Encoder decoder config docs (#6195)

* Adding docs for how to load encoder_decoder pretrained model with individual config objects

* Adding docs for loading encoder_decoder config from pretrained folder

* Fixing  W293 blank line contains whitespace

* Update src/transformers/modeling_encoder_decoder.py

* Update src/transformers/modeling_encoder_decoder.py

* Update src/transformers/modeling_encoder_decoder.py

* Apply suggestions from code review

model file should only show examples for how to load save model

* Update src/transformers/configuration_encoder_decoder.py

* Update src/transformers/configuration_encoder_decoder.py

* fix space

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
This commit is contained in:
Andrés Felipe Cruz 2020-08-04 00:23:28 -07:00 committed by GitHub
parent 1d5c3a3d96
commit 7ea9b2db37
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
2 changed files with 16 additions and 1 deletions

View File

@ -56,6 +56,15 @@ class EncoderDecoderConfig(PretrainedConfig):
>>> # Accessing the model configuration
>>> config_encoder = model.config.encoder
>>> config_decoder = model.config.decoder
>>> # set decoder config to causal lm
>>> config_decoder.is_decoder = True
>>> # Saving the model, including its configuration
>>> model.save_pretrained('my-model')
>>> # loading model and config from pretrained folder
>>> encoder_decoder_config = EncoderDecoderConfig.from_pretrained('my-model')
>>> model = EncoderDecoderModel.from_pretrained('my-model', config=encoder_decoder_config)
"""
model_type = "encoder_decoder"

View File

@ -127,7 +127,13 @@ class EncoderDecoderModel(PreTrainedModel):
Examples::
>>> from transformers import EncoderDecoderModel
>>> model = EncoderDecoderModel.from_encoder_decoder_pretrained('bert-base-uncased', 'bert-base-uncased') # initialize Bert2Bert
>>> # initialize a bert2bert from two pretrained BERT models. Note that the cross-attention layers will be randomly initialized
>>> model = EncoderDecoderModel.from_encoder_decoder_pretrained('bert-base-uncased', 'bert-base-uncased')
>>> # saving model after fine-tuning
>>> model.save_pretrained("./bert2bert")
>>> # load fine-tuned model
>>> model = EncoderDecoderModel.from_pretrained("./bert2bert")
"""
kwargs_encoder = {