(self, x):
variance = tf.math.reduce_mean(tf.math.square(x), axis=-1, keepdims=True)
@ -66,7 +66,7 @@ class TFT5LayerNorm(tf.keras.layers.Layer):
class TFT5DenseReluDense(tf.keras.layers.Layer):
def __init__(self, config, **kwargs):
super(TFT5DenseReluDense, self).__init__(**kwargs)
super().__init__(**kwargs)
self.wi = tf.keras.layers.Dense(config.d_ff, use_bias=False, name="wi")
self.wo = tf.keras.layers.Dense(config.d_model, use_bias=False, name="wo")
self.dropout = tf.keras.layers.Dropout(config.dropout_rate)
@ -82,7 +82,7 @@ class TFT5DenseReluDense(tf.keras.layers.Layer):
class TFT5LayerFF(tf.keras.layers.Layer):
def __init__(self, config, **kwargs):
super(TFT5LayerFF, self).__init__(**kwargs)
super().__init__(**kwargs)
self.DenseReluDense = TFT5DenseReluDense(config, name="DenseReluDense")
self.layer_norm = TFT5LayerNorm(epsilon=config.layer_norm_epsilon, name="layer_norm")
self.dropout = tf.keras.layers.Dropout(config.dropout_rate)
@ -98,7 +98,7 @@ class TFT5Attention(tf.keras.layers.Layer):
NEW_ID = itertools.count()
def __init__(self, config, has_relative_attention_bias=False, **kwargs):
super(TFT5Attention, self).__init__(**kwargs)
super().__init__(**kwargs)
self.layer_id = next(TFT5Attention.NEW_ID)
self.is_decoder = config.is_decoder
self.has_relative_attention_bias = has_relative_attention_bias
@ -259,7 +259,7 @@ class TFT5Attention(tf.keras.layers.Layer):
class TFT5LayerSelfAttention(tf.keras.layers.Layer):
def __init__(self, config, has_relative_attention_bias=False, **kwargs):
super(TFT5LayerSelfAttention, self).__init__(**kwargs)
super().__init__(**kwargs)
self.SelfAttention = TFT5Attention(
config, has_relative_attention_bias=has_relative_attention_bias, name="SelfAttention"
)
@ -279,7 +279,7 @@ class TFT5LayerSelfAttention(tf.keras.layers.Layer):
class TFT5LayerCrossAttention(tf.keras.layers.Layer):
def __init__(self, config, has_relative_attention_bias=False, **kwargs):
super(TFT5LayerCrossAttention, self).__init__(**kwargs)
super().__init__(**kwargs)
self.EncDecAttention = TFT5Attention(
config, has_relative_attention_bias=has_relative_attention_bias, name="EncDecAttention"
)
@ -299,7 +299,7 @@ class TFT5LayerCrossAttention(tf.keras.layers.Layer):
class TFT5Block(tf.keras.layers.Layer):
def __init__(self, config, has_relative_attention_bias=False, **kwargs):
super(TFT5Block, self).__init__(**kwargs)
super().__init__(**kwargs)
self.is_decoder = config.is_decoder
self.layer = []
self.layer.append(
@ -361,7 +361,7 @@ class TFT5Block(tf.keras.layers.Layer):
####################################################
class TFT5MainLayer(tf.keras.layers.Layer):
def __init__(self, config, **kwargs):
super(TFT5MainLayer, self).__init__(**kwargs)
super().__init__(**kwargs)
self.output_attentions = config.output_attentions
self.output_hidden_states = config.output_hidden_states
self.is_decoder = config.is_decoder
@ -633,7 +633,7 @@ class TFT5Model(TFT5PreTrainedModel):
"""
def __init__(self, config, *inputs, **kwargs):
super(TFT5Model, self).__init__(config, *inputs, **kwargs)
super().__init__(config, *inputs, **kwargs)
self.shared = TFSharedEmbeddings(config.vocab_size, config.d_model, name="shared")
encoder_config = copy.deepcopy(config)
@ -724,7 +724,7 @@ class TFT5WithLMHeadModel(TFT5PreTrainedModel):
"""
def __init__(self, config, *inputs, **kwargs):
super(TFT5WithLMHeadModel, self).__init__(config, *inputs, **kwargs)
super().__init__(config, *inputs, **kwargs)
self.model_dim = config.d_model
self.shared = TFSharedEmbeddings(config.vocab_size, config.d_model, name="shared")

View File

@ -36,7 +36,7 @@ TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_MAP = {
class TFPositionalEmbedding(tf.keras.layers.Layer):
def __init__(self, demb, **kwargs):
super(TFPositionalEmbedding, self).__init__(**kwargs)
super().__init__(**kwargs)
self.inv_freq = 1 / (10000 ** (tf.range(0, demb, 2.0) / demb))
@ -52,7 +52,7 @@ class TFPositionalEmbedding(tf.keras.layers.Layer):
class TFPositionwiseFF(tf.keras.layers.Layer):
def __init__(self, d_model, d_inner, dropout, pre_lnorm=False, layer_norm_epsilon=1e-5, init_std=0.02, **kwargs):
super(TFPositionwiseFF, self).__init__(**kwargs)
super().__init__(**kwargs)
self.d_model = d_model
self.d_inner = d_inner
@ -112,7 +112,7 @@ class TFRelPartialLearnableMultiHeadAttn(tf.keras.layers.Layer):
init_std=0.02,
**kwargs
):
super(TFRelPartialLearnableMultiHeadAttn, self).__init__(**kwargs)
super().__init__(**kwargs)
self.output_attentions = output_attentions
self.n_head = n_head
@ -155,7 +155,7 @@ class TFRelPartialLearnableMultiHeadAttn(tf.keras.layers.Layer):
self.r_w_bias = self.add_weight(
shape=(self.n_head, self.d_head), initializer="zeros", trainable=True, name="r_w_bias"
)
super(TFRelPartialLearnableMultiHeadAttn, self).build(input_shape)
super().build(input_shape)
def _rel_shift(self, x):
x_size = shape_list(x)
@ -267,7 +267,7 @@ class TFRelPartialLearnableDecoderLayer(tf.keras.layers.Layer):
init_std=0.02,
**kwargs
):
super(TFRelPartialLearnableDecoderLayer, self).__init__(**kwargs)
super().__init__(**kwargs)
self.dec_attn = TFRelPartialLearnableMultiHeadAttn(
n_head,
@ -308,7 +308,7 @@ class TFRelPartialLearnableDecoderLayer(tf.keras.layers.Layer):
class TFAdaptiveEmbedding(tf.keras.layers.Layer):
def __init__(self, n_token, d_embed, d_proj, cutoffs, div_val=1, init_std=0.02, sample_softmax=False, **kwargs):
super(TFAdaptiveEmbedding, self).__init__(**kwargs)
super().__init__(**kwargs)
self.n_token = n_token
self.d_embed = d_embed
@ -350,7 +350,7 @@ class TFAdaptiveEmbedding(tf.keras.layers.Layer):
name="emb_projs_._{}".format(i),
)
)
super(TFAdaptiveEmbedding, self).build(input_shape)
super().build(input_shape)
def call(self, inp):
if self.div_val == 1:
@ -380,7 +380,7 @@ class TFAdaptiveEmbedding(tf.keras.layers.Layer):
class TFTransfoXLMainLayer(tf.keras.layers.Layer):
def __init__(self, config, **kwargs):
super(TFTransfoXLMainLayer, self).__init__(**kwargs)
super().__init__(**kwargs)
self.output_attentions = config.output_attentions
self.output_hidden_states = config.output_hidden_states
@ -455,7 +455,7 @@ class TFTransfoXLMainLayer(tf.keras.layers.Layer):
self.r_r_bias = self.add_weight(
shape=(self.n_head, self.d_head), initializer="zeros", trainable=True, name="r_r_bias"
)
super(TFTransfoXLMainLayer, self).build(input_shape)
super().build(input_shape)
def get_input_embeddings(self):
return self.word_emb
@ -728,7 +728,7 @@ class TFTransfoXLModel(TFTransfoXLPreTrainedModel):
"""
def __init__(self, config, *inputs, **kwargs):
super(TFTransfoXLModel, self).__init__(config, *inputs, **kwargs)
super().__init__(config, *inputs, **kwargs)
self.transformer = TFTransfoXLMainLayer(config, name="transformer")
def call(self, inputs, **kwargs):
@ -774,7 +774,7 @@ class TFTransfoXLLMHeadModel(TFTransfoXLPreTrainedModel):
"""
def __init__(self, config):
super(TFTransfoXLLMHeadModel, self).__init__(config)
super().__init__(config)
self.transformer = TFTransfoXLMainLayer(config, name="transformer")
self.sample_softmax = config.sample_softmax
# use sampled softmax

View File

@ -24,7 +24,7 @@ from .modeling_tf_utils import shape_list
class TFAdaptiveSoftmaxMask(tf.keras.layers.Layer):
def __init__(self, vocab_size, d_embed, d_proj, cutoffs, div_val=1, keep_order=False, **kwargs):
super(TFAdaptiveSoftmaxMask, self).__init__(**kwargs)
super().__init__(**kwargs)
self.vocab_size = vocab_size
self.d_embed = d_embed
@ -98,7 +98,7 @@ class TFAdaptiveSoftmaxMask(tf.keras.layers.Layer):
name="out_layers_._{}_._bias".format(i),
)
self.out_layers.append((weight, bias))
super(TFAdaptiveSoftmaxMask, self).build(input_shape)
super().build(input_shape)
@staticmethod
def _logit(x, W, b, proj=None):

View File

@ -78,7 +78,7 @@ class TFPreTrainedModel(tf.keras.Model, TFModelUtilsMixin):
return {"input_ids": tf.constant(DUMMY_INPUTS)}
def __init__(self, config, *inputs, **kwargs):
super(TFPreTrainedModel, self).__init__(*inputs, **kwargs)
super().__init__(*inputs, **kwargs)
if not isinstance(config, PretrainedConfig):
raise ValueError(
"Parameter config in `{}(config)` should be an instance of class `PretrainedConfig`. "
@ -385,7 +385,7 @@ class TFConv1D(tf.keras.layers.Layer):
""" TFConv1D layer as defined by Radford et al. for OpenAI GPT (and also used in GPT-2)
Basically works like a Linear layer but the weights are transposed
"""
super(TFConv1D, self).__init__(**kwargs)
super().__init__(**kwargs)
self.nf = nf
self.nx = nx
self.initializer_range = initializer_range
@ -412,7 +412,7 @@ class TFSharedEmbeddings(tf.keras.layers.Layer):
"""
def __init__(self, vocab_size, hidden_size, initializer_range=None, **kwargs):
super(TFSharedEmbeddings, self).__init__(**kwargs)
super().__init__(**kwargs)
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.initializer_range = hidden_size ** -0.5 if initializer_range is None else initializer_range
@ -425,7 +425,7 @@ class TFSharedEmbeddings(tf.keras.layers.Layer):
self.weight = self.add_weight(
"weight", shape=[self.vocab_size, self.hidden_size], initializer=get_initializer(self.initializer_range)
)
super(TFSharedEmbeddings, self).build(input_shape)
super().build(input_shape)
def call(self, inputs, mode="embedding"):
"""Get token embeddings of inputs.
@ -485,7 +485,7 @@ class TFSequenceSummary(tf.keras.layers.Layer):
"""
def __init__(self, config, initializer_range=0.02, **kwargs):
super(TFSequenceSummary, self).__init__(**kwargs)
super().__init__(**kwargs)
self.summary_type = config.summary_type if hasattr(config, "summary_use_proj") else "last"
if self.summary_type == "attn":

View File

@ -97,7 +97,7 @@ class TFMultiHeadAttention(tf.keras.layers.Layer):
NEW_ID = itertools.count()
def __init__(self, n_heads, dim, config, **kwargs):
super(TFMultiHeadAttention, self).__init__(**kwargs)
super().__init__(**kwargs)
self.layer_id = next(TFMultiHeadAttention.NEW_ID)
self.output_attentions = config.output_attentions
self.dim = dim
@ -182,7 +182,7 @@ class TFMultiHeadAttention(tf.keras.layers.Layer):
class TFTransformerFFN(tf.keras.layers.Layer):
def __init__(self, in_dim, dim_hidden, out_dim, config, **kwargs):
super(TFTransformerFFN, self).__init__(**kwargs)
super().__init__(**kwargs)
self.lin1 = tf.keras.layers.Dense(dim_hidden, kernel_initializer=get_initializer(config.init_std), name="lin1")
self.lin2 = tf.keras.layers.Dense(out_dim, kernel_initializer=get_initializer(config.init_std), name="lin2")
self.act = tf.keras.layers.Activation(gelu) if config.gelu_activation else tf.keras.activations.relu
@ -198,7 +198,7 @@ class TFTransformerFFN(tf.keras.layers.Layer):
class TFXLMMainLayer(tf.keras.layers.Layer):
def __init__(self, config, **kwargs):
super(TFXLMMainLayer, self).__init__(**kwargs)
super().__init__(**kwargs)
self.output_attentions = config.output_attentions
self.output_hidden_states = config.output_hidden_states
@ -608,7 +608,7 @@ class TFXLMModel(TFXLMPreTrainedModel):
"""
def __init__(self, config, *inputs, **kwargs):
super(TFXLMModel, self).__init__(config, *inputs, **kwargs)
super().__init__(config, *inputs, **kwargs)
self.transformer = TFXLMMainLayer(config, name="transformer")
def call(self, inputs, **kwargs):
@ -622,7 +622,7 @@ class TFXLMPredLayer(tf.keras.layers.Layer):
"""
def __init__(self, config, input_embeddings, **kwargs):
super(TFXLMPredLayer, self).__init__(**kwargs)
super().__init__(**kwargs)
self.asm = config.asm
self.n_words = config.n_words
self.pad_index = config.pad_index
@ -641,7 +641,7 @@ class TFXLMPredLayer(tf.keras.layers.Layer):
def build(self, input_shape):
# The output weights are the same as the input embeddings, but there is an output-only bias for each token.
self.bias = self.add_weight(shape=(self.n_words,), initializer="zeros", trainable=True, name="bias")
super(TFXLMPredLayer, self).build(input_shape)
super().build(input_shape)
def call(self, hidden_states):
hidden_states = self.input_embeddings(hidden_states, mode="linear")
@ -682,7 +682,7 @@ class TFXLMWithLMHeadModel(TFXLMPreTrainedModel):
"""
def __init__(self, config, *inputs, **kwargs):
super(TFXLMWithLMHeadModel, self).__init__(config, *inputs, **kwargs)
super().__init__(config, *inputs, **kwargs)
self.transformer = TFXLMMainLayer(config, name="transformer")
self.pred_layer = TFXLMPredLayer(config, self.transformer.embeddings, name="pred_layer_._proj")
@ -733,7 +733,7 @@ class TFXLMForSequenceClassification(TFXLMPreTrainedModel):
"""
def __init__(self, config, *inputs, **kwargs):
super(TFXLMForSequenceClassification, self).__init__(config, *inputs, **kwargs)
super().__init__(config, *inputs, **kwargs)
self.num_labels = config.num_labels
self.transformer = TFXLMMainLayer(config, name="transformer")
@ -784,7 +784,7 @@ class TFXLMForQuestionAnsweringSimple(TFXLMPreTrainedModel):
"""
def __init__(self, config, *inputs, **kwargs):
super(TFXLMForQuestionAnsweringSimple, self).__init__(config, *inputs, **kwargs)
super().__init__(config, *inputs, **kwargs)
self.transformer = TFXLMMainLayer(config, name="transformer")
self.qa_outputs = tf.keras.layers.Dense(
config.num_labels, kernel_initializer=get_initializer(config.init_std), name="qa_outputs"

View File

@ -57,7 +57,7 @@ ACT2FN = {
class TFXLNetRelativeAttention(tf.keras.layers.Layer):
def __init__(self, config, **kwargs):
super(TFXLNetRelativeAttention, self).__init__(**kwargs)
super().__init__(**kwargs)
self.output_attentions = config.output_attentions
if config.d_model % config.n_head != 0:
@ -104,7 +104,7 @@ class TFXLNetRelativeAttention(tf.keras.layers.Layer):
self.seg_embed = self.add_weight(
shape=(2, self.n_head, self.d_head), initializer=initializer, trainable=True, name="seg_embed"
)
super(TFXLNetRelativeAttention, self).build(input_shape)
super().build(input_shape)
def prune_heads(self, heads):
raise NotImplementedError
@ -280,7 +280,7 @@ class TFXLNetRelativeAttention(tf.keras.layers.Layer):
class TFXLNetFeedForward(tf.keras.layers.Layer):
def __init__(self, config, **kwargs):
super(TFXLNetFeedForward, self).__init__(**kwargs)
super().__init__(**kwargs)
self.layer_norm = tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layer_norm")
self.layer_1 = tf.keras.layers.Dense(
config.d_inner, kernel_initializer=get_initializer(config.initializer_range), name="layer_1"
@ -307,7 +307,7 @@ class TFXLNetFeedForward(tf.keras.layers.Layer):
class TFXLNetLayer(tf.keras.layers.Layer):
def __init__(self, config, **kwargs):
super(TFXLNetLayer, self).__init__(**kwargs)
super().__init__(**kwargs)
self.rel_attn = TFXLNetRelativeAttention(config, name="rel_attn")
self.ff = TFXLNetFeedForward(config, name="ff")
self.dropout = tf.keras.layers.Dropout(config.dropout)
@ -326,7 +326,7 @@ class TFXLNetLayer(tf.keras.layers.Layer):
class TFXLNetLMHead(tf.keras.layers.Layer):
def __init__(self, config, input_embeddings, **kwargs):
super(TFXLNetLMHead, self).__init__(**kwargs)
super().__init__(**kwargs)
self.vocab_size = config.vocab_size
# The output weights are the same as the input embeddings, but there is
# an output-only bias for each token.
@ -334,7 +334,7 @@ class TFXLNetLMHead(tf.keras.layers.Layer):
def build(self, input_shape):
self.bias = self.add_weight(shape=(self.vocab_size,), initializer="zeros", trainable=True, name="bias")
super(TFXLNetLMHead, self).build(input_shape)
super().build(input_shape)
def call(self, hidden_states):
hidden_states = self.input_embeddings(hidden_states, mode="linear")
@ -344,7 +344,7 @@ class TFXLNetLMHead(tf.keras.layers.Layer):
class TFXLNetMainLayer(tf.keras.layers.Layer):
def __init__(self, config, **kwargs):
super(TFXLNetMainLayer, self).__init__(**kwargs)
super().__init__(**kwargs)
self.output_attentions = config.output_attentions
self.output_hidden_states = config.output_hidden_states
self.output_past = config.output_past
@ -832,7 +832,7 @@ class TFXLNetModel(TFXLNetPreTrainedModel):
"""
def __init__(self, config, *inputs, **kwargs):
super(TFXLNetModel, self).__init__(config, *inputs, **kwargs)
super().__init__(config, *inputs, **kwargs)
self.transformer = TFXLNetMainLayer(config, name="transformer")
def call(self, inputs, **kwargs):
@ -885,7 +885,7 @@ class TFXLNetLMHeadModel(TFXLNetPreTrainedModel):
"""
def __init__(self, config, *inputs, **kwargs):
super(TFXLNetLMHeadModel, self).__init__(config, *inputs, **kwargs)
super().__init__(config, *inputs, **kwargs)
self.transformer = TFXLNetMainLayer(config, name="transformer")
self.lm_loss = TFXLNetLMHead(config, self.transformer.word_embedding, name="lm_loss")
@ -940,7 +940,7 @@ class TFXLNetForSequenceClassification(TFXLNetPreTrainedModel):
"""
def __init__(self, config, *inputs, **kwargs):
super(TFXLNetForSequenceClassification, self).__init__(config, *inputs, **kwargs)
super().__init__(config, *inputs, **kwargs)
self.num_labels = config.num_labels
self.transformer = TFXLNetMainLayer(config, name="transformer")
@ -1001,7 +1001,7 @@ class TFXLNetForTokenClassification(TFXLNetPreTrainedModel):
"""
def __init__(self, config, *inputs, **kwargs):
super(TFXLNetForTokenClassification, self).__init__(config, *inputs, **kwargs)
super().__init__(config, *inputs, **kwargs)
self.num_labels = config.num_labels
self.transformer = TFXLNetMainLayer(config, name="transformer")
@ -1058,7 +1058,7 @@ class TFXLNetForQuestionAnsweringSimple(TFXLNetPreTrainedModel):
"""
def __init__(self, config, *inputs, **kwargs):
super(TFXLNetForQuestionAnsweringSimple, self).__init__(config, *inputs, **kwargs)
super().__init__(config, *inputs, **kwargs)
self.transformer = TFXLNetMainLayer(config, name="transformer")
self.qa_outputs = tf.keras.layers.Dense(
config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="qa_outputs"
@ -1127,7 +1127,7 @@ class TFXLNetForQuestionAnsweringSimple(TFXLNetPreTrainedModel):
# """
# def __init__(self, config, *inputs, **kwargs):
# super(TFXLNetForQuestionAnswering, self).__init__(config, *inputs, **kwargs)
# super().__init__(config, *inputs, **kwargs)
# self.start_n_top = config.start_n_top
# self.end_n_top = config.end_n_top

View File

@ -165,7 +165,7 @@ def load_tf_weights_in_transfo_xl(model, config, tf_path):
class PositionalEmbedding(nn.Module):
def __init__(self, demb):
super(PositionalEmbedding, self).__init__()
super().__init__()
self.demb = demb
@ -184,7 +184,7 @@ class PositionalEmbedding(nn.Module):
class PositionwiseFF(nn.Module):
def __init__(self, d_model, d_inner, dropout, pre_lnorm=False, layer_norm_epsilon=1e-5):
super(PositionwiseFF, self).__init__()
super().__init__()
self.d_model = d_model
self.d_inner = d_inner
@ -236,7 +236,7 @@ class RelPartialLearnableMultiHeadAttn(nn.Module):
output_attentions=False,
layer_norm_epsilon=1e-5,
):
super(RelPartialLearnableMultiHeadAttn, self).__init__()
super().__init__()
self.output_attentions = output_attentions
self.n_head = n_head
@ -368,7 +368,7 @@ class RelPartialLearnableMultiHeadAttn(nn.Module):
class RelPartialLearnableDecoderLayer(nn.Module):
def __init__(self, n_head, d_model, d_head, d_inner, dropout, layer_norm_epsilon=1e-5, **kwargs):
super(RelPartialLearnableDecoderLayer, self).__init__()
super().__init__()
self.dec_attn = RelPartialLearnableMultiHeadAttn(
n_head, d_model, d_head, dropout, layer_norm_epsilon=layer_norm_epsilon, **kwargs
@ -389,7 +389,7 @@ class RelPartialLearnableDecoderLayer(nn.Module):
class AdaptiveEmbedding(nn.Module):
def __init__(self, n_token, d_embed, d_proj, cutoffs, div_val=1, sample_softmax=False):
super(AdaptiveEmbedding, self).__init__()
super().__init__()
self.n_token = n_token
self.d_embed = d_embed
@ -587,7 +587,7 @@ class TransfoXLModel(TransfoXLPreTrainedModel):
"""
def __init__(self, config):
super(TransfoXLModel, self).__init__(config)
super().__init__(config)
self.output_attentions = config.output_attentions
self.output_hidden_states = config.output_hidden_states
@ -845,7 +845,7 @@ class TransfoXLLMHeadModel(TransfoXLPreTrainedModel):
"""
def __init__(self, config):
super(TransfoXLLMHeadModel, self).__init__(config)
super().__init__(config)
self.transformer = TransfoXLModel(config)
self.sample_softmax = config.sample_softmax
# use sampled softmax

View File

@ -29,7 +29,7 @@ import torch.nn.functional as F
class ProjectedAdaptiveLogSoftmax(nn.Module):
def __init__(self, n_token, d_embed, d_proj, cutoffs, div_val=1, keep_order=False):
super(ProjectedAdaptiveLogSoftmax, self).__init__()
super().__init__()
self.n_token = n_token
self.d_embed = d_embed

View File

@ -47,7 +47,7 @@ except ImportError:
"""
def __init__(self, *args, **kwargs):
super(Identity, self).__init__()
super().__init__()
def forward(self, input):
return input
@ -97,7 +97,7 @@ class PreTrainedModel(nn.Module, ModuleUtilsMixin):
return {"input_ids": torch.tensor(DUMMY_INPUTS)}
def __init__(self, config, *inputs, **kwargs):
super(PreTrainedModel, self).__init__()
super().__init__()
if not isinstance(config, PretrainedConfig):
raise ValueError(
"Parameter config in `{}(config)` should be an instance of class `PretrainedConfig`. "
@ -1102,7 +1102,7 @@ class Conv1D(nn.Module):
""" Conv1D layer as defined by Radford et al. for OpenAI GPT (and also used in GPT-2)
Basically works like a Linear layer but the weights are transposed
"""
super(Conv1D, self).__init__()
super().__init__()
self.nf = nf
w = torch.empty(nx, nf)
nn.init.normal_(w, std=0.02)
@ -1120,7 +1120,7 @@ class PoolerStartLogits(nn.Module):
""" Compute SQuAD start_logits from sequence hidden states. """
def __init__(self, config):
super(PoolerStartLogits, self).__init__()
super().__init__()
self.dense = nn.Linear(config.hidden_size, 1)
def forward(self, hidden_states, p_mask=None):
@ -1145,7 +1145,7 @@ class PoolerEndLogits(nn.Module):
"""
def __init__(self, config):
super(PoolerEndLogits, self).__init__()
super().__init__()
self.dense_0 = nn.Linear(config.hidden_size * 2, config.hidden_size)
self.activation = nn.Tanh()
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
@ -1191,7 +1191,7 @@ class PoolerAnswerClass(nn.Module):
""" Compute SQuAD 2.0 answer class from classification and start tokens hidden states. """
def __init__(self, config):
super(PoolerAnswerClass, self).__init__()
super().__init__()
self.dense_0 = nn.Linear(config.hidden_size * 2, config.hidden_size)
self.activation = nn.Tanh()
self.dense_1 = nn.Linear(config.hidden_size, 1, bias=False)
@ -1276,7 +1276,7 @@ class SQuADHead(nn.Module):
"""
def __init__(self, config):
super(SQuADHead, self).__init__()
super().__init__()
self.start_n_top = config.start_n_top
self.end_n_top = config.end_n_top
@ -1368,7 +1368,7 @@ class SequenceSummary(nn.Module):
"""
def __init__(self, config):
super(SequenceSummary, self).__init__()
super().__init__()
self.summary_type = config.summary_type if hasattr(config, "summary_type") else "last"
if self.summary_type == "attn":

View File

@ -96,7 +96,7 @@ class MultiHeadAttention(nn.Module):
NEW_ID = itertools.count()
def __init__(self, n_heads, dim, config):
super(MultiHeadAttention, self).__init__()
super().__init__()
self.layer_id = next(MultiHeadAttention.NEW_ID)
self.output_attentions = config.output_attentions
self.dim = dim
@ -197,7 +197,7 @@ class MultiHeadAttention(nn.Module):
class TransformerFFN(nn.Module):
def __init__(self, in_dim, dim_hidden, out_dim, config):
super(TransformerFFN, self).__init__()
super().__init__()
self.dropout = config.dropout
self.lin1 = nn.Linear(in_dim, dim_hidden)
self.lin2 = nn.Linear(dim_hidden, out_dim)
@ -222,7 +222,7 @@ class XLMPreTrainedModel(PreTrainedModel):
base_model_prefix = "transformer"
def __init__(self, *inputs, **kwargs):
super(XLMPreTrainedModel, self).__init__(*inputs, **kwargs)
super().__init__(*inputs, **kwargs)
@property
def dummy_inputs(self):
@ -354,7 +354,7 @@ class XLMModel(XLMPreTrainedModel):
"""
def __init__(self, config): # , dico, is_encoder, with_output):
super(XLMModel, self).__init__(config)
super().__init__(config)
self.output_attentions = config.output_attentions
self.output_hidden_states = config.output_hidden_states
@ -585,7 +585,7 @@ class XLMPredLayer(nn.Module):
"""
def __init__(self, config):
super(XLMPredLayer, self).__init__()
super().__init__()
self.asm = config.asm
self.n_words = config.n_words
self.pad_index = config.pad_index
@ -661,7 +661,7 @@ class XLMWithLMHeadModel(XLMPreTrainedModel):
"""
def __init__(self, config):
super(XLMWithLMHeadModel, self).__init__(config)
super().__init__(config)
self.transformer = XLMModel(config)
self.pred_layer = XLMPredLayer(config)
@ -754,7 +754,7 @@ class XLMForSequenceClassification(XLMPreTrainedModel):
"""
def __init__(self, config):
super(XLMForSequenceClassification, self).__init__(config)
super().__init__(config)
self.num_labels = config.num_labels
self.transformer = XLMModel(config)
@ -856,7 +856,7 @@ class XLMForQuestionAnsweringSimple(XLMPreTrainedModel):
"""
def __init__(self, config):
super(XLMForQuestionAnsweringSimple, self).__init__(config)
super().__init__(config)
self.transformer = XLMModel(config)
self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)
@ -973,7 +973,7 @@ class XLMForQuestionAnswering(XLMPreTrainedModel):
"""
def __init__(self, config):
super(XLMForQuestionAnswering, self).__init__(config)
super().__init__(config)
self.transformer = XLMModel(config)
self.qa_outputs = SQuADHead(config)

View File

@ -204,7 +204,7 @@ XLNetLayerNorm = nn.LayerNorm
class XLNetRelativeAttention(nn.Module):
def __init__(self, config):
super(XLNetRelativeAttention, self).__init__()
super().__init__()
self.output_attentions = config.output_attentions
if config.d_model % config.n_head != 0:
@ -414,7 +414,7 @@ class XLNetRelativeAttention(nn.Module):
class XLNetFeedForward(nn.Module):
def __init__(self, config):
super(XLNetFeedForward, self).__init__()
super().__init__()
self.layer_norm = XLNetLayerNorm(config.d_model, eps=config.layer_norm_eps)
self.layer_1 = nn.Linear(config.d_model, config.d_inner)
self.layer_2 = nn.Linear(config.d_inner, config.d_model)
@ -437,7 +437,7 @@ class XLNetFeedForward(nn.Module):
class XLNetLayer(nn.Module):
def __init__(self, config):
super(XLNetLayer, self).__init__()
super().__init__()
self.rel_attn = XLNetRelativeAttention(config)
self.ff = XLNetFeedForward(config)
self.dropout = nn.Dropout(config.dropout)
@ -631,7 +631,7 @@ class XLNetModel(XLNetPreTrainedModel):
"""
def __init__(self, config):
super(XLNetModel, self).__init__(config)
super().__init__(config)
self.output_attentions = config.output_attentions
self.output_hidden_states = config.output_hidden_states
self.output_past = config.output_past
@ -996,7 +996,7 @@ class XLNetLMHeadModel(XLNetPreTrainedModel):
"""
def __init__(self, config):
super(XLNetLMHeadModel, self).__init__(config)
super().__init__(config)
self.attn_type = config.attn_type
self.same_length = config.same_length
@ -1119,7 +1119,7 @@ class XLNetForSequenceClassification(XLNetPreTrainedModel):
"""
def __init__(self, config):
super(XLNetForSequenceClassification, self).__init__(config)
super().__init__(config)
self.num_labels = config.num_labels
self.transformer = XLNetModel(config)
@ -1234,7 +1234,7 @@ class XLNetForTokenClassification(XLNetPreTrainedModel):
"""
def __init__(self, config):
super(XLNetForTokenClassification, self).__init__(config)
super().__init__(config)
self.num_labels = config.num_labels
self.transformer = XLNetModel(config)
@ -1355,7 +1355,7 @@ class XLNetForMultipleChoice(XLNetPreTrainedModel):
"""
def __init__(self, config):
super(XLNetForMultipleChoice, self).__init__(config)
super().__init__(config)
self.transformer = XLNetModel(config)
self.sequence_summary = SequenceSummary(config)
@ -1463,7 +1463,7 @@ class XLNetForQuestionAnsweringSimple(XLNetPreTrainedModel):
"""
def __init__(self, config):
super(XLNetForQuestionAnsweringSimple, self).__init__(config)
super().__init__(config)
self.num_labels = config.num_labels
self.transformer = XLNetModel(config)
@ -1595,7 +1595,7 @@ class XLNetForQuestionAnswering(XLNetPreTrainedModel):
"""
def __init__(self, config):
super(XLNetForQuestionAnswering, self).__init__(config)
super().__init__(config)
self.start_n_top = config.start_n_top
self.end_n_top = config.end_n_top

View File

@ -114,7 +114,7 @@ class AdamW(Optimizer):
if not 0.0 <= eps:
raise ValueError("Invalid epsilon value: {} - should be >= 0.0".format(eps))
defaults = dict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay, correct_bias=correct_bias)
super(AdamW, self).__init__(params, defaults)
super().__init__(params, defaults)
def step(self, closure=None):
"""Performs a single optimization step.

View File

@ -24,7 +24,7 @@ class WarmUp(tf.keras.optimizers.schedules.LearningRateSchedule):
"""Applys a warmup schedule on a given learning rate decay schedule."""
def __init__(self, initial_learning_rate, decay_schedule_fn, warmup_steps, power=1.0, name=None):
super(WarmUp, self).__init__()
super().__init__()
self.initial_learning_rate = initial_learning_rate
self.warmup_steps = warmup_steps
self.power = power
@ -102,7 +102,7 @@ class AdamWeightDecay(tf.keras.optimizers.Adam):
name="AdamWeightDecay",
**kwargs
):
super(AdamWeightDecay, self).__init__(learning_rate, beta_1, beta_2, epsilon, amsgrad, name, **kwargs)
super().__init__(learning_rate, beta_1, beta_2, epsilon, amsgrad, name, **kwargs)
self.weight_decay_rate = weight_decay_rate
self._include_in_weight_decay = include_in_weight_decay
self._exclude_from_weight_decay = exclude_from_weight_decay
@ -111,10 +111,10 @@ class AdamWeightDecay(tf.keras.optimizers.Adam):
def from_config(cls, config):
"""Creates an optimizer from its config with WarmUp custom object."""
custom_objects = {"WarmUp": WarmUp}
return super(AdamWeightDecay, cls).from_config(config, custom_objects=custom_objects)
return super().from_config(config, custom_objects=custom_objects)
def _prepare_local(self, var_device, var_dtype, apply_state):
super(AdamWeightDecay, self)._prepare_local(var_device, var_dtype, apply_state)
super()._prepare_local(var_device, var_dtype, apply_state)
apply_state["weight_decay_rate"] = tf.constant(self.weight_decay_rate, name="adam_weight_decay_rate")
def _decay_weights_op(self, var, learning_rate, apply_state):
@ -128,7 +128,7 @@ class AdamWeightDecay(tf.keras.optimizers.Adam):
def apply_gradients(self, grads_and_vars, clip_norm, name=None):
grads, tvars = list(zip(*grads_and_vars))
(grads, _) = tf.clip_by_global_norm(grads, clip_norm=clip_norm)
return super(AdamWeightDecay, self).apply_gradients(zip(grads, tvars))
return super().apply_gradients(zip(grads, tvars))
def _get_lr(self, var_device, var_dtype, apply_state):
"""Retrieves the learning rate with the given state."""
@ -147,16 +147,16 @@ class AdamWeightDecay(tf.keras.optimizers.Adam):
lr_t, kwargs = self._get_lr(var.device, var.dtype.base_dtype, apply_state)
decay = self._decay_weights_op(var, lr_t, apply_state)
with tf.control_dependencies([decay]):
return super(AdamWeightDecay, self)._resource_apply_dense(grad, var, **kwargs)
return super()._resource_apply_dense(grad, var, **kwargs)
def _resource_apply_sparse(self, grad, var, indices, apply_state=None):
lr_t, kwargs = self._get_lr(var.device, var.dtype.base_dtype, apply_state)
decay = self._decay_weights_op(var, lr_t, apply_state)
with tf.control_dependencies([decay]):
return super(AdamWeightDecay, self)._resource_apply_sparse(grad, var, indices, **kwargs)
return super()._resource_apply_sparse(grad, var, indices, **kwargs)
def get_config(self):
config = super(AdamWeightDecay, self).get_config()
config = super().get_config()
config.update({"weight_decay_rate": self.weight_decay_rate})
return config

View File

@ -79,7 +79,7 @@ class AlbertTokenizer(PreTrainedTokenizer):
mask_token="[MASK]",
**kwargs
):
super(AlbertTokenizer, self).__init__(
super().__init__(
bos_token=bos_token,
eos_token=eos_token,
unk_token=unk_token,

View File

@ -163,7 +163,7 @@ class BertTokenizer(PreTrainedTokenizer):
This should likely be deactivated for Japanese:
see: https://github.com/huggingface/pytorch-pretrained-BERT/issues/328
"""
super(BertTokenizer, self).__init__(
super().__init__(
unk_token=unk_token,
sep_token=sep_token,
pad_token=pad_token,
@ -554,7 +554,7 @@ class BertTokenizerFast(PreTrainedTokenizerFast):
add_special_tokens=True,
**kwargs
):
super(BertTokenizerFast, self).__init__(
super().__init__(
unk_token=unk_token,
sep_token=sep_token,
pad_token=pad_token,

View File

@ -107,7 +107,7 @@ class BertJapaneseTokenizer(BertTokenizer):
**subword_tokenizer_type**: (`optional`) string (default "wordpiece")
Type of subword tokenizer.
"""
super(BertTokenizer, self).__init__(
super().__init__(
unk_token=unk_token,
sep_token=sep_token,
pad_token=pad_token,

View File

@ -66,7 +66,7 @@ class CamembertTokenizer(PreTrainedTokenizer):
additional_special_tokens=["<s>NOTUSED", "</s>NOTUSED"],
**kwargs
):
super(CamembertTokenizer, self).__init__(
super().__init__(
max_len=512,
bos_token=bos_token,
eos_token=eos_token,

View File

@ -126,7 +126,7 @@ class CTRLTokenizer(PreTrainedTokenizer):
control_codes = CONTROL_CODES
def __init__(self, vocab_file, merges_file, unk_token="<unk>", **kwargs):
super(CTRLTokenizer, self).__init__(unk_token=unk_token, **kwargs)
super().__init__(unk_token=unk_token, **kwargs)
self.max_len_single_sentence = (
self.max_len
) # no default special tokens - you can update this value if you add special tokens

View File

@ -122,7 +122,7 @@ class GPT2Tokenizer(PreTrainedTokenizer):
eos_token="<|endoftext|>",
**kwargs
):
super(GPT2Tokenizer, self).__init__(bos_token=bos_token, eos_token=eos_token, unk_token=unk_token, **kwargs)
super().__init__(bos_token=bos_token, eos_token=eos_token, unk_token=unk_token, **kwargs)
self.max_len_single_sentence = (
self.max_len
) # no default special tokens - you can update this value if you add special tokens
@ -268,7 +268,7 @@ class GPT2TokenizerFast(PreTrainedTokenizerFast):
truncation_strategy="longest_first",
**kwargs
):
super(GPT2TokenizerFast, self).__init__(
super().__init__(
bos_token=bos_token, eos_token=eos_token, unk_token=unk_token, **kwargs
)

View File

@ -82,7 +82,7 @@ class OpenAIGPTTokenizer(PreTrainedTokenizer):
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
def __init__(self, vocab_file, merges_file, unk_token="<unk>", **kwargs):
super(OpenAIGPTTokenizer, self).__init__(unk_token=unk_token, **kwargs)
super().__init__(unk_token=unk_token, **kwargs)
self.max_len_single_sentence = (
self.max_len

View File

@ -84,7 +84,7 @@ class RobertaTokenizer(GPT2Tokenizer):
mask_token="<mask>",
**kwargs
):
super(RobertaTokenizer, self).__init__(
super().__init__(
vocab_file=vocab_file,
merges_file=merges_file,
errors=errors,

View File

@ -91,7 +91,7 @@ class T5Tokenizer(PreTrainedTokenizer):
additional_special_tokens = []
additional_special_tokens.extend(["<extra_id_{}>".format(i) for i in range(extra_ids)])
super(T5Tokenizer, self).__init__(
super().__init__(
eos_token=eos_token,
unk_token=unk_token,
pad_token=pad_token,

View File

@ -78,7 +78,7 @@ class TransfoXLTokenizer(PreTrainedTokenizer):
additional_special_tokens=["<formula>"],
**kwargs
):
super(TransfoXLTokenizer, self).__init__(
super().__init__(
unk_token=unk_token, eos_token=eos_token, additional_special_tokens=additional_special_tokens, **kwargs
)

View File

@ -1425,7 +1425,7 @@ class PreTrainedTokenizerFast(PreTrainedTokenizer):
_decoder = None
def __init__(self, **kwargs):
super(PreTrainedTokenizerFast, self).__init__(**kwargs)
super().__init__(**kwargs)
@property
def tokenizer(self):

View File

@ -578,7 +578,7 @@ class XLMTokenizer(PreTrainedTokenizer):
do_lowercase_and_remove_accent=True,
**kwargs
):
super(XLMTokenizer, self).__init__(
super().__init__(
unk_token=unk_token,
bos_token=bos_token,
sep_token=sep_token,

View File

@ -75,7 +75,7 @@ class XLMRobertaTokenizer(PreTrainedTokenizer):
mask_token="<mask>",
**kwargs
):
super(XLMRobertaTokenizer, self).__init__(
super().__init__(
bos_token=bos_token,
eos_token=eos_token,
unk_token=unk_token,

View File

@ -77,7 +77,7 @@ class XLNetTokenizer(PreTrainedTokenizer):
additional_special_tokens=["<eop>", "<eod>"],
**kwargs
):
super(XLNetTokenizer, self).__init__(
super().__init__(
bos_token=bos_token,
eos_token=eos_token,
unk_token=unk_token,

View File

@ -80,7 +80,7 @@ class XxxConfig(PretrainedConfig):
summary_first_dropout=0.1,
**kwargs
):
super(XxxConfig, self).__init__(**kwargs)
super().__init__(**kwargs)
self.vocab_size = vocab_size
self.n_ctx = n_ctx
self.n_positions = n_positions

View File

@ -69,7 +69,7 @@ TFXxxOutput = tf.keras.layers.Layer
class TFXxxLayer(tf.keras.layers.Layer):
def __init__(self, config, **kwargs):
super(TFXxxLayer, self).__init__(**kwargs)
super().__init__(**kwargs)
self.attention = TFXxxAttention(config, name="attention")
self.intermediate = TFXxxIntermediate(config, name="intermediate")
self.transformer_output = TFXxxOutput(config, name="output")
@ -91,7 +91,7 @@ class TFXxxLayer(tf.keras.layers.Layer):
####################################################
class TFXxxMainLayer(tf.keras.layers.Layer):
def __init__(self, config, **kwargs):
super(TFXxxMainLayer, self).__init__(**kwargs)
super().__init__(**kwargs)
def _resize_token_embeddings(self, new_num_tokens):
raise NotImplementedError # Not implemented yet in the library fr TF 2.0 models
@ -307,7 +307,7 @@ class TFXxxModel(TFXxxPreTrainedModel):
"""
def __init__(self, config, *inputs, **kwargs):
super(TFXxxModel, self).__init__(config, *inputs, **kwargs)
super().__init__(config, *inputs, **kwargs)
self.transformer = TFXxxMainLayer(config, name="transformer")
def call(self, inputs, **kwargs):
@ -348,7 +348,7 @@ class TFXxxForMaskedLM(TFXxxPreTrainedModel):
"""
def __init__(self, config, *inputs, **kwargs):
super(TFXxxForMaskedLM, self).__init__(config, *inputs, **kwargs)
super().__init__(config, *inputs, **kwargs)
self.transformer = TFXxxMainLayer(config, name="transformer")
self.mlm = TFXxxMLMHead(config, self.transformer.embeddings, name="mlm")
@ -397,7 +397,7 @@ class TFXxxForSequenceClassification(TFXxxPreTrainedModel):
"""
def __init__(self, config, *inputs, **kwargs):
super(TFXxxForSequenceClassification, self).__init__(config, *inputs, **kwargs)
super().__init__(config, *inputs, **kwargs)
self.num_labels = config.num_labels
self.transformer = TFXxxMainLayer(config, name="transformer")
@ -452,7 +452,7 @@ class TFXxxForTokenClassification(TFXxxPreTrainedModel):
"""
def __init__(self, config, *inputs, **kwargs):
super(TFXxxForTokenClassification, self).__init__(config, *inputs, **kwargs)
super().__init__(config, *inputs, **kwargs)
self.num_labels = config.num_labels
self.transformer = TFXxxMainLayer(config, name="transformer")
@ -509,7 +509,7 @@ class TFXxxForQuestionAnswering(TFXxxPreTrainedModel):
"""
def __init__(self, config, *inputs, **kwargs):
super(TFXxxForQuestionAnswering, self).__init__(config, *inputs, **kwargs)
super().__init__(config, *inputs, **kwargs)
self.num_labels = config.num_labels
self.transformer = TFXxxMainLayer(config, name="transformer")

