TF: TFMarianMTModel final logits bias as a layer (#18833)

* bias as a layer

* alias the bias (hah, it rhymes)

* add comment with info
This commit is contained in:
Joao Gante 2022-09-05 09:20:27 +01:00 committed by GitHub
parent 65fb71bc76
commit 7f27e002fd
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

View File

@ -1269,6 +1269,23 @@ class TFMarianModel(TFMarianPreTrainedModel):
)
class BiasLayer(tf.keras.layers.Layer):
"""
Bias as a layer. It is used for serialization purposes: `tf.keras.Model.save_weights` stores on a per-layer basis,
so all weights have to be registered in a layer.
"""
def __init__(self, shape, initializer, trainable, name, **kwargs):
super().__init__(name=name, **kwargs)
# Note: the name of this variable will NOT be scoped when serialized, i.e. it will not be in the format of
# "outer_layer/inner_layer/.../name:0". Instead, it will be "name:0". For further details, see:
# https://github.com/huggingface/transformers/pull/18833#issuecomment-1233090214
self.bias = self.add_weight(name=name, shape=shape, initializer=initializer, trainable=trainable)
def call(self, x):
return x + self.bias
@add_start_docstrings(
"The MARIAN Model with a language modeling head. Can be used for summarization.",
MARIAN_START_DOCSTRING,
@ -1284,9 +1301,10 @@ class TFMarianMTModel(TFMarianPreTrainedModel, TFCausalLanguageModelingLoss):
self.model = TFMarianMainLayer(config, name="model")
self.use_cache = config.use_cache
# final_bias_logits is registered as a buffer in pytorch, so not trainable for the sake of consistency.
self.final_logits_bias = self.add_weight(
self.bias_layer = BiasLayer(
name="final_logits_bias", shape=[1, config.vocab_size], initializer="zeros", trainable=False
)
self.final_logits_bias = self.bias_layer.bias # alias to keep the same interface with PT
def get_decoder(self):
return self.model.decoder
@ -1373,7 +1391,7 @@ class TFMarianMTModel(TFMarianPreTrainedModel, TFCausalLanguageModelingLoss):
training=training,
)
lm_logits = self.model.shared(outputs[0], mode="linear")
lm_logits = lm_logits + self.final_logits_bias
lm_logits = self.bias_layer(lm_logits)
masked_lm_loss = None if labels is None else self.hf_compute_loss(labels, lm_logits)
if not return_dict: