mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-31 02:02:21 +06:00
[Examples, T5] Change newstest2013 to newstest2014 and clean up (#3817)
* Refactored use of newstest2013 to newstest2014. Fixed bug where argparse consumed first command line argument as model_size argument rather than using default model_size by forcing explicit --model_size flag inclusion * More pythonic file handling through 'with' context * COSMETIC - ran Black and isort * Fixed reference to number of lines in newstest2014 * Fixed failing test. More pythonic file handling * finish PR from tholiao * remove outcommented lines * make style * make isort happy Co-authored-by: Thomas Liao <tholiao@gmail.com>
This commit is contained in:
parent
d486795158
commit
80a1694514
@ -9,17 +9,17 @@ evaluated on the WMT English-German dataset.
|
||||
|
||||
To be able to reproduce the authors' results on WMT English to German, you first need to download
|
||||
the WMT14 en-de news datasets.
|
||||
Go on Stanford's official NLP [website](https://nlp.stanford.edu/projects/nmt/) and find "newstest2013.en" and "newstest2013.de" under WMT'14 English-German data or download the dataset directly via:
|
||||
Go on Stanford's official NLP [website](https://nlp.stanford.edu/projects/nmt/) and find "newstest2014.en" and "newstest2014.de" under WMT'14 English-German data or download the dataset directly via:
|
||||
|
||||
```bash
|
||||
curl https://nlp.stanford.edu/projects/nmt/data/wmt14.en-de/newstest2013.en > newstest2013.en
|
||||
curl https://nlp.stanford.edu/projects/nmt/data/wmt14.en-de/newstest2013.de > newstest2013.de
|
||||
curl https://nlp.stanford.edu/projects/nmt/data/wmt14.en-de/newstest2014.en > newstest2014.en
|
||||
curl https://nlp.stanford.edu/projects/nmt/data/wmt14.en-de/newstest2014.de > newstest2014.de
|
||||
```
|
||||
|
||||
You should have 3000 sentence in each file. You can verify this by running:
|
||||
You should have 2737 sentences in each file. You can verify this by running:
|
||||
|
||||
```bash
|
||||
wc -l newstest2013.en # should give 3000
|
||||
wc -l newstest2014.en # should give 2737
|
||||
```
|
||||
|
||||
### Usage
|
||||
@ -29,8 +29,8 @@ Let's check the longest and shortest sentence in our file to find reasonable dec
|
||||
Get the longest and shortest sentence:
|
||||
|
||||
```bash
|
||||
awk '{print NF}' newstest2013.en | sort -n | head -1 # shortest sentence has 1 word
|
||||
awk '{print NF}' newstest2013.en | sort -n | tail -1 # longest sentence has 106 words
|
||||
awk '{print NF}' newstest2014.en | sort -n | head -1 # shortest sentence has 2 word
|
||||
awk '{print NF}' newstest2014.en | sort -n | tail -1 # longest sentence has 91 words
|
||||
```
|
||||
|
||||
We will set our `max_length` to ~3 times the longest sentence and leave `min_length` to its default value of 0.
|
||||
@ -38,7 +38,7 @@ We decode with beam search `num_beams=4` as proposed in the paper. Also as is co
|
||||
|
||||
To create translation for each in dataset and get a final BLEU score, run:
|
||||
```bash
|
||||
python evaluate_wmt.py <path_to_newstest2013.en> newstest2013_de_translations.txt <path_to_newstest2013.de> newsstest2013_en_de_bleu.txt
|
||||
python evaluate_wmt.py <path_to_newstest2014.en> newstest2014_de_translations.txt <path_to_newstest2014.de> newsstest2014_en_de_bleu.txt
|
||||
```
|
||||
the default batch size, 16, fits in 16GB GPU memory, but may need to be adjusted to fit your system.
