Patch fix - don't use safetensors for TF models (#30118)

* Patch fix - don't use safetensors for TF models

* Skip test for TF for now

* Update for another test
This commit is contained in:
amyeroberts 2024-04-08 13:29:20 +01:00 committed by GitHub
parent f5658732d5
commit 7f9aff910b
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
3 changed files with 6 additions and 5 deletions

View File

@ -111,7 +111,7 @@ class GenerationIntegrationTestsMixin:
article = """Justin Timberlake."""
gpt2_tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2")
gpt2_model = model_cls.from_pretrained("hf-internal-testing/tiny-random-gpt2")
gpt2_model = model_cls.from_pretrained("hf-internal-testing/tiny-random-gpt2", use_safetensors=is_pt)
input_ids = gpt2_tokenizer(article, return_tensors=return_tensors).input_ids
if is_pt:
gpt2_model = gpt2_model.to(torch_device)
@ -582,7 +582,7 @@ class GenerationIntegrationTestsMixin:
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2")
text = """Hello, my dog is cute and"""
tokens = tokenizer(text, return_tensors=return_tensors)
model = model_cls.from_pretrained("hf-internal-testing/tiny-random-gpt2")
model = model_cls.from_pretrained("hf-internal-testing/tiny-random-gpt2", use_safetensors=is_pt)
if is_pt:
model = model.to(torch_device)
tokens = tokens.to(torch_device)
@ -611,7 +611,7 @@ class GenerationIntegrationTestsMixin:
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2")
text = """Hello, my dog is cute and"""
tokens = tokenizer(text, return_tensors=return_tensors)
model = model_cls.from_pretrained("hf-internal-testing/tiny-random-gpt2")
model = model_cls.from_pretrained("hf-internal-testing/tiny-random-gpt2", use_safetensors=is_pt)
if is_pt:
model = model.to(torch_device)
tokens = tokens.to(torch_device)
@ -638,7 +638,7 @@ class GenerationIntegrationTestsMixin:
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2")
text = """Hello, my dog is cute and"""
tokens = tokenizer(text, return_tensors=return_tensors)
model = model_cls.from_pretrained("hf-internal-testing/tiny-random-gpt2")
model = model_cls.from_pretrained("hf-internal-testing/tiny-random-gpt2", use_safetensors=is_pt)
if is_pt:
model = model.to(torch_device)
tokens = tokens.to(torch_device)

View File

@ -194,7 +194,7 @@ class TFGenerationIntegrationTests(unittest.TestCase, GenerationIntegrationTests
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2")
text = """Hello, my dog is cute and"""
tokens = tokenizer(text, return_tensors="tf")
model = TFAutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2")
model = TFAutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2", use_safetensors=False)
eos_token_id = 638
# forces the generation to happen on CPU, to avoid GPU-related quirks

View File

@ -268,6 +268,7 @@ class TextGenerationPipelineTests(unittest.TestCase):
text_generator = TextGenerationPipeline(model=model, tokenizer=tokenizer)
return text_generator, ["This is a test", "Another test"]
@require_torch # See https://github.com/huggingface/transformers/issues/30117
def test_stop_sequence_stopping_criteria(self):
prompt = """Hello I believe in"""
text_generator = pipeline("text-generation", model="hf-internal-testing/tiny-random-gpt2")