create model cards for qg models (#5610)

This commit is contained in:
Suraj Patil 2020-07-09 01:38:56 +05:30 committed by GitHub
parent d6b6ab11f0
commit 82ce8488bb
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
7 changed files with 277 additions and 0 deletions

View File

@ -0,0 +1,38 @@
---
datasets:
- squad
tags:
- question-generation
widget:
- text: "Python is a programming language. It is developed by Guido Van Rossum and released in 1991. </s>"
license: "MIT"
---
## T5 for question-generation
This is [t5-base](https://arxiv.org/abs/1910.10683) model trained for end-to-end question generation task. Simply input the text and the model will generate multile questions.
You can play with the model using the inference API, just put the text and see the results!
For more deatils see [this](https://github.com/patil-suraj/question_generation) repo.
### Model in action 🚀
You'll need to clone the [repo](https://github.com/patil-suraj/question_generation).
[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/patil-suraj/question_generation/blob/master/question_generation.ipynb)
```python3
from pipelines import pipeline
text = "Python is an interpreted, high-level, general-purpose programming language. Created by Guido van Rossum \
and first released in 1991, Python's design philosophy emphasizes code \
readability with its notable use of significant whitespace."
nlp = pipeline("e2e-qg", model="valhalla/t5-base-e2e-qg")
nlp(text)
=> [
'Who created Python?',
'When was Python first released?',
"What is Python's design philosophy?"
]
```

View File

@ -0,0 +1,50 @@
---
datasets:
- squad
tags:
- question-generation
widget:
- text: "generate question: <hl> 42 <hl> is the answer to life, the universe and everything. </s>"
- text: "question: What is 42 context: 42 is the answer to life, the universe and everything. </s>"
license: "MIT"
---
## T5 for multi-task QA and QG
This is multi-task [t5-base](https://arxiv.org/abs/1910.10683) model trained for question answering and answer aware question generation tasks.
For question generation the answer spans are highlighted within the text with special highlight tokens (`<hl>`) and prefixed with 'generate question: '. For QA the input is processed like this `question: question_text context: context_text </s>`
You can play with the model using the inference API. Here's how you can use it
For QG
`generate question: <hl> 42 <hl> is the answer to life, the universe and everything. </s>`
For QA
`question: What is 42 context: 42 is the answer to life, the universe and everything. </s>`
For more deatils see [this](https://github.com/patil-suraj/question_generation) repo.
### Model in action 🚀
You'll need to clone the [repo](https://github.com/patil-suraj/question_generation).
[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/patil-suraj/question_generation/blob/master/question_generation.ipynb)
```python3
from pipelines import pipeline
nlp = pipeline("multitask-qa-qg", model="valhalla/t5-base-qa-qg-hl")
# to generate questions simply pass the text
nlp("42 is the answer to life, the universe and everything.")
=> [{'answer': '42', 'question': 'What is the answer to life, the universe and everything?'}]
# for qa pass a dict with "question" and "context"
nlp({
"question": "What is 42 ?",
"context": "42 is the answer to life, the universe and everything."
})
=> 'the answer to life, the universe and everything'
```

View File

@ -0,0 +1,33 @@
---
datasets:
- squad
tags:
- question-generation
widget:
- text: "<hl> 42 <hl> is the answer to life, the universe and everything. </s>"
- text: "Python is a programming language. It is developed by <hl> Guido Van Rossum <hl>. </s>"
- text: "Although <hl> practicality <hl> beats purity </s>"
license: "MIT"
---
## T5 for question-generation
This is [t5-base](https://arxiv.org/abs/1910.10683) model trained for answer aware question generation task. The answer spans are highlighted within the text with special highlight tokens.
You can play with the model using the inference API, just highlight the answer spans with `<hl>` tokens and end the text with `</s>`. For example
`<hl> 42 <hl> is the answer to life, the universe and everything. </s>`
For more deatils see [this](https://github.com/patil-suraj/question_generation) repo.
### Model in action 🚀
You'll need to clone the [repo](https://github.com/patil-suraj/question_generation).
[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/patil-suraj/question_generation/blob/master/question_generation.ipynb)
```python3
from pipelines import pipeline
nlp = pipeline("question-generation", model="valhalla/t5-base-qg-hl")
nlp("42 is the answer to life, universe and everything.")
=> [{'answer': '42', 'question': 'What is the answer to life, universe and everything?'}]
```

View File

@ -0,0 +1,36 @@
---
datasets:
- squad
tags:
- question-generation
widget:
- text: "answer: 42 context: 42 is the answer to life, the universe and everything. </s>"
- text: "answer: Guido Van Rossum context: Python is a programming language. It is developed by Guido Van Rossum. </s>"
- text: "answer: Explicit context: Explicit is better than implicit </s>"
license: "MIT"
---
## T5 for question-generation
This is [t5-small](https://arxiv.org/abs/1910.10683) model trained for answer aware question generation task. The answer text is prepended before the context text.
You can play with the model using the inference API, just get the input text in this format and see the results!
`answer: answer_text context: context_text </s>`
For example
`answer: 42 context: 42 is the answer to life, the universe and everything. </s>`
For more deatils see [this](https://github.com/patil-suraj/question_generation) repo.
### Model in action 🚀
You'll need to clone the [repo](https://github.com/patil-suraj/question_generation).
[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/patil-suraj/question_generation/blob/master/question_generation.ipynb)
```python3
from pipelines import pipeline
nlp = pipeline("question-generation", qg_format="prepend")
nlp("42 is the answer to life, universe and everything.")
=> [{'answer': '42', 'question': 'What is the answer to life, universe and everything?'}]
```

View File

@ -0,0 +1,38 @@
---
datasets:
- squad
tags:
- question-generation
widget:
- text: "Python is developed by Guido Van Rossum and released in 1991. </s>"
license: "MIT"
---
## T5 for question-generation
This is [t5-small](https://arxiv.org/abs/1910.10683) model trained for end-to-end question generation task. Simply input the text and the model will generate multile questions.
You can play with the model using the inference API, just put the text and see the results!
For more deatils see [this](https://github.com/patil-suraj/question_generation) repo.
### Model in action 🚀
You'll need to clone the [repo](https://github.com/patil-suraj/question_generation).
[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/patil-suraj/question_generation/blob/master/question_generation.ipynb)
```python3
from pipelines import pipeline
text = "Python is an interpreted, high-level, general-purpose programming language. Created by Guido van Rossum \
and first released in 1991, Python's design philosophy emphasizes code \
readability with its notable use of significant whitespace."
nlp = pipeline("e2e-qg")
nlp(text)
=> [
'Who created Python?',
'When was Python first released?',
"What is Python's design philosophy?"
]
```

View File

@ -0,0 +1,49 @@
---
datasets:
- squad
tags:
- question-generation
widget:
- text: "generate question: <hl> 42 <hl> is the answer to life, the universe and everything. </s>"
- text: "question: What is 42 context: 42 is the answer to life, the universe and everything. </s>"
license: "MIT"
---
## T5 for multi-task QA and QG
This is multi-task [t5-small](https://arxiv.org/abs/1910.10683) model trained for question answering and answer aware question generation tasks.
For question generation the answer spans are highlighted within the text with special highlight tokens (`<hl>`) and prefixed with 'generate question: '. For QA the input is processed like this `question: question_text context: context_text </s>`
You can play with the model using the inference API. Here's how you can use it
For QG
`generate question: <hl> 42 <hl> is the answer to life, the universe and everything. </s>`
For QA
`question: What is 42 context: 42 is the answer to life, the universe and everything. </s>`
For more deatils see [this](https://github.com/patil-suraj/question_generation) repo.
### Model in action 🚀
You'll need to clone the [repo](https://github.com/patil-suraj/question_generation).
[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/patil-suraj/question_generation/blob/master/question_generation.ipynb)
```python3
from pipelines import pipeline
nlp = pipeline("multitask-qa-qg")
# to generate questions simply pass the text
nlp("42 is the answer to life, the universe and everything.")
=> [{'answer': '42', 'question': 'What is the answer to life, the universe and everything?'}]
# for qa pass a dict with "question" and "context"
nlp({
"question": "What is 42 ?",
"context": "42 is the answer to life, the universe and everything."
})
=> 'the answer to life, the universe and everything'
```

View File

@ -0,0 +1,33 @@
---
datasets:
- squad
tags:
- question-generation
widget:
- text: "<hl> 42 <hl> is the answer to life, the universe and everything. </s>"
- text: "Python is a programming language. It is developed by <hl> Guido Van Rossum <hl>. </s>"
- text: "Simple is better than <hl> complex <hl>. </s>"
license: "MIT"
---
## T5 for question-generation
This is [t5-small](https://arxiv.org/abs/1910.10683) model trained for answer aware question generation task. The answer spans are highlighted within the text with special highlight tokens.
You can play with the model using the inference API, just highlight the answer spans with `<hl>` tokens and end the text with `</s>`. For example
`<hl> 42 <hl> is the answer to life, the universe and everything. </s>`
For more deatils see [this](https://github.com/patil-suraj/question_generation) repo.
### Model in action 🚀
You'll need to clone the [repo](https://github.com/patil-suraj/question_generation).
[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/patil-suraj/question_generation/blob/master/question_generation.ipynb)
```python3
from pipelines import pipeline
nlp = pipeline("question-generation")
nlp("42 is the answer to life, universe and everything.")
=> [{'answer': '42', 'question': 'What is the answer to life, universe and everything?'}]
```