View File

@ -138,7 +138,7 @@ XxxOutput = nn.Module
class XxxLayer(nn.Module):
def __init__(self, config):
super(XxxLayer, self).__init__()
super().__init__()
self.attention = XxxAttention(config)
self.intermediate = XxxIntermediate(config)
self.output = XxxOutput(config)
@ -298,7 +298,7 @@ class XxxModel(XxxPreTrainedModel):
"""
def __init__(self, config):
super(XxxModel, self).__init__(config)
super().__init__(config)
self.embeddings = XxxEmbeddings(config)
self.encoder = XxxEncoder(config)
@ -426,7 +426,7 @@ class XxxForMaskedLM(XxxPreTrainedModel):
"""
def __init__(self, config):
super(XxxForMaskedLM, self).__init__(config)
super().__init__(config)
self.transformer = XxxModel(config)
self.lm_head = nn.Linear(config.n_embd, config.vocab_size)
@ -507,7 +507,7 @@ class XxxForSequenceClassification(XxxPreTrainedModel):
"""
def __init__(self, config):
super(XxxForSequenceClassification, self).__init__(config)
super().__init__(config)
self.num_labels = config.num_labels
self.transformer = XxxModel(config)
@ -593,7 +593,7 @@ class XxxForTokenClassification(XxxPreTrainedModel):
"""
def __init__(self, config):
super(XxxForTokenClassification, self).__init__(config)
super().__init__(config)
self.num_labels = config.num_labels
self.transformer = XxxModel(config)
@ -692,7 +692,7 @@ class XxxForQuestionAnswering(XxxPreTrainedModel):
"""
def __init__(self, config):
super(XxxForQuestionAnswering, self).__init__(config)
super().__init__(config)
self.num_labels = config.num_labels
self.transformer = XxxModel(config)

View File

@ -27,7 +27,7 @@ class XxxTokenizationTest(TokenizerTesterMixin, unittest.TestCase):
tokenizer_class = XxxTokenizer
def setUp(self):
super(XxxTokenizationTest, self).setUp()
super().setUp()
vocab_tokens = [
"[UNK]",

View File

@ -109,7 +109,7 @@ class XxxTokenizer(PreTrainedTokenizer):
Whether to lower case the input
Only has an effect when do_basic_tokenize=True
"""
super(XxxTokenizer, self).__init__(
super().__init__(
unk_token=unk_token,
sep_token=sep_token,
pad_token=pad_token,

View File

@ -30,7 +30,7 @@ class AlbertTokenizationTest(TokenizerTesterMixin, unittest.TestCase):
tokenizer_class = AlbertTokenizer
def setUp(self):
super(AlbertTokenizationTest, self).setUp()
super().setUp()
# We have a SentencePiece fixture for testing
tokenizer = AlbertTokenizer(SAMPLE_VOCAB)

View File

@ -38,7 +38,7 @@ class BertTokenizationTest(TokenizerTesterMixin, unittest.TestCase):
test_rust_tokenizer = True
def setUp(self):
super(BertTokenizationTest, self).setUp()
super().setUp()
vocab_tokens = [
"[UNK]",

View File

@ -35,7 +35,7 @@ class BertJapaneseTokenizationTest(TokenizerTesterMixin, unittest.TestCase):
tokenizer_class = BertJapaneseTokenizer
def setUp(self):
super(BertJapaneseTokenizationTest, self).setUp()
super().setUp()
vocab_tokens = [
"[UNK]",
@ -135,7 +135,7 @@ class BertJapaneseCharacterTokenizationTest(TokenizerTesterMixin, unittest.TestC
tokenizer_class = BertJapaneseTokenizer
def setUp(self):
super(BertJapaneseCharacterTokenizationTest, self).setUp()
super().setUp()
vocab_tokens = ["[UNK]", "[CLS]", "[SEP]", "", "", "", "", "", "", "", "", "", ""]

View File

@ -27,7 +27,7 @@ class CTRLTokenizationTest(TokenizerTesterMixin, unittest.TestCase):
tokenizer_class = CTRLTokenizer
def setUp(self):
super(CTRLTokenizationTest, self).setUp()
super().setUp()
# Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt
vocab = ["adapt", "re@@", "a@@", "apt", "c@@", "t", "<unk>"]

View File

@ -29,7 +29,7 @@ class GPT2TokenizationTest(TokenizerTesterMixin, unittest.TestCase):
test_rust_tokenizer = True
def setUp(self):
super(GPT2TokenizationTest, self).setUp()
super().setUp()
# Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt
vocab = [

View File

@ -28,7 +28,7 @@ class OpenAIGPTTokenizationTest(TokenizerTesterMixin, unittest.TestCase):
tokenizer_class = OpenAIGPTTokenizer
def setUp(self):
super(OpenAIGPTTokenizationTest, self).setUp()
super().setUp()
# Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt
vocab = [

View File

@ -28,7 +28,7 @@ class RobertaTokenizationTest(TokenizerTesterMixin, unittest.TestCase):
tokenizer_class = RobertaTokenizer
def setUp(self):
super(RobertaTokenizationTest, self).setUp()
super().setUp()
# Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt
vocab = [

View File

@ -31,7 +31,7 @@ class T5TokenizationTest(TokenizerTesterMixin, unittest.TestCase):
tokenizer_class = T5Tokenizer
def setUp(self):
super(T5TokenizationTest, self).setUp()
super().setUp()
# We have a SentencePiece fixture for testing
tokenizer = T5Tokenizer(SAMPLE_VOCAB)

View File

@ -33,7 +33,7 @@ class TransfoXLTokenizationTest(TokenizerTesterMixin, unittest.TestCase):
tokenizer_class = TransfoXLTokenizer if is_torch_available() else None
def setUp(self):
super(TransfoXLTokenizationTest, self).setUp()
super().setUp()
vocab_tokens = [
"<unk>",

View File

@ -29,7 +29,7 @@ class XLMTokenizationTest(TokenizerTesterMixin, unittest.TestCase):
tokenizer_class = XLMTokenizer
def setUp(self):
super(XLMTokenizationTest, self).setUp()
super().setUp()
# Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt
vocab = [

View File

@ -31,7 +31,7 @@ class XLNetTokenizationTest(TokenizerTesterMixin, unittest.TestCase):
tokenizer_class = XLNetTokenizer
def setUp(self):
super(XLNetTokenizationTest, self).setUp()
super().setUp()
# We have a SentencePiece fixture for testing
tokenizer = XLNetTokenizer(SAMPLE_VOCAB, keep_accents=True)