|
||||
|
||||
|
@ -15,8 +15,6 @@ def chunks(lst, n):
|
||||
|
||||
|
||||
def generate_translations(lns, output_file_path, model_size, batch_size, device):
|
||||
output_file = Path(output_file_path).open("w")
|
||||
|
||||
model = T5ForConditionalGeneration.from_pretrained(model_size)
|
||||
model.to(device)
|
||||
|
||||
@ -27,27 +25,29 @@ def generate_translations(lns, output_file_path, model_size, batch_size, device)
|
||||
if task_specific_params is not None:
|
||||
model.config.update(task_specific_params.get("translation_en_to_de", {}))
|
||||
|
||||
for batch in tqdm(list(chunks(lns, batch_size))):
|
||||
batch = [model.config.prefix + text for text in batch]
|
||||
with Path(output_file_path).open("w") as output_file:
|
||||
for batch in tqdm(list(chunks(lns, batch_size))):
|
||||
batch = [model.config.prefix + text for text in batch]
|
||||
|
||||
dct = tokenizer.batch_encode_plus(batch, max_length=512, return_tensors="pt", pad_to_max_length=True)
|
||||
dct = tokenizer.batch_encode_plus(batch, max_length=512, return_tensors="pt", pad_to_max_length=True)
|
||||
|
||||
input_ids = dct["input_ids"].to(device)
|
||||
attention_mask = dct["attention_mask"].to(device)
|
||||
input_ids = dct["input_ids"].to(device)
|
||||
attention_mask = dct["attention_mask"].to(device)
|
||||
|
||||
translations = model.generate(input_ids=input_ids, attention_mask=attention_mask)
|
||||
dec = [tokenizer.decode(g, skip_special_tokens=True, clean_up_tokenization_spaces=False) for g in translations]
|
||||
translations = model.generate(input_ids=input_ids, attention_mask=attention_mask)
|
||||
dec = [
|
||||
tokenizer.decode(g, skip_special_tokens=True, clean_up_tokenization_spaces=False) for g in translations
|
||||
]
|
||||
|
||||
for hypothesis in dec:
|
||||
output_file.write(hypothesis + "\n")
|
||||
output_file.flush()
|
||||
for hypothesis in dec:
|
||||
output_file.write(hypothesis + "\n")
|
||||
|
||||
|
||||
def calculate_bleu_score(output_lns, refs_lns, score_path):
|
||||
bleu = corpus_bleu(output_lns, [refs_lns])
|
||||
result = "BLEU score: {}".format(bleu.score)
|
||||
score_file = Path(score_path).open("w")
|
||||
score_file.write(result)
|
||||
with Path(score_path).open("w") as score_file:
|
||||
score_file.write(result)
|
||||
|
||||
|
||||
def run_generate():
|
||||
@ -59,13 +59,13 @@ def run_generate():
|
||||
default="t5-base",
|
||||
)
|
||||
parser.add_argument(
|
||||
"input_path", type=str, help="like wmt/newstest2013.en",
|
||||
"input_path", type=str, help="like wmt/newstest2014.en",
|
||||
)
|
||||
parser.add_argument(
|
||||
"output_path", type=str, help="where to save translation",
|
||||
)
|
||||
parser.add_argument(
|
||||
"reference_path", type=str, help="like wmt/newstest2013.de",
|
||||
"reference_path", type=str, help="like wmt/newstest2014.de",
|
||||
)
|
||||
parser.add_argument(
|
||||
"score_path", type=str, help="where to save the bleu score",
|
||||
@ -82,12 +82,19 @@ def run_generate():
|
||||
|
||||
dash_pattern = (" ##AT##-##AT## ", "-")
|
||||
|
||||
input_lns = [x.strip().replace(dash_pattern[0], dash_pattern[1]) for x in open(args.input_path).readlines()]
|
||||
# Read input lines into python
|
||||
with open(args.input_path, "r") as input_file:
|
||||
input_lns = [x.strip().replace(dash_pattern[0], dash_pattern[1]) for x in input_file.readlines()]
|
||||
|
||||
generate_translations(input_lns, args.output_path, args.model_size, args.batch_size, args.device)
|
||||
|
||||
output_lns = [x.strip() for x in open(args.output_path).readlines()]
|
||||
refs_lns = [x.strip().replace(dash_pattern[0], dash_pattern[1]) for x in open(args.reference_path).readlines()]
|
||||
# Read generated lines into python
|
||||
with open(args.output_path, "r") as output_file:
|
||||
output_lns = [x.strip() for x in output_file.readlines()]
|
||||
|
||||
# Read reference lines into python
|
||||
with open(args.reference_path, "r") as reference_file:
|
||||
refs_lns = [x.strip().replace(dash_pattern[0], dash_pattern[1]) for x in reference_file.readlines()]
|
||||
|
||||
calculate_bleu_score(output_lns, refs_lns, args.score_path)
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user