Remove unused variables in examples.

This commit is contained in:
Aymeric Augustin 2019-12-23 22:23:44 +01:00
parent 072750f4dc
commit 81422c4e6d
4 changed files with 2 additions and 16 deletions

View File

@ -44,13 +44,10 @@ from transformers import (
AdamW,
OpenAIGPTDoubleHeadsModel,
OpenAIGPTTokenizer,
cached_path,
get_linear_schedule_with_warmup,
)
ROCSTORIES_URL = "https://s3.amazonaws.com/datasets.huggingface.co/ROCStories.tar.gz"
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO
)
@ -182,9 +179,6 @@ def main():
model.to(device)
# Load and encode the datasets
if not args.train_dataset and not args.eval_dataset:
roc_stories = cached_path(ROCSTORIES_URL)
def tokenize_and_encode(obj):
""" Tokenize and encode a nested object """
if isinstance(obj, str):

View File

@ -28,7 +28,7 @@ import time
import torch
from transformers import TransfoXLCorpus, TransfoXLLMHeadModel, TransfoXLTokenizer
from transformers import TransfoXLCorpus, TransfoXLLMHeadModel
logging.basicConfig(
@ -73,9 +73,7 @@ def main():
# The pre-processing involve computing word frequencies to prepare the Adaptive input and SoftMax
# and tokenizing the dataset
# The pre-processed corpus is a convertion (using the conversion script )
tokenizer = TransfoXLTokenizer.from_pretrained(args.model_name)
corpus = TransfoXLCorpus.from_pretrained(args.model_name)
ntokens = len(corpus.vocab)
va_iter = corpus.get_iterator("valid", args.batch_size, args.tgt_len, device=device, ext_len=args.ext_len)
te_iter = corpus.get_iterator("test", args.batch_size, args.tgt_len, device=device, ext_len=args.ext_len)

View File

@ -141,7 +141,7 @@ def train(args, train_dataset, model, tokenizer):
global_step = 0
tr_loss, logging_loss = 0.0, 0.0
best_dev_acc, best_dev_loss = 0.0, 99999999999.0
best_dev_acc = 0.0
best_steps = 0
model.zero_grad()
train_iterator = trange(int(args.num_train_epochs), desc="Epoch", disable=args.local_rank not in [-1, 0])
@ -193,7 +193,6 @@ def train(args, train_dataset, model, tokenizer):
tb_writer.add_scalar("eval_{}".format(key), value, global_step)
if results["eval_acc"] > best_dev_acc:
best_dev_acc = results["eval_acc"]
best_dev_loss = results["eval_loss"]
best_steps = global_step
if args.do_test:
results_test = evaluate(args, model, tokenizer, test=True)

View File

@ -446,8 +446,6 @@ class MultiHeadedAttention(nn.Module):
batch_size = key.size(0)
dim_per_head = self.dim_per_head
head_count = self.head_count
key_len = key.size(1)
query_len = query.size(1)
def shape(x):
""" projection """
@ -504,9 +502,6 @@ class MultiHeadedAttention(nn.Module):
query = shape(query)
key_len = key.size(2)
query_len = query.size(2)
# 2) Calculate and scale scores.
query = query / math.sqrt(dim_per_head)
scores = torch.matmul(query, key.transpose(2, 